Two points on line p have
coordinates (2, 1) and (5, 3).
The slope of the line is?

A. 2
B. 3/2
C. 1
D. 2/3
E. 4

Answers

Answer 1

Answer:

D. 2/3

Step-by-step explanation:

[tex](2, 1) (5, 3)\\x_1 =2 \\y_1 =1\\x_2=5\\y_2 =3\\m =\frac{y_2-y_1}{x_2-x_1} \\\\m = \frac{3-1}{5-2} \\\\m = 2/3[/tex]


Related Questions

During a timed test, Alexander typed 742words in 14minutes. Assuming Alexander works at this rate for the next hour, which of the following best approximates the number of words he would type in that hour?

Answers

Answer:

3,180 words in the hour

Step-by-step explanation:

First, you have to figure out how many words he types in one minute. Then, have to multiply by the number of minutes. So,

Number of words per minute:

742 = Total number of words in 14 min

14 = time given

742/14 = 53 words per minute

Number of Words in 1 hour:

53 = words per min

60 = number of minutes

53*60 = 3,180

3,180 words in one hour.

Hope my answer helps,

Kavitha

Answer:

3180 words

Step-by-step explanation:

We can use a ratio to solve

742 words           x words

---------------  = -----------------

14 minutes          60 minutes

Using cross products

742 * 60 = 14x

Divide each side by 14

742*60/14 = x

3180 words

Which of the following is an example of a quadratic equation?

Answers

Answer:

C. x^2 - 64 = 0

hope this helps :)

Answer:

It's C

Step-by-step explanation:

It has a variable being squared

what is the ratio of the number of black keys to the total number of keys on the keyboard, if the same pattern of keys I continued 5 black keys 7 white keys

Answers

Answer:

5 : 7 i guess

Step-by-step explanation:


Find the unknown side length, x. Write your answer in simplest radical form.
A. 3
B. 34
C. 6.
D. 41

Answers

Answer:

√41

Step-by-step explanation:

Considering the sides with lengths 48 and 52 units, we would use Pythagoras theorem to find the third side. Let that side be t

52² = 48² + t²

t² = 52² - 48²

= 2704 - 2304

= 400

t = √400

= 20

Considering the next triangle with sides t (20 units) and 12 units, again using the theorem

20² = 12² + y²

where y is the third side

400 = 144 + y²

y² = 400 - 144

= 256

y = √256

= 16 units

Considering the triangle with two sides given as 5 and 13 units, the third side (which is part of the 16 units calculated earlier)

13² = 5² + u²

where u is the 3rd side

169 = 25 + u²

u² = 169 - 25

u² = 144

u = √144

u = 12

The other part of the side of that triangle

= 16 - 12

= 4

Considering the smallest triangle whose sides are x, 5 and 4,

x² = 5² + 4²

= 25 + 16

= 41

x = √41

¿Qué escala se utilizó en un mapa, donde la distancia en la vida real es 45 km y en el plano es 5cm?please ayuda

Answers

Answer:

La escala utilizada en el mapa es 1 : 900000.

Step-by-step explanation:

El enunciado describe claramente una escala de reducción. El factor de escala se define como sigue:

[tex]n = \frac{s_{plano}}{s_{real}}[/tex]

Donde:

[tex]n[/tex] - Factor de escala, adimensional.

[tex]s_{plano}[/tex] - Distancia en el plano, medida en centímetros.

[tex]s_{real}[/tex] - Distancia real, medida en centímetros.

Si [tex]s_{plano} = 5\,cm[/tex] y [tex]s_{real} = 4500000\,cm[/tex], entonces el factor de escala es:

[tex]n = \frac{5\,cm}{4500000\,cm}[/tex]

[tex]n = \frac{1}{900000}[/tex]

La escala utilizada en el mapa es 1 : 900000.

EXAMPLE 4 Find ∂z/∂x and ∂z/∂y if z is defined implicitly as a function of x and y by the equation x6 + y6 + z6 + 18xyz = 1. SOLUTION To find ∂z/∂x, we differentiate implicitly with respect to x, being careful to treat y as a constant:

Answers

Answer:

see attachment

Step-by-step explanation:

We differentiate implicitly with respect to x taking y as a constant and we differentiate implicitly with respect to y taking x as a constant.

