Three children are riding on the edge of a merry-go-round that is 122 kg, has a 1.60 m radius, and is spinning at 19.3 rpm. The children have masses of 22.4, 29.5, and 32.8 kg. If the child who has a mass of 29.5 kg moves to the center of the merry-go-round, what is the new angular velocity in rpm? Approximate the merry-go-round as a solid disk, and each child as a point mass. X Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. rpm 24.91 [2.33/5 Points) DETAILS PREVIOUS ANSWERS MY NOTES C

Answers

Answer 1

Three children are riding on the edge of a merry-go-round that is 122 kg, has a 1.60 m radius, and is spinning at 19.3 rpm.  the new angular velocity in rpm when the child moves to the center of the merry-go-round is 19.3 rpm, which remains unchanged.

To solve this problem, we can apply the principle of conservation of angular momentum. Initially, the total angular momentum of the system is given by:

L_initial = I_initial * ω_initial,

where I_initial is the moment of inertia of the merry-go-round and ω_initial is the initial angular velocity.

When the child with a mass of 29.5 kg moves to the center, the moment of inertia of the system changes, but the total angular momentum remains conserved:

L_initial = L_final.

Let's calculate the initial and final angular velocities using the given information:

Given:

Mass of the merry-go-round (merry) = 122 kg

Radius of the merry-go-round (r) = 1.60 m

Angular velocity of the merry-go-round (ω_initial) = 19.3 rpm

Mass of the child moving to the center (m_child) = 29.5 kg

We'll calculate the initial and final moments of inertia using the formulas:

I_initial = 0.5 * m * r^2,  (for a solid disk)

I_final = I_merry + I_child,

where I_merry is the moment of inertia of the merry-go-round and I_child is the moment of inertia of the child.

Calculating the initial moment of inertia:

I_initial = 0.5 * m_merry * r^2

          = 0.5 * 122 kg * (1.60 m)^2

          = 195.2 kg·m^2.

Calculating the final moment of inertia:

I_final = I_merry + I_child

       = 0.5 * m_merry * r^2 + m_child * 0^2

       = 0.5 * 122 kg * (1.60 m)^2 + 29.5 kg * 0^2

       = 195.2 kg·m^2.

Since the child is at the center, its moment of inertia is zero.

Since the total angular momentum is conserved, we have:

I_initial * ω_initial = I_final * ω_final.

Solving for ω_final:

ω_final = (I_initial * ω_initial) / I_final.

Substituting the values we calculated:

ω_final = (195.2 kg·m^2 * 19.3 rpm) / 195.2 kg·m^2

        = 19.3 rpm.

Therefore, the new angular velocity in rpm when the child moves to the center of the merry-go-round is 19.3 rpm, which remains unchanged.

To know more about angular refer here:

https://brainly.com/question/19670994#

#SPJ11


Related Questions

chase is an athlete who engages in moderate-intensity
physical activity and weighs 95kg. Based on this information, he
should consume at least_______ grams of protein daily.
a 133
b 114
c76
d 95

Answers

Chase is an athlete who engages in moderate-intensity physical activity and weighs 95kg. Based on this information, he should consume at least 76 grams of protein daily.

To determine the recommended daily protein intake for Chase, we need to consider his weight and the general guidelines for protein consumption for individuals engaged in moderate-intensity physical activity.

The recommended protein intake for individuals engaged in moderate-intensity physical activity is typically around 0.8-1.0 grams of protein per kilogram of body weight.

Given that Chase weighs 95 kg, we can calculate his recommended protein intake as follows:

Recommended protein intake = Weight (in kg) * Protein intake per kg

Using the lower end of the range (0.8 grams of protein per kg), we have:

Recommended protein intake = 95 kg * 0.8 g/kg = 76 grams

Therefore, based on the information provided, Chase should consume at least 76 grams of protein daily.

To learn more about physical activity

https://brainly.com/question/4218854

#SPJ11

A block with a speaker attached to it is connected to an constant k= 20.0 N/m and is allowed < to sack and forth in front of the Seated observer. ideal spring of 400kg and The total mass of the block and Speaker is the amplitude of the sources motion 0.500m. The Speaker emits sound waves of frequency 430 Hz. The Speed of sound in air is 343 m/s. (A) Draw a free body diagram (b) Determine the maximum speed of the source's motion Determine the highest frequency heard by the observer sitting in front of the Source.

Answers

The maximum speed of the source's motion and the highest frequency heard by the observer, we need to analyze the given information.

First, a free body diagram is drawn to understand the forces acting on the block with the attached speaker. Then, using the amplitude of the source's motion, the maximum speed can be calculated. Finally, the Doppler effect is applied to find the highest frequency heard by the observer.

(a) Drawing a free body diagram allows us to identify the forces acting on the block with the attached speaker. These forces include the gravitational force (mg) acting downward and the spring force (kx) acting in the opposite direction.

(b) The maximum speed of the source's motion can be determined using the given amplitude (A) of 0.500m. Since the block and speaker have a total mass of 400kg, we can use the formula v_max = 2πfA, where f is the frequency of the source's motion.

The highest frequency heard by the observer, we need to apply the Doppler effect. The observer experiences a frequency shift due to the relative motion between the source and observer. Using the formula f' = f(v + vo) / (v - vs), where f' is the observed frequency, f is the emitted frequency, v is the speed of sound, vo is the velocity of the observer, and vs is the velocity of the source.

The observer is seated in front of the source, so vs is the negative of the maximum speed calculated in the previous step.By plugging in the given values, we can determine the highest frequency heard by the observer.

To learn more about frequency.

Click here:brainly.com/question/254161

#SPJ11

A) Write the formal (integral) solution to the following SDE
dVt =dWt
dXt =Vtdt
B) Calculate the integrals. What does Xt process tell us?

Answers

(A) The formal solution to the given SDE yields Xt = ∫(Wt + C) dt, where Xt represents a process that incorporates the cumulative effect of random fluctuations (Wiener process) and a deterministic trend.

(B) The process Xt combines the cumulative effect of the random fluctuations (represented by the Itô integral of Wt) and a deterministic trend (represented by Ct). The value of Xt at any given time t is the sum of these two components.

(A) The formal (integral) solution to the given stochastic differential equation (SDE) is as follows:

First, we integrate the equation dVt = dWt with respect to time t to obtain Vt = Wt + C, where C is a constant of integration.

Next, we substitute the value of Vt into the equation dXt = Vt dt, which gives dXt = (Wt + C) dt.

Integrating this equation with respect to time t, we get Xt = ∫(Wt + C) dt.

(B) Calculating the integral of (Wt + C) dt, we have Xt = ∫(Wt + C) dt = ∫Wt dt + ∫C dt.

The integral of Wt with respect to time t corresponds to the Itô integral of the Wiener process Wt. This integral represents the cumulative effect of the random fluctuations of the Wiener process over time.

The integral of C with respect to time t simply gives Ct, where C is a constant. This term represents a deterministic drift or trend in the process.

Therefore, the process Xt combines the cumulative effect of the random fluctuations (represented by the Itô integral of Wt) and a deterministic trend (represented by Ct). The value of Xt at any given time t is the sum of these two components.

To know more about SDE here https://brainly.com/question/32512553

#SPJ4

The low-frequency speaker of a stereo set has a surface area of 0.06 m and produces 1.83 W of acoustical power. What is the intensity at the speaker (in W/m)? W/m2 If the speaker projects sound uniformly in all directions, at what distance (in m) from the speaker is the intensity 0.204 W/m2

Answers

The intensity at the speaker is 30.5 W/m², and the distance from the speaker at which the intensity is 0.204 W/m² is 6.33 m.

Given data:

Surface area of low-frequency speaker, A = 0.06 m²

Acoustical power produced, P = 1.83 W

The intensity at the speaker is given by I = P/A. Thus, I = 1.83 W/0.06 m² = 30.5 W/m².

Intensity is inversely proportional to the square of the distance. The formula used for finding the distance from the speaker is:

I₁r₁² = I₂r₂²

Where:

I₁ = intensity at a distance r₁ from the speaker

I₂ = intensity at a distance r₂ from the speaker

Putting the given data into the formula, we get:

0.204 × r₁² = 30.5 × r₂²

The distance from the speaker at which the intensity is 0.204 W/m² is given by r₂. Substituting r₂ = 1 m in the above equation, we can find r₁.

r₁ = sqrt(30.5/0.204) × r₂ = 6.33 m × 1 m = 6.33 m

Therefore, the intensity at the speaker is 30.5 W/m², and the distance from the speaker at which the intensity is 0.204 W/m² is 6.33 m.

Learn more about intensity at the speaker:

brainly.com/question/14977028

#SPJ11

Question 38 1 pts What caused Earth's lithosphere to fracture into plates? volcanism, which produced heavy volcanoes that bent and cracked the lithosphere tidal forces from the Moon and Sun internal temperature changes that caused the crust to expand and stretch impacts of asteroids and planetesimals convection of the underlying mantle

Answers

The lithosphere of the Earth fractured into plates as a result of the convection of the underlying mantle. The mantle convection is what is driving the movement of the lithospheric plates

The rigid outer shell of the Earth, composed of the crust and the uppermost part of the mantle, is known as the lithosphere. It is split into large, moving plates that ride atop the planet's more fluid upper mantle, the asthenosphere. The lithosphere fractured into plates as a result of the convection of the underlying mantle. As the mantle heats up and cools down, convection currents occur. Hot material is less dense and rises to the surface, while colder material sinks toward the core.

This convection of the mantle material causes the overlying lithospheric plates to move and break up over time.

Learn more about lithosphere visit:

brainly.com/question/454260

#SPJ11

Two cars of masses m1 and m2, where m1 > m2 travel along a straight road with equal speeds. If the coefficient of friction between the tires and the pavement is the same for both, at the moment both drivers apply the brakes simultaneously: (Consider that when applying the brakes the tires only slide) Which of the following statements is Correct? Justify your answer.
a) Car 1 stops at a shorter distance than car 2
b) Both cars stop at the same distance.
c) Car 2 stops at a shorter distance than car 1
d) The above alternatives may be true depending on the coefficient of friction.
e) Car 2 takes longer to stop than car 1.

Answers

If two cars of masses m1 and m2, where m1 > m2 travel along a straight road with equal speeds, then the car with less mass, i.e. m2 stops at a shorter distance than car 1. Hence, the answer is option c).

Here, we have two cars of masses m1 and m2, where m1 > m2 travel along a straight road with equal speeds. If the coefficient of friction between the tires and the pavement is the same for both, at the moment both drivers apply the brakes simultaneously.

Now, let’s consider that when applying the brakes the tires only slide. Hence, the kinetic frictional force will be acting on both cars. Therefore, the cars will experience a deceleration of a = f / m.

In other words, the car with less mass will experience a higher acceleration or deceleration, and will stop at a shorter distance than the car with more mass. Therefore, the correct statement is: Car 2 stops at a shorter distance than car 1. Hence, the answer is option c).

Learn more about deceleration here:

https://brainly.com/question/4403243

#SPJ11

41. Using the equations given in this chapter, calculate the energy in eV required to cause an electron's transition from a) na - 1 to n = 4. b) n = 2 to n = 4.

Answers

An electron's transition refers to the movement of an electron from one energy level to another within an atom.

The energy required for the transition from na-1 to n = 4 is -0.85 eV.

The energy required for the transition from n = 2 to n = 4 is -0.85 eV.

Electron transitions occur when an electron gains or loses energy. Absorption of energy can cause an electron to move to a higher energy level, while the emission of energy results in the electron moving to a lower energy level. These transitions are governed by the principles of quantum mechanics and are associated with specific wavelengths or frequencies of light.

Electron transitions play a crucial role in various phenomena, such as atomic spectroscopy and the emission or absorption of light in chemical reactions. The energy associated with these transitions can be calculated using equations derived from quantum mechanics, as shown in the previous response.

To calculate the energy in electron volts (eV) required for an electron's transition between energy levels, we can use the formula:

[tex]E = -13.6 eV * (Z^2 / n^2)[/tex]

where E is the energy in eV, Z is the atomic number (for hydrogen it is 1), and n is the principal quantum number representing the energy level.