[tex]\rm \dfrac{\partial z}{\partial x} = - \dfrac{(x^5 + 3yz)}{z^5 + x} \ \ and \ \ \dfrac{\partial z}{\partial y} &= - \dfrac{(y^5 + 3xz)}{z^5 + y}[/tex]

What is an implicit function?

When in a function the dependent variable is not explicitly isolated on either side of the equation then the function becomes an implicit function.

The equation is given as [tex]\rm x^6 + y^6 + z^6 + 18xyz = 1.[/tex]

Differentiate partially the function with respect to x treating y as a constant.

[tex]\begin{aligned} \dfrac{\partial}{\partial x} x^6 + y^6 + z^6 + 18xyz &= 0\\\\6x^5 + 0 + 6z^5 \dfrac{\partial z }{\partial x} + 18y(z + x\dfrac{\partial z}{\partial x}) &= 0\\\\x^5 + z^5 \dfrac{\partial z }{\partial x} + 3y(z + x\dfrac{\partial z}{\partial x}) &= 0\\\\\dfrac{\partial z}{\partial x} &= - \dfrac{(x^5 + 3yz)}{z^5 + x} \end{aligned}[/tex]

Similarly, differentiate partially the function with respect to y treating x as a constant.

[tex]\begin{aligned} \dfrac{\partial}{\partial y} x^6 + y^6 + z^6 + 18xyz &= 0\\\\ 0 + 6y^5+ 6z^5 \dfrac{\partial z }{\partial y} + 18x(z + y\dfrac{\partial z}{\partial y}) &= 0\\\\y^5 + z^5 \dfrac{\partial z }{\partial y} + 3x(z + y\dfrac{\partial z}{\partial y}) &= 0\\\\\dfrac{\partial z}{\partial y} &= - \dfrac{(y^5 + 3xz)}{z^5 + y} \end{aligned}[/tex]

More about the implicit function link is given below.

https://brainly.com/question/6472622

In a certain lake, trout average 12 in. in length with standard deviation 2.75 in. and the bass average 4 lb. in weight with standard deviation 0.8 lb. If Deion caught an 18-in trout and Keri caught a 6-lb bass, which fish was the better catch?

Answers

Answer:

The bass fish was the better catch

Step-by-step explanation:

From the question we are told that

     The  population mean for trout is  [tex]\mu_1 = 12 \ in[/tex]

     The  standard deviation is  [tex]\sigma_1 = 2.75 \ in[/tex]

      The  population mean for  base  is  [tex]\mu _2 = 4 \ lb[/tex]

      The standard deviation is  [tex]\sigma_2 = 0.8 \ lb[/tex]

      The number of  trout caught   [tex]x_1 = 18[/tex]

     The number of  bass caught  [tex]x_2 = 6[/tex]

Generally z-value(standardized value ) for the of number  trout caught  is mathematically represented as

        [tex]z_1 = \frac{x_1 - \mu_1}{\sigma_1 }[/tex]

substituting value

       [tex]z_1 = \frac{18 - 12}{2.75 }[/tex]

       [tex]z_1 = 2.18[/tex]

Generally z-value(standardized value ) for the of number  bass caught  is mathematically represented as

        [tex]z_2 = \frac{x_2 - \mu_2}{\sigma_2 }[/tex]

substituting value

       [tex]z_2 = \frac{6 - 4}{0.8 }[/tex]

       [tex]z_2 = 2.5[/tex]

From our calculation we see that  [tex]z_2 > z_1[/tex]

The  fish that was the better catch is the bass fish

Please do either 40 or 39

Answers

Answer:

y = 1.8

Step-by-step explanation:

Question 39).

Let the operation which defines the relation between a and b is O.

Relation between a and b has been given as,

a O b = [tex]\frac{(a+b)}{(a-b)}[/tex]

Following the same operation, relation between 3 and y will be,

3 O y = [tex]\frac{3+y}{3-y}[/tex]

Since 3 O y = 4,

[tex]\frac{3+y}{3-y}=4[/tex]

3 + y = 12 - 4y

3 + y + 4y = 12 - 4y + 4y

3 + 5y = 12

3 + 5y - 3 = 12 - 3

5y = 9

[tex]\frac{5y}{5}=\frac{9}{5}[/tex]

y = 1.8

Therefore, y = 1.8 will be the answer.

Solve by factoring or find square root. x^2-3x-4=0

Answers

Answer:

x = -1 and x = 4.

Step-by-step explanation:

x^2 - 3x - 4 = 0

(x - 4)(x + 1) = 0

x - 4 = 0

x = 4

x + 1 = 0

x = -1

Check your work...

(4)^2 - 3(4) - 4

= 16 - 12 - 4

= 4 - 4

= 0

(-1)^2 - 3(-1) - 4

= 1 + 3 - 4

= 4 - 4

= 0

So, x = -1 and x = 4.

Hope this helps!

A coin is tossed and an eight​-sided die numbered 1 through 8 is rolled. Find the probability of tossing a tail and then rolling a number greater than 3. The probability of tossing a tail and then rolling a number greater than 3 is

Answers

Answer:

5/16

Step-by-step explanation:

P(tails) = 1/2

P(>3) = 5/8

P(tails AND >3) = 1/2 × 5/8 = 5/16

A city has a population of 240,000 people. Suppose that each year the population grows by 7.75%. What will the population be after 7 years?

round your answer to the nearest whole number.
people

Answers

Answer:

[tex]\large\boxed{\sf \ \ \ 404,699 \ \ \ }[/tex]

Step-by-step explanation:

Hello,

At the beginning the population is 240,000

After 1 year the population will be

   240,000*(1+7.75%)=240,000*1.0775

After n years the population will be

   [tex]240,000\cdot1.0775^n[/tex]

So after 7 years the population will be

   [tex]240,000\cdot1.0775^7=404699.058...[/tex]

So rounded to the nearest whole number gives 404,699

Hope this helps

A subcommittee is randomly selected from a committee of eight men and seven women. What is the probability that all three people on the subcommittee are men

Answers

Answer:

The probability that all three people on the subcommittee are men

= 20%

Step-by-step explanation:

Number of members in the committee = 15

= 8 men + 7 women

The probability of selecting a man in the committee

= 8/15

= 53%

The probability of selecting three men from eight men

= 3/8

= 37.5%

The probability that all three people on the subcommittee are men

= probability of selecting a man multiplied by the probability of selecting three men from eight men

= 53% x 37.5%

= 19.875%

= 20% approx.

This is the same as:

The probability of selecting 3 men from the 15 member-committee

= 3/15

= 20%

A certain forest covers an area of 2100 km². Suppose that each year this area decreases by 3.5%. What will the area be after 5 years
Use the calculator provided and round your answer to the nearest square kilometer.

Answers

Answer:

[tex]\large\boxed{\sf \ \ \ 1757 \ km^2 \ \ \ }[/tex]

Step-by-step explanation:

Hello,

I would recommend that you checked the answers I have already provided as this is the same method for all these questions, and maybe try to solve this one before you check the solution.

At the beginning the area is 2100

After one year the area will be

   2100*(1-3.5%)=2100*0.965

After n years the area will be

   [tex]2100\cdot0.965^n[/tex]

So after 5 years the area will be

   [tex]2100\cdot0.965^5=1757.34027...[/tex]

So rounded to the nearest square kilometer is 1757

Hope this helps

Answer: 1757 km²

Step-by-step explanation:

Because 3.5% = 0.035, first do 1-.035 to get .965.  Then do 2100*.965*.965*.965*.965*.965 to get 1757.34027.

Intelligence quotients​ (IQs) measured on the Stanford Revision of the Binet Simon Intelligence Scale are normally distributed with a mean of 100 and a standard deviation of 16. Determine the percentage of people who have an IQ between 115 and 140.