(a) Transition from na-1 to n = 4:

Here, we assume that "na" refers to the initial energy level.

Using the formula, the energy required for the transition from na-1 to n = 4 is:

[tex]E = -13.6 eV * (1^2 / 4^2) = -13.6 eV * (1 / 16) = -0.85 eV[/tex]

Therefore, the energy required for the transition from na-1 to n = 4 is -0.85 eV.

(b) Transition from n = 2 to n = 4:

Using the same formula, the energy required for the transition from n = 2 to n = 4 is:

[tex]E = -13.6 eV * (1^2 / 4^2) = -13.6 eV * (1 / 16) = -0.85 eV[/tex]

Therefore, the energy required for the transition from n = 2 to n = 4 is -0.85 eV.

For more details regarding electron transitions, visit:

https://brainly.com/question/29221248

#SPJ4

A 0.401 kg lump of clay is thrown at a speed of 2.21m / s toward anL = 1.0 m long ruler (I COM = 12 12 ML^ 2 ) also with mass 0.401 kg, which is initially at rest on a frictionless table. The clay sticks to one end of the ruler, and the ruler+clay system starts to slide and spin about the system's center of mass (which is not at the same location as the ruler's original center of mass)What is the rotation speed of the ruler+clay system after the collision? Treat the lump of clay as a point mass, and be sure to calculate both the center of mass of the ruler+clay system and the moment of inertia about this system center of mass

Answers

To calculate the rotation speed of the ruler+clay system after the collision, we need to first determine the center of mass of the system and then calculate the moment of inertia about this center of mass.

Center of Mass of the Ruler+Clay System:

The center of mass (COM) of the ruler+clay system can be calculated using the following formula:

COM = (m1 * r1 + m2 * r2) / (m1 + m2)

Where:

m1 is the mass of the ruler

m2 is the mass of the clay

r1 is the distance from the ruler's original center of mass to the system's center of mass (unknown)

r2 is the distance from the clay to the system's center of mass (unknown)

Since the ruler is initially at rest, the center of mass of the ruler before the collision is at its midpoint, which is L/2 = 1.0 m / 2 = 0.5 m.

The clay is thrown toward the ruler, and after sticking, the system's center of mass will shift to a new location. Let's assume the clay sticks at the end of the ruler furthest from its initial center of mass. Therefore, the distance from the ruler's original center of mass to the system's center of mass (r1) is 0.5 m.

Now we can calculate the center of mass of the system:

COM = (0.401 kg * 0.5 m + 0.401 kg * 1.0 m) / (0.401 kg + 0.401 kg)

COM = 0.75 m

So the center of mass of the ruler+clay system is at a distance of 0.75 m from the ruler's initial center of mass.

Moment of Inertia of the Ruler+Clay System:

The moment of inertia (I_COM) of the ruler+clay system about its center of mass can be calculated using the parallel axis theorem:

I_COM = I + m * d^2

Where:

I is the moment of inertia of the ruler about its own center of mass (given as 12 ML^2)

m is the total mass of the system (m1 + m2 = 0.401 kg + 0.401 kg = 0.802 kg)

d is the distance between the ruler's center of mass and the system's center of mass (0.75 m)

Let's calculate the moment of inertia about the system's center of mass:

I_COM = 12 * 0.401 kg * 1.0 m^2 + 0.802 kg * (0.75 m)^2

I_COM = 12 * 0.401 kg * 1.0 m^2 + 0.802 kg * 0.5625 m^2

I_COM = 4.828 kg m^2 + 0.4518 kg m^2

I_COM = 5.28 kg m^2

So the moment of inertia of the ruler+clay system about its center of mass is 5.28 kg m^2.

Calculation of Rotation Speed:

To find the rotation speed of the ruler+clay system after the collision, we can use the principle of conservation of angular momentum. The initial angular momentum (L_initial) of the system is zero because the ruler is initially at rest.

L_initial = 0

After the collision, the clay sticks to the ruler, and the system starts to rotate. The final angular momentum (L_final) can be calculated using the formula:

L_final = I_COM * ω

Where:

ω is the rotation speed (unknown

To know more about inertia click this link -

brainly.com/question/3268780

#SPJ11

A multipurpose transformer has a secondary coil with several points at which a voltage can be extracted, giving outputs of 6.75, 14.5, and 480 V. The transformer’s input voltage is 240 V, its maximum input current is 5.00 A, and its primary coil consists of 280 turns.
Part (a) How many turns Ns,1 are in the part of the secondary used to produce the output voltage 6.75 V?
Part (b) How many turns Ns,2, are in the part of the secondary used to produce the output voltage 14.5 V?
Part (c) How many turns Ns,3, are in the part of the secondary used to produce the output voltage 480 V?
Part (d) What is the maximum output current Is,1, for 6.75 V, in amps?
Part (e) What is the maximum output current Is,2, for 14.5 V, in amps?
Part (f) What is the maximum output current Is,3, for 480 V, in amps?

Answers

The primary coil of a multipurpose transformer has 280 turns, and the secondary coil has different numbers of turns for different output voltages. The turns ratio equation is used to calculate the number of turns in each part of the secondary coil. However, the maximum output currents cannot be determined without the information on the maximum input current.

To solve this problem, we can use the turns ratio equation, which states that the ratio of the number of turns on the primary coil (Np) to the number of turns on the secondary coil (Ns) is equal to the ratio of the input voltage (Vp) to the output voltage (Vs). Mathematically, it can be expressed as Np/Ns = Vp/Vs.

Vp (input voltage) = 240 V

Vs1 (output voltage for 6.75 V) = 6.75 V

Vs2 (output voltage for 14.5 V) = 14.5 V

Vs3 (output voltage for 480 V) = 480 V

Np (number of turns on primary coil) = 280 turns

Part (a):

Vs1 = 6.75 V

Using the turns ratio equation: Np/Ns1 = Vp/Vs1

Substituting the given values: 280/Ns1 = 240/6.75

Solving for Ns1: Ns1 = (280 * 6.75) / 240

Part (b):

Vs2 = 14.5 V

Using the turns ratio equation: Np/Ns2 = Vp/Vs2

Substituting the given values: 280/Ns2 = 240/14.5

Solving for Ns2: Ns2 = (280 * 14.5) / 240

Part (c):

Vs3 = 480 V

Using the turns ratio equation: Np/Ns3 = Vp/Vs3

Substituting the given values: 280/Ns3 = 240/480

Solving for Ns3: Ns3 = (280 * 480) / 240

Part (d):

To calculate the maximum output current (Is1) for 6.75 V, we need to know the maximum input current (Ip). The maximum input current is given as 5.00 A.

Part (e):

To calculate the maximum output current (Is2) for 14.5 V, we need to know the maximum input current (Ip). The maximum input current is given as 5.00 A.

Part (f):

To calculate the maximum output current (Is3) for 480 V, we need to know the maximum input current (Ip). The maximum input current is given as 5.00 A.

Unfortunately, without the information about the maximum input current (Ip), we cannot calculate the maximum output currents (Is1, Is2, Is3) for the respective voltages.

To know more about transformer refer to-

https://brainly.com/question/15200241

#SPJ11

The two blocks in the figure(Figure 1) are connected by a massless rope that passes over a pulley. The pulley is 17 cm in diameter and has a mass of 2.0 kg. As the pulley turns, friction at the axle exerts a torque of magnitude 0.54 N⋅m. If the blocks are released from rest, how long does it take the 4.0 kg block to reach the floor?4.0 kg 1.0 m 2.0 kg

Answers

The problem can be solved using the conservation of energy. We know that when the 4.0 kg block hits the ground, all its potential energy will be converted into kinetic energy.

We can therefore calculate the speed of the block just before it hits the ground, and then use this to calculate the time it takes to reach the ground. Let h be the initial height of the 4.0 kg block above the ground.

The distance the block will fall is h. Let v be the speed of the block just before it hits the ground. The initial potential energy of the block is mph, where m is the mass of the block, g is the acceleration due to gravity, and h is the initial height of the block above the ground the floor.

To know more about potential visit:

https://brainly.com/question/28300184

#SPJ11

A sinker of 4 Oz is weighed to be 3 OZ in water. The density of
alcohol used is 0.81 g/cm3. How many Oz will it weigh in the
alcohol?

Answers

The sinker will weigh approximately 2.8676 oz in alcohol.

To find the weight of the sinker in alcohol, we need to calculate the buoyant force and subtract it from the weight of the sinker.

Weight of the sinker in water = 3 oz

Density of alcohol = 0.81 g/cm^3

First, let's convert the density of alcohol to ounces per cubic inch to match the units of weight:

Density of alcohol = 0.81 g/cm^3

                              = (0.81 g/cm^3) × (0.03527396 oz/g) × (1 cm^3 / 0.06102374 in^3)

                              ≈ 0.046708 oz/in^3

The buoyant force is equal to the weight of the liquid displaced by the sinker. The volume of liquid displaced is the difference in volume between the sinker in water and the sinker in alcohol.

To find the weight of the sinker in alcohol, we need to calculate the volume of the sinker in water and the volume of the sinker in alcohol:

Volume of sinker in water = Weight of sinker in water / Density of water

                                           = 3 oz / 1 oz/in^3

                                           = 3 in^3

Volume of sinker in alcohol = Volume of sinker in water - Volume of liquid displaced

                                              = 3 in^3 - 3 in^3 × (Density of alcohol / Density of water)

                                              = 3 in^3 - 3 in^3 × (0.046708 oz/in^3 / 1 oz/in^3)

                                              = 3 in^3 - 3 in^3 × 0.046708

                                              = 3 in^3 - 0.140124 in^3

                                              ≈ 2.859876 in^3

Finally, we can calculate the weight of the sinker in alcohol by subtracting the buoyant force from the weight of the sinker:

Weight of the sinker in alcohol = Weight of the sinker in water - Buoyant force

                                                   = 3 oz - (Volume of sinker in alcohol × Density of alcohol)

                                                   = 3 oz - (2.859876 in^3 × 0.046708 oz/in^3)

                                                   ≈ 2.867576 oz

Learn more about density at https://brainly.com/question/26364788

#SPJ11

A hiker begins her journey by traveling 150m westward. She then
travels 60 m in a direction of 20 degrees east of north. Finally,
she travels 20 m northward. Draw a vector and determine
a. the magnitu

Answers

To determine the magnitude of a vector, we first need to find its components.

In this case, we are given the magnitude and direction of the vector. By applying trigonometric principles, we can calculate the horizontal and vertical components.

Given that the magnitude of the vector is 60 m and it makes an angle of 20° with the x-axis, we can use trigonometric functions to find the components. The horizontal component is determined by multiplying the magnitude by the cosine of the angle (cos(20°) × 60 m), which gives us a value of 56.3 m (rounded to one decimal place). The vertical component is found by multiplying the magnitude by the sine of the angle (sin(20°) × 60 m), resulting in a value of 20.5 m (rounded to one decimal place).

Next, we can calculate the total distance traveled by the hiker by adding up all the components of the vector. Adding the given 150 m displacement to the horizontal and vertical components gives us a total distance of 226.8 m (rounded to one decimal place).

To determine the direction of the vector, we calculate the angle it makes with the x-axis. Using the inverse tangent function (tan⁻¹), we can find the angle by dividing the vertical component by the horizontal component (tan⁻¹(20.5 m ÷ 56.3 m)), resulting in an angle of 5.7° (rounded to one decimal place).

Therefore, the magnitude of the vector is 226.8 m, and it makes an angle of 5.7° with the x-axis.

To Learn more about magnitude. Click this!

brainly.com/question/4818152

#SPJ11

Two blocks with mass M1 and M2 are sitting on a frictionless horizontal floor. They are
connected by means of a rope with mass M. You can neglect any sagging of the rope, and treat
it as perfectly taut and horizontally. A horizontal pulling force with magnitude P is exerted on
block M1. Calculate the tension in the front of the rope and in the back of the rope. ALSO state
what these tensions would become when the mass of the rope would be negligible.