Answers

Answer:

the percentage of people who have an IQ between 115 and 140 is 16.79%

Step-by-step explanation:

From the information given:

We are to  determine the percentage of people who have an IQ between 115 and 140.

i.e

P(115 < X < 140) = P( X  ≤ 140) - P( X  ≤ 115)

[tex]P(115 < X < 140) = P( \dfrac{X-100}{\sigma}\leq \dfrac{140-100}{16})-P( \dfrac{X-100}{\sigma}\leq \dfrac{115-100}{16})[/tex]

[tex]P(115 < X < 140) = P( Z\leq \dfrac{140-100}{16})-P( Z\leq \dfrac{115-100}{16})[/tex]

[tex]P(115 < X < 140) = P( Z\leq \dfrac{40}{16})-P( Z\leq \dfrac{15}{16})[/tex]

[tex]P(115 < X < 140) = P( Z\leq 2.5)-P( Z\leq 0.9375)[/tex]

[tex]P(115 < X < 140) = P( Z\leq 2.5)-P( Z\leq 0.938)[/tex]

From Z tables :

[tex]P(115 < X < 140) = 0.9938-0.8259[/tex]

[tex]P(115 < X < 140) = 0.1679[/tex]

Thus; we can conclude that the percentage of people who have an IQ between 115 and 140 is 16.79%

Using the normal distribution, it is found that 82.02% of people who have an IQ between 115 and 140.

Normal Probability Distribution

In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

It measures how many standard deviations the measure is from the mean. After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.

In this problem:

The mean is of [tex]\mu = 100[/tex].The standard deviation is of [tex]\sigma = 15[/tex].

The proportion of people who have an IQ between 115 and 140 is the p-value of Z when X = 140 subtracted by the p-value of Z when X = 115, hence:

X = 140:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{140 - 100}{16}[/tex]

[tex]Z = 2.5[/tex]

[tex]Z = 2.5[/tex] has a p-value of 0.9938.

X = 115:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{115 - 100}{16}[/tex]

[tex]Z = -0.94[/tex]

[tex]Z = -0.94[/tex] has a p-value of 0.1736.

0.9938 - 0.1736 = 0.8202.

0.8202 = 82.02% of people who have an IQ between 115 and 140.

More can be learned about the normal distribution at https://brainly.com/question/24663213

The range of f(x) = cos(x) is y ≤ 0

Answers

Answer:

Look at the image below↓

Which input value produces the same output value for the two functions on the graph?

Answers

Answer:

x=3

Step-by-step explanation:

To solve this problem, we should check the x coordinate of the point where both graphs intersect. Based on both graphs, they intersect at the point (3,-1). So, the input value for which both graphs have the same value is x=3.

Answer:

its x=-2

Step-by-step explanation:

cause i got it wrong and it said the answer was x=-2

If ABCD is dilated by a factor of 2, the
coordinate of C'would be:

Answers

Answer:

(4, 4)

Step-by-step explanation:

All you really need to do is multiply C's original coordinates with the scale factor. So (2, 2), becomes (4, 4).

Answer:

( 4 , 4 )

Step-by-step explanation:

original C coordinates : ( 2 , 2 )

since the problem is telling us to dilate by the factor of 2 we multiply both 2's by 2.

( 2 ‧ 2 ) ( 2 ‧ 2 )

= ( 4 , 4 )

Graph y less than or equal to 3x

Answers

Answer:

See Image Below.

Step-by-step explanation:

The Shaded region is the area of numbers that this equation satisfies.

Answer:

Please see attached image

Step-by-step explanation:

In order to graph the inequality, start from plotting the boundary line defined by the equality;

y = 3 x

You just need two points to accomplish such. so let's use two simple values for x and find what the y-values are:

for x = 0 then y = 3 (0) = 0

for x = 1 then y = 3 (1) = 3

Then use the points (0, 0) and (1, 3) to plot the boundary line.

After this, grab any point on the plane either clearly above the boundary line, or clearly below it and check if the inequality satisfies. For example, you can pick the point (3, 0) which is on the x line, 3 units to the right of the origin, and clearly below the boundary line we just plot.

When you use it in the inequality, you get:

(0)  [tex]\leq[/tex] 3 (3)

0   [tex]\leq[/tex] 9

which is a true statement, therefore, the points below the boundary lie are also solutions of the inequality.