Answers

The tension in the front of the rope is P + M2g, and the tension in the back of the rope is P + M2g.

In summary, when a horizontal pulling force P is exerted on block M1, the tension in the front and back of the rope can be calculated. The tension in the front of the rope is equal to the applied force P plus the weight of block M2 (M2g), while the tension in the back of the rope is also equal to P plus M2g.

To explain further, when the pulling force P is applied to block M1, an equal and opposite force is transmitted through the rope to block M2. The tension in the rope is the force experienced by both blocks.

In the front of the rope, the tension is equal to the pulling force P plus the weight of block M2, which is M2g. Similarly, in the back of the rope, the tension is also equal to P plus M2g.

When the mass of the rope is negligible, the tensions in the front and back of the rope would simply become equal to the applied force P. In this case, the weight of the rope would no longer contribute to the tensions since it is negligible compared to the masses of the blocks.

Learn more about Tension here:

brainly.com/question/23590078

#SPJ11

Imagine if we have a solid gold bar that just came out of the forge at 150°C and is dipped into water at 70°C. If the bar of gold is 7 kg and the total water has a mass of 10 kg, what should be the final temperature? (You can assume nothing changes phase.)

Answers

The final temperature of the gold bar and the water will be 76.96°C.

we can use the following equation:

q_gold = q_water

where:

* q_gold is the amount of heat lost by the gold bar

* q_water is the amount of heat gained by the water

The amount of heat lost by the gold bar can be calculated using the following formula:

q_gold = m_gold * C_gold * ΔT_gold

where:

* m_gold is the mass of the gold bar (7 kg)

* C_gold is the specific heat capacity of gold (129 J/kg⋅°C)

* ΔT_gold is the change in temperature of the gold bar (150°C - 76.96°C = 73.04°C)

The amount of heat gained by the water can be calculated using the following formula:

q_water = m_water * C_water * ΔT_water

where:

* m_water is the mass of the water (10 kg)

* C_water is the specific heat capacity of water (4.184 J/kg⋅°C)

* ΔT_water is the change in temperature of the water (76.96°C - 70°C = 6.96°C)

Plugging in the known values, we get:

7 kg * 129 J/kg⋅°C * 73.04°C = 10 kg * 4.184 J/kg⋅°C * 6.96°C

q_gold = q_water

751.36 J = 69.6 J

T_final = (751.36 J / 69.6 J) + 70°C

T_final = 76.96°C

Therefore, the final temperature of the gold bar and the water will be 76.96°C.

Learn more about temperature with the given link,

https://brainly.com/question/27944554

#SPJ11

As a new electrical technician, you are designing a large solenoid to produce a uniform 0.130 T magnetic field near the center of the solenoid. You have enough wire for 3000 circular turns. This solenoid must be
52.0 cm long and 2.80 cm in diameter.
What current will you need to produce the necessary field?

Answers

The magnetic field produced inside a solenoid is given asB=μ₀(n/l)I ,Where,μ₀= 4π×10^-7 T m A^-1is the permeability of free space,n is the number of turns per unit length,l is the length of the solenoid, andI is the current flowing through the wire.The solenoid has 3000 circular turns and is 52.0 cm long and 2.80 cm in diameter, and the magnetic field produced near the center of the solenoid is 0.130 T.Thus,The length of the solenoid,l= 52.0 cm = 0.52 mn= 3000 circular turns/lπd²n = 3000 circular turns/π(0.028 m)²I = ?The magnetic field equation can be rearranged to solve for current asI= (Bμ₀n/l),whereB= 0.130 Tμ₀= 4π×10^-7 T m A^-1n= 3000 circular turns/π(0.028 m)²l= 0.52 mThus,I= (0.130 T×4π×10^-7 T m A^-1×3000 circular turns/π(0.028 m)²)/0.52 m≈ 5.49 ATherefore, the current required to produce the required magnetic field is approximately 5.49 A.

The answer is a current of 386 A will be necessary. We know that the solenoid must produce a magnetic field of 0.130 T and that it has 3000 circular turns. We can determine the number of turns per unit length as follows: n = N/L, where: N is the total number of turns, L is the length

Substituting the given values gives us: n = 3000/(0.52 m) = 5769 turns/m

We can use Ampere's law to determine the current needed to produce the necessary field. According to Ampere's law, the magnetic field inside a solenoid is given by:

B = μ₀nI,where: B is the magnetic field, n is the number of turns per unit length, I is the current passing through the solenoid, μ₀ is the permeability of free space

Solving for the current: I = B/(μ₀n)

Substituting the given values gives us:I  = 0.130 T/(4π×10⁻⁷ T·m/A × 5769 turns/m) = 386 A

I will need a current of 386 A to produce the necessary magnetic field.

Learn more about magnetic field: https://brainly.com/question/14411049

#SPJ11

A horizontal 185 N force is needed to slide a 50-ig box across a flat surface at a constant velocity of 3.5 m/s. What is the coefficient of kinetic frution between the box and the foot 00.35 O 032 O 0

Answers

The coefficient of kinetic friction between the box and the surface is 0.35.

To determine the coefficient of kinetic friction, we can use the equation:

fₐ= μk.N

where  fₐ is the force of kinetic friction, ( μk ) is the coefficient of kinetic friction, and N is the normal force.

In this case, the normal force is equal to the weight of the box, since it is on a flat surface and there is no vertical acceleration. The weight can be calculated as:

N = m. g

where m is the mass of the box and g is the acceleration due to gravity.

Given that the force required to slide the box at a constant velocity is 185 N, the mass of the box is 50 kg, and the acceleration due to gravity is approximately, we can substitute these values into the equation to solve

185N= μ k ⋅(50kg⋅9.8m/s 2 )

Simplifying:

= 185N 50kg⋅9.8m/s2

=0.375 μ k

​ = 50kg⋅9.8m/s 2 185N

​ = 0.375

Therefore, the coefficient of kinetic friction between the box and the surface is approximately 0.375.

To learn more about friction click here brainly.com/question/13000653

#SPJ11

Hot air rises, so why does it generally become cooler as you climb a mountain? Note: Air has low thermal conductivity.

Answers

Hot air rises due to its lower density compared to cold air. As you climb a mountain, the atmospheric pressure decreases, and the air becomes less dense. This decrease in density leads to a decrease in temperature.



Here's a step-by-step explanation:

1. As you ascend a mountain, the air pressure decreases because the weight of the air above you decreases. This decrease in pressure causes the air molecules to spread out and become less dense.

2. When the air becomes less dense, it also becomes less able to hold heat. Air with low density has low thermal conductivity, meaning it cannot efficiently transfer heat.

3. As a result, the heat energy in the air is spread out over a larger volume, causing a decrease in temperature. This phenomenon is known as adiabatic cooling.

4. Adiabatic cooling occurs because as the air rises and expands, it does work against the decreasing atmospheric pressure. This work requires energy, which is taken from the air itself, resulting in a drop in temperature.

5. So, even though hot air rises, the decrease in atmospheric pressure as you climb a mountain causes the air to expand, cool down, and become cooler than the surrounding air.

In summary, the decrease in density and pressure as you climb a mountain causes the air to expand and cool down, leading to a decrease in temperature.

To know more about density visit:

https://brainly.com/question/29775886

#SPJ11

8 3 ut of This velocity is due to the motion of a galaxy through space Select one: a. Tangential velocity b. Escape velocity c. Radial velocity d. Recessional velocity e. Peculiar velocity
A Type la

Answers

Recessional velocity is due to the motion of a galaxy through space. The correct answer is option d.

Recessional velocity is the velocity at which a distant galaxy is moving away from us due to the expansion of the universe. Hubble’s Law expresses the relationship between the distances of galaxies and their recession velocities. The velocity of the galaxies can be measured by studying the wavelength of light they emit.

If the galaxies move away from us, the wavelengths will become longer, and if they move closer, the wavelengths will become shorter. Recessional velocity is critical to the understanding of cosmology since it aids in determining the scale of the universe, the age of the universe, and the curvature of spacetime. Furthermore, measuring the peculiar velocity of a galaxy, which is the velocity of a galaxy relative to its own cluster of galaxies, allows for a better understanding of the dynamics of galaxy clusters.

Learn more about Hubble’s Law here:

https://brainly.com/question/29869676

#SPJ11

(a) Calculate the classical momentum of a proton traveling at 0.979c, neglecting relativistic effects. (Use 1.67 ✕ 10−27 for the mass of the proton.)
(b) Repeat the calculation while including relativistic effects.
(c) Does it make sense to neglect relativity at such speeds?
yes or no

Answers

No, it does not make sense to neglect relativistic effects at speeds close to the speed of light. Neglecting relativity would lead to an incorrect estimation of the momentum of a proton traveling at 0.979c. Including relativistic effects is essential to accurately calculate the momentum in such scenarios.

(a) Neglecting relativistic effects:

To calculate the classical momentum of a proton without considering relativity, we can use the formula for classical momentum:

p = mv

where p is the momentum, m is the mass of the proton, and v is its velocity. Substituting the given values, we have:

m = 1.67 × 10^(-27) kg (mass of the proton)

v = 0.979c (velocity of the proton)

p = (1.67 × 10^(-27) kg) × (0.979c)

Calculating the numerical value, we obtain the classical momentum of the proton without considering relativistic effects.

(b) Including relativistic effects:

When speed approach the speed of light, classical physics is inadequate, and we must account for relativistic effects. In relativity, the momentum of a particle is given by:

p = γmv

where γ is the Lorentz factor and is defined as γ = 1 / sqrt(1 - (v^2/c^2)), where c is the speed of light in a vacuum.

Considering the same values as before and using the Lorentz factor, we can calculate the relativistic momentum of the proton.

(c) Does it make sense to neglect relativity at such speeds?

No, it does not make sense to neglect relativity at speeds close to the speed of light. At high velocities, relativistic effects become significant, altering the behavior of particles. Neglecting relativity in calculations would lead to incorrect predictions and inaccurate results. To accurately describe the momentum of particles traveling at relativistic speeds, it is essential to include relativistic effects in the calculations.

Learn more about speed of light here:

brainly.com/question/28224010

#SPJ11

(a) The classical momentum of a proton traveling at 0.979c, neglecting relativistic effects, can be calculated using the formula p = mv. Given the mass of the proton as 1.67 × 10^(-27) kg, the momentum is 3.28 × 10^(-19) kg·m/s.

(b) When including relativistic effects, the momentum calculation requires the relativistic mass of the proton, which increases with velocity. The relativistic mass can be calculated using the formula m_rel = γm, where γ is the Lorentz factor given by γ = 1/sqrt(1 - (v/c)^2). Using the relativistic mass, the momentum is calculated as p_rel = m_rel * v. At 0.979c, the relativistic momentum is 4.03 × 10^(-19) kg·m/s.

(c) No, it does not make sense to neglect relativity at such speeds because relativistic effects become significant as the velocity approaches the speed of light. Neglecting relativistic effects would lead to inaccurate results, as demonstrated by the difference in momentum calculated with and without considering relativity in this example.

Explanation:

(a) The classical momentum of an object is given by the product of its mass and velocity, according to the formula p = mv. In this case, the mass of the proton is given as 1.67 × 10^(-27) kg, and the velocity is 0.979c, where c is the speed of light. Plugging these values into the formula, the classical momentum of the proton is found to be 3.28 × 10^(-19) kg·m/s.

(b) When traveling at relativistic speeds, the mass of an object increases due to relativistic effects. The relativistic mass of an object can be calculated using the formula m_rel = γm, where γ is the Lorentz factor. The Lorentz factor is given by γ = 1/sqrt(1 - (v/c)^2), where v is the velocity and c is the speed of light. In this case, the Lorentz factor is calculated to be 3.08. Multiplying the relativistic mass by the velocity, the relativistic momentum of the proton traveling at 0.979c is found to be 4.03 × 10^(-19) kg·m/s.