Then the solution consists of all the points in the boundary line we just plotted (and indicated by drawing a solid line), plus all the points below the line, as depicted in the attached image.

Solve the System of equations.

Answers

Answer:

x=9y=12

Step-by-step explanation:

Plug x as 2y-15 in the first equation and solve for y.

-5(2y-15)+4y=3

-10y+75+4y=3

-6y+75=3

-6y=-72

y=12

Plug y as 12 in the second equation and solve for x.

x=2(12)-15

x=24-15

x=9

What is the equation for the plane illustrated below?

Answers

Answer:

Hence, none of the options presented are valid. The plane is represented by [tex]3 \cdot x + 3\cdot y + 2\cdot z = 6[/tex].

Step-by-step explanation:

The general equation in rectangular form for a 3-dimension plane is represented by:

[tex]a\cdot x + b\cdot y + c\cdot z = d[/tex]

Where:

[tex]x[/tex], [tex]y[/tex], [tex]z[/tex] - Orthogonal inputs.

[tex]a[/tex], [tex]b[/tex], [tex]c[/tex], [tex]d[/tex] - Plane constants.

The plane presented in the figure contains the following three points: (2, 0, 0),  (0, 2, 0), (0, 0, 3)

For the determination of the resultant equation, three equations of line in three distinct planes orthogonal to each other. That is, expressions for the xy, yz and xz-planes with the resource of the general equation of the line:

xy-plane (2, 0, 0) and (0, 2, 0)

[tex]y = m\cdot x + b[/tex]

[tex]m = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

Where:

[tex]m[/tex] - Slope, dimensionless.

[tex]x_{1}[/tex], [tex]x_{2}[/tex] - Initial and final values for the independent variable, dimensionless.

[tex]y_{1}[/tex], [tex]y_{2}[/tex] - Initial and final values for the dependent variable, dimensionless.

[tex]b[/tex] - x-Intercept, dimensionless.

If [tex]x_{1} = 2[/tex], [tex]y_{1} = 0[/tex], [tex]x_{2} = 0[/tex] and [tex]y_{2} = 2[/tex], then:

Slope

[tex]m = \frac{2-0}{0-2}[/tex]

[tex]m = -1[/tex]

x-Intercept

[tex]b = y_{1} - m\cdot x_{1}[/tex]

[tex]b = 0 -(-1)\cdot (2)[/tex]

[tex]b = 2[/tex]

The equation of the line in the xy-plane is [tex]y = -x+2[/tex] or [tex]x + y = 2[/tex], which is equivalent to [tex]3\cdot x + 3\cdot y = 6[/tex].

yz-plane (0, 2, 0) and (0, 0, 3)

[tex]z = m\cdot y + b[/tex]

[tex]m = \frac{z_{2}-z_{1}}{y_{2}-y_{1}}[/tex]

Where:

[tex]m[/tex] - Slope, dimensionless.

[tex]y_{1}[/tex], [tex]y_{2}[/tex] - Initial and final values for the independent variable, dimensionless.

[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Initial and final values for the dependent variable, dimensionless.

[tex]b[/tex] - y-Intercept, dimensionless.

If [tex]y_{1} = 2[/tex], [tex]z_{1} = 0[/tex], [tex]y_{2} = 0[/tex] and [tex]z_{2} = 3[/tex], then:

Slope

[tex]m = \frac{3-0}{0-2}[/tex]

[tex]m = -\frac{3}{2}[/tex]

y-Intercept

[tex]b = z_{1} - m\cdot y_{1}[/tex]

[tex]b = 0 -\left(-\frac{3}{2} \right)\cdot (2)[/tex]

[tex]b = 3[/tex]

The equation of the line in the yz-plane is [tex]z = -\frac{3}{2}\cdot y+3[/tex] or [tex]3\cdot y + 2\cdot z = 6[/tex].

xz-plane (2, 0, 0) and (0, 0, 3)

[tex]z = m\cdot x + b[/tex]

[tex]m = \frac{z_{2}-z_{1}}{x_{2}-x_{1}}[/tex]

Where:

[tex]m[/tex] - Slope, dimensionless.