(c) It does not make sense to neglect relativity at such speeds because as the velocity approaches the speed of light, relativistic effects become increasingly significant. Neglecting these effects would lead to inaccurate calculations. In this example, we observe a notable difference between the classical momentum and the relativistic momentum of the proton. Neglecting relativity would underestimate the momentum and fail to capture the full picture of the proton's behavior at high velocities. Therefore, it is crucial to consider relativistic effects when dealing with speeds approaching the speed of light.

Learn more about speed of light here:

brainly.com/question/29216893

#SPJ11

A stone dropped from the roof of a single-story building to the surface of the earth Salls because _____

Answers

A stone dropped from the roof of a single-story building falls because of the force of gravity acting on it.

The stone falls from the roof of the building due to the force of gravity, which is a fundamental force that attracts objects towards each other. On Earth, gravity pulls objects towards the center of the planet. When the stone is released from the roof, gravity exerts a downward force on it, causing it to accelerate towards the ground. This acceleration is known as free fall.

According to Newton's law of universal gravitation, every object with mass attracts every other object with mass. The larger the mass of an object, the stronger its gravitational pull. In this case, the Earth's mass is much larger than that of the stone, resulting in a significant gravitational force pulling the stone downwards.

As the stone falls, it accelerates due to the force of gravity until it reaches the surface of the Earth. The acceleration is approximately 9.8 meters per second squared (m/s²) near the surface of the Earth, often denoted as the acceleration due to gravity (g). This means that the stone's velocity increases by 9.8 m/s every second it falls.

Therefore, the stone dropped from the roof of the single-story building falls because of the gravitational force exerted by the Earth, causing it to accelerate towards the ground until it reaches the Earth's surface.

To learn more about Newton's law of universal gravitation, Visit:

https://brainly.com/question/9373839

#SPJ11

A projectile is fired with an initial speed of 49.6 m/s at an angle of 42.2° above the horizontal on a long flat firing range Determine the maximum height reached by the projectile.

Answers

The maximum height reached by the projectile, if the projectile is fired with an initial speed of 49.6 m/s at an angle of 42.2° above the horizontal on a long flat firing range is 54.4 meters.

To determine the maximum height reached by the projectile, we can analyze the projectile's motion and use the relevant kinematic equations.

The Initial speed (v₀) = 49.6 m/s and Launch angle (θ) = 42.2°

To find the maximum height, we need to consider the vertical motion of the projectile. The initial vertical velocity (v₀y) can be calculated as:

v₀y = v₀ * sin(θ)

Using the given values:

v₀y = 49.6 m/s * sin(42.2°)

v₀y = 32.344 m/s

Next, we can use the kinematic equation for vertical motion to find the time (t) it takes for the projectile to reach its maximum height:

v = v₀y - gt Where:

v = final vertical velocity (0 m/s at maximum height)

g = acceleration due to gravity (approximately 9.8 m/s²)

Rearranging the equation, we have:

t = v₀y / g

Substituting the values:

t = 32.344 m/s / 9.8 m/s²

t = 3.3 s

Since the projectile reaches its maximum height halfway through its total flight time, the time taken to reach the maximum height is t/2:

t/2 = 3.3 s / 2

t/2 = 1.65 s

To find the maximum height (h), we can use the kinematic equation for vertical motion:

h = v₀y * t/2 - (1/2) * g * (t/2)²

Substituting the values:

h = 32.344 m/s * 1.65 s - (1/2) * 9.8 m/s² * (1.65 s)²

h = 54.4 m

Therefore, the maximum height reached by the projectile is approximately 54.4 meters.

To learn more about projectile: https://brainly.com/question/24949996

#SPJ11

Calculate the currents I /
,I 2
and I 3
in the circuit using Kirchhoff's Rules

Answers

The currents I /,I 2 and I 3 in the circuit using Kirchhoff's Rules is  0.16 A.

Kirchhoff’s Rules are used to explain the distribution of electric current in circuits, and to calculate the potential difference between any two points on a circuit. In the given circuit, the first step is to identify the junctions and branches, there are two junctions, namely J1 and J2, and three branches, which are B1, B2, and B3. Once these have been identified, it is possible to use Kirchhoff's Rules to determine the currents. First, apply Kirchhoff's first law at junction J1, the total current entering the junction must equal the total current leaving the junction.

Therefore:I1 = I2 + I3 Second, apply Kirchhoff's second law in each of the loops.

For example, for loop 1-2-3-4-1:−4V + 10Ω(I1 − I2) + 20Ω(I1 − I3) = 0

Using Kirchhoff's second law on all three loops gives the following system of equations:10I1 − 10I2 − 20I3 = 4−10I1 + 30I2 − 10I3 = 0−20I1 − 10I2 + 30I3 = 0

Solving this system of equations gives I1 = 0.24 A, I2 = 0.18 A, and I3 = 0.16 A. Therefore, the currents are:I1 = 0.24 AI2 = 0.18 AI3 = 0.16 A.

Learn more about Kirchhoff’s Rules at:

https://brainly.com/question/30201571

#SPJ11

The speed of light in clear plastic is 1.84 × 108 m/s. A ray of
light enters the plastic at an angle of 33.8 ◦ . At what angle is
the ray refracted? Answer in units of ◦

Answers

The ray of light is refracted at an angle of approximately 36.8° as it enters the clear plastic.

To determine the angle at which the ray of light is refracted as it enters the clear plastic, we can use Snell's law, which relates the angles of incidence and refraction to the refractive indices of the two media.
Snell's law states: n₁ * sin(θ₁) = n₂ * sin(θ₂)

Where: n₁ is the refractive index of the initial medium (in this case, the medium the light is coming from)

θ₁ is the angle of incidence

n₂ is the refractive index of the second medium (in this case, the clear plastic), θ₂ is the angle of refraction

Given that the speed of light in clear plastic is 1.84 × 10^8 m/s, we can determine the refractive index of the plastic using the formula: n₂ = c / v

Where: c is the speed of light in vacuum (approximately 3 × 10^8 m/s)

v is the speed of light in the medium
n₂ = (3 × 10^8 m/s) / (1.84 × 10^8 m/s) = 1.6304

Now, we can use Snell's law to find the angle of refraction (θ₂). Given an angle of incidence (θ₁) of 33.8°, we can rearrange the equation as follows:sin(θ₂) = (n₁ / n₂) * sin(θ₁)

sin(θ₂) = (1 / 1.6304) * sin(33.8°)

Using a calculator, we can find sin(θ₂) ≈ 0.598

Taking the inverse sine (arcsin) of 0.598, we find θ₂ ≈ 36.8°

Therefore, the ray of light is refracted at an angle of approximately 36.8° as it enters the clear plastic.