[tex]x_{1}[/tex], [tex]x_{2}[/tex] - Initial and final values for the independent variable, dimensionless.

[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Initial and final values for the dependent variable, dimensionless.

[tex]b[/tex] - z-Intercept, dimensionless.

If [tex]x_{1} = 2[/tex], [tex]z_{1} = 0[/tex], [tex]x_{2} = 0[/tex] and [tex]z_{2} = 3[/tex], then:

Slope

[tex]m = \frac{3-0}{0-2}[/tex]

[tex]m = -\frac{3}{2}[/tex]

x-Intercept

[tex]b = z_{1} - m\cdot x_{1}[/tex]

[tex]b = 0 -\left(-\frac{3}{2} \right)\cdot (2)[/tex]

[tex]b = 3[/tex]

The equation of the line in the xz-plane is [tex]z = -\frac{3}{2}\cdot x+3[/tex] or [tex]3\cdot x + 2\cdot z = 6[/tex]

After comparing each equation of the line to the definition of the equation of the plane, the following coefficients are obtained:

[tex]a = 3[/tex], [tex]b = 3[/tex], [tex]c = 2[/tex], [tex]d = 6[/tex]

Hence, none of the options presented are valid. The plane is represented by [tex]3 \cdot x + 3\cdot y + 2\cdot z = 6[/tex].

Answer:

It is A    3x+3y+2z=6

Step-by-step explanation:

Find the measure of each unknown angle​

Answers

. The sum of angels in the triangle must be 180
Therefore
1) 180 - (40+85)= 55
2)180-(14+30)= 136

Answer:

1. 55 degrees, 2. 316 degrees

Step-by-step explanation:

When it shows interior angles on a triangle it adds up to 180 degrees

When it shows exterior angles on a triangle it adds up to 360 degrees

1. ? = 55 degrees

85 + 40 = 125

180 - 125 = 55

2. ? = 316 degrees

Inside of triangle:

14 + 30 = 44

180 - 44 = 136 degrees

Exterior of triangle:

360 - 14 = 346 degrees

360 - 30 = 330 degrees

360 - 44 = 316 degrees

Please answer this correctly without making mistakes

Answers

Answer:

I believe 45.50

Step-by-step explanation: The locksmith is 18.3 miles W from furniture, the hotel is 27.2 E from furniture store  so 18.3+27.2=45.50

The answer 45.5 kilometers


Step by step is below

Hopefully this help you you

Have a great day :)

i need help emergrncy shots fire shots fire we neeed all back ups

Answers

Answer:

a = 9h + bn

Step-by-step explanation:

total = $9 an hour + (bonus x number of items repaired)

An engineer has designed a valve that will regulate water pressure on an automobile engine. The valve was tested on 240240 engines and the mean pressure was 7.57.5 pounds/square inch (psi). Assume the population standard deviation is 1.01.0. The engineer designed the valve such that it would produce a mean pressure of 7.67.6 psi. It is believed that the valve does not perform to the specifications. A level of significance of 0.10.1 will be used. Find the P-value of the test statistic. Round your answer to four decimal places.

Answers

Answer:

p-value = 0.1213  (to 4-decimal places)

Step-by-step explanation:

Given:

N = 240

mean  = 7.5

s = 1.0

Solution

With N=240 and using the central limit theorem, distribution can be approximated as normal.

Let

Null hypothesis H0, mu = 7.6

Alternate hypothesis, mu not equal to 7.6  (two-tail test)

for

Alpha = 0.1 (two sided)

Z = sqrt(N)(mean – mu)/s = sqrt(240)(7.5-7.6)/1.0 = -1.54919

p-value  

= P(|Z|>1.54919)  

= 2P(Z>1.54919)

= 2(1-P(Z<1.54919)

=2(1-0.9393)     (using normal distribution table)

=0.12134

Since alpha = 0.1 < p-value (0.1213), H0 that mean = 7.6 is not rejected.

What is the equation of the line that passes through the point (3,6) and has a slope of 4/3

Answers

Answer:

y = 4/3x+2

Step-by-step explanation:

We can use the slope intercept form of the equation

y = mx+b

Where m is the slope and b is the y intercept

y= 4/3 x +b

Substitute the point into the equation

6 = 4/3(3) +b

6 = 4 +b

Subtract 4 from each side

2 = b

y = 4/3x+2

9 less than twice a number is 13. What is the number?

Answers

Answer:

11

Step-by-step explanation:

Answer:

x = 11.

Step-by-step explanation:

9 less than twice a number is the same thing as twice a number minus 9. Let's say that the number is x.

2x - 9 = 13

2x = 22

x = 11

Hope this helps!

Janet, an experienced shipping clerk, can fill a certain order in 14 hours. Jim, a new clerk, needs 15 hours to do the same job. Working together, how long will it take them to fill the order?

Answers

Answer:

7.24 hrs

Step-by-step explanation:

Janet can do the order in 14 hours.

In 1 hour, she can do 1/14 of the order.

Jim can do the order in 15 hours.

In 1 hour, he can do 1/15 of the order.

Let the total amount of time they take to do the job working together be x hours.

[tex]\frac{1}{14} x+\frac{1}{15}x =1[/tex]

[tex]\frac{29}{210} x=1[/tex]

[tex]\frac{210}{29}* \frac{29}{210} x=1*\frac{210}{29}[/tex]

[tex]x= 7.241379...[/tex]

The winery sold 81 cases of wine this week. If twice
as many red cases were sold than white, how many
white cases were sold this week?


A. 32 cases
B. 61 cases
C. 27 cases
D. 54 cases​

Answers

Answer:

Option (C)

Step-by-step explanation:

Let the red cases sold = r

and the number of white cases sold = w

Total number of cases sold by the winery = 81

r + w = 81 -------(1)

If number of red cases sold is twice of white cases sold,

r = 2w ------- (2)

By substituting the value of r from equation (2) to equation (1),

2w + w = 81

3w = 81

w = 27 cases

From equation (1),

r + 27 = 81

r = 54 cases

Therefore, number of white cases sold are 27 cases

Option (C) is he answer.

Tensile strength tests were performed on two different grades of aluminum spars used in manufacturing the wing of a commercial transport aircraft. From past experience with the spar manufacturing process and the testing procedure, the standard deviations of tensile strengths are assumed to be known. The data obtained are as follows:

n_1 = 10
x_1 = 87.6
σ_1 = 1
n_2 = 12
x^2 = 74.5
σ_2 = 1.5.

Required:
If μ _1 and μ _2 denote the true mean tensile strengths for the two grades of spars. Construct a 90 percentage confidence interval on the difference in mean strength.

Answers

Answer:

(12.141, 14.059)

Step-by-step explanation:

Explanation is provided in the attached document.

The volume of a rectangular prism is (x4 + 4x3 + 3x2 + 8x + 4), and the area of its base is (x3 + 3x2 + 8). If the volume of a rectangular prism is the product of its base area and height, what is the height of the prism? PLEASE COMMENT, I Can't SEE ANSWERS CAUSE OF A GLITCH

Answers

Answer:

x + 1 - ( 4 / x³ + 3x² + 8 )

Step-by-step explanation:

If the volume of this rectangular prism ⇒ ( x⁴ + 4x³ + 3x² + 8x + 4 ), and the base area ⇒ ( x³ + 3x² + 8 ), we can determine the height through division of each. The general volume formula is the base area [tex]*[/tex] the height, but some figures have exceptions as they are " portions " of others. In this case the formula is the base area  [tex]*[/tex] height, and hence we can solve for the height by dividing the volume by the base area.

Height = ( x⁴ + 4x³ + 3x² + 8x + 4 ) / ( x³ + 3x² + 8 ) = [tex]\frac{x^4+4x^3+3x^2+8x+4}{x^3+3x^2+8}[/tex] = [tex]x+\frac{x^3+3x^2+4}{x^3+3x^2+8}[/tex] = [tex]x+1+\frac{-4}{x^3+3x^2+8}[/tex] = [tex]x+1-\frac{4}{x^3+3x^2+8}[/tex] - and this is our solution.

Answer:

[tex]x +1 - \frac{4}{x^3 + 3x^2 + 8}[/tex]

Step-by-step explanation:

[tex]volume=base \: area \times height[/tex]

[tex]height=\frac{volume}{base \: area}[/tex]

[tex]\mathrm{Solve \: by \: long \: division.}[/tex]

[tex]h=\frac{(x^4 + 4x^3 + 3x^2 + 8x + 4)}{(x^3 + 3x^2 + 8)}[/tex]

[tex]h=x + \frac{x^3 + 3x^2 + 4}{x^3 + 3x^2 + 8}[/tex]

[tex]h=x +1 - \frac{4}{x^3 + 3x^2 + 8}[/tex]

Other Questions
Although the use of debt provides tax benefits to the firm, debt also puts pressure on the firm to: I) meet interest and principal payments, which if not met can put the company into financial distress; II) make dividend payments, which if not met can put the company into financial distress; III) meet both interest and dividend payments, which when met increase the firm cash flow; IV) meet increased tax payments, thereby increasing firm value In the diagram, the measure of angle 8 is 124, and the measure of angle 2 is 84. What is the measure of angle 7? 56 84 96 124 Which statement about the Louvre is incorrect? The Louvre was originally built as a fortress in the Middle Ages. It is located in France. Objects in the Louvre became available for public viewing in 1793. Spoils of war were kept in the Louvre, always available for public viewing. As you work with 3-year-old Effie, you keep track of all the new words she uses. You find that, on average, Effie uses two or three new words every week over a period of several months. Based on this information, Effie's language development: Is slower than what you would expect for a 3-year-old? Edgar accumulated $5,000 in credit card debt. If the interest rate is 20% per year and he does not make any payments for 2 years, how much will he owe on this debt in 2 years by compounding continuously? Round to the nearest cent. A geographer who studies how volcanic eruptions are shaping the Earth most often uses which of the six essential elements of geography? Marcus is revising a research paper and has received feedback that his paperneeds stronger transitions. Which question should he ask himself to evaluatehis paper's transitions?A. Does each section logically follow the previous one?B. Have all key terms been defined?C. Has all evidence been appropriately cited?D. Is the paper's thesis obvious? Write the following exponential expression in expanded form 28 to the 6th power. Enter your answer in the following format a a a what is 12 1 1/5 ? True or False.Der Krankenpfleger ist eine Frau. Answer the question on the basis of the following information. A farmer who has fixed amounts of land and capital finds that total product is 24 for the first worker hired; 32 when two workers are hired; 37 when three are hired; and 40 when four are hired. The farmer's product sells for $3 per unit and the wage rate is $13 per worker. Refer to the given information. The marginal revenue product of the second worker is: CHALLENGE ACTIVITY 2.1.2: Assigning a sum. Write a statement that assigns total_coins with the sum of nickel_count and dime_count. Sample output for 100 nickels and 200 dimes is: 300 EXAMPLE 5 Find the radius of gyration about the x-axis of a homogeneous disk D with density rho(x, y) = rho, center the origin, and radius a. SOLUTION The mass of the disk is m = rhoa2, so from these equations we have 2 = Ix m = 1 4rhoa4 rhoa2 = a2 4 . Read the following passage and answer the question. That old happiness they had before in their rich ancestry was truly joy, but now lament and ruin, death and shame, and all calamities which men can name are theirs to keep. Based on its context, what is the best meaning for the word lament? happiness sadness pride anger Simplify.Remove all perfect squares from inside the square roots.Assume a and b are positive. You are preparing a presentation on networking for a professional development seminar that your company is hosting for its employees. You look at the attendance list and see that you have good relationships with all of the registered seminar participants. Additionally, this presentation is a follow-up presentation that was requested by previous participants. You know you will have a friendly audience. What organizational pattern would be best for this situation Am I right or wrong? what is the first thing people do before they eat Donor Blood Type Recipient Blood Type A- Successful A+ A-O- AB+Would the above two transfusions be successful or would either of them harm the recipient? For each transfusion, explain your reasoning. In your explanations, use the following terms: antigen, antibodies, and agglutination. How do I make my kali Linux faster in my virtual box?