To learn more about ray of light;

https://brainly.com/question/33230870

#SPJ11

(a) Calculate the density of conduction electrons of the Al. Given density, atomic mass and the number of free electrons per atom for aluminium (Al) is 2.70 x 10³ kgm 3, 27.0g and 3, respectively. (b) Determine the root mean square velocity of free electrons at room temperature (25 °C). (c) Calculate the relaxation time for the electron in the Al, if the electrical conductivity of Al at room temperature is 3.65 x 107-¹m-1

Answers

(a) The density of conduction electrons in aluminum is 3.00 x 10²² electrons/m³,(b) The root mean square velocity of free electrons at room temperature is approximately 1.57 x 10⁶ m/s and (c) 9.26 x 10⁻¹⁵ s.

(a) The density of conduction electrons can be calculated using the formula:

Density of conduction electrons = (Number of free electrons per atom) * (Density of aluminum) / (Atomic mass of aluminum).

Plugging in the given values:

Density of conduction electrons = (3) * (2.70 x 10³ kg/m³) / (27.0 g/mol) = 3.00 x 10²² electrons/m³.

(b) The root mean square velocity of free electrons at room temperature can be calculated using the formula:

Root mean square velocity = √((3 * Boltzmann constant * Temperature) / (Mass of the electron)).

Substituting the values:

Root mean square velocity = √((3 * 1.38 x 10⁻²³ J/K * 298 K) / (9.11 x 10⁻³¹ kg)) ≈ 1.57 x 10⁶ m/s.

(c) The relaxation time for the electron can be calculated using the formula:

Relaxation time = (1 / (Electrical conductivity * Density of conduction electrons)).

Substituting the given values:

Relaxation time = (1 / (3.65 x 10⁷ Ω⁻¹m⁻¹ * 3.00 x 10²² electrons/m³)) ≈ 9.26 x 10⁻¹⁵ s.

Therefore, the density of conduction electrons in aluminum is 3.00 x 10²² electrons/m³, the root mean square velocity of free electrons at room temperature is approximately 1.57 x 10⁶ m/s, and the relaxation time for the electron in aluminum is approximately 9.26 x 10⁻¹⁵ s.

To learn more about density visit:

brainly.com/question/13692379

#SPJ11

You purchased a new Indoor/Outdoor Extension Cord in Orange color (so you can cut the grass with your new electrical mower). This cord rated at 13 A. You plugged it to an outlet with 120 V. a) What must be the resistance of your cord, assuming the current is 13A? b) How much energy does it spend per second? c) if you decide to plug 3 of these cords (make it longer), what do you expect will happen to the resistance of the total length of the cord? If you were to measure the current now, do you expect it would still be 13A?

Answers

The cord's resistance is approximately 9.23 Ω, consuming energy at a rate of 1560 W per second. If three cords are connected, the total length increases, leading to higher resistance, and the current would decrease.

a) To determine the resistance of the cord, we can use Ohm's law:

R = V/I, where R is the resistance, V is the voltage (120 V), and I is the current (13 A).

Plugging in the values, we get

R = 120 V / 13 A ≈ 9.23 Ω.

b) The energy consumed per second can be calculated using the formula:

P = VI, where P is the power (energy per unit time), V is the voltage (120 V), and I is the current (13 A).

Substituting the values, we have

P = 120 V * 13 A = 1560 W.

c) If three cords are plugged together, the total length increases, resulting in increased resistance. Therefore, the resistance of the total length of the cord would be higher. However, if the outlet's voltage remains the same, the current would decrease, as per Ohm's law (I = V/R). Therefore, the current would not be expected to still be 13 A.

To know more about resistance refer here:

https://brainly.com/question/30712325
#SPJ11

An electron accelerates from 0 to 10 x 109 m/s in an electric field. Through what potential difference did the electron travel? The mass of an electron is 9.11 x 10-31 kg, and its charge is -1.60 x 10-18C. a. 29 την b. 290 mV c. 2,900 mv d. 29 V

Answers

The potential difference through which the electron traveled is -2.84 x 10⁶ V. So, none of the options are correct.

To determine the potential difference (V) through which the electron traveled, we can use the equation that relates the potential difference to the kinetic energy of the electron.

The kinetic energy (K) of an electron is given by the formula:

K = (1/2)mv²

where m is the mass of the electron and v is its final velocity.

The potential difference (V) can be calculated using the formula:

V = K / q

where q is the charge of the electron.

Given that the final velocity of the electron is 10 x 10^9 m/s, the mass of the electron is 9.11 x 10^-31 kg, and the charge of the electron is -1.60 x 10^-19 C, we can substitute these values into the equations:

K = (1/2)(9.11 x 10⁻³¹ kg)(10 x 10⁹ m/s)²

K = 4.55 x 10⁻¹⁴ J

V = (4.55 x 10^⁻¹⁴ J) / (-1.60 x 10⁻¹⁹ C)

V = -28.4 x 10⁴ V

Since the potential difference is generally expressed in volts, we can convert it to the appropriate units:

V = -28.4 x 10⁴ V = -2.84 x 10⁶ V

Therefore, the potential difference through which the electron traveled is approximately -2.84 x 10⁶ V. So, none of the options are correct.

To learn more about potential difference: https://brainly.com/question/24142403

#SPJ11

The schematic below shows two batteries with negligible internal resistances r 1
and r 2
connected to a network of three resistors. The resistances are R 1
=2.7Ω,R 2
=4.9Ω,R 3
=7.53Ω. If the emfs are E 1
=11.5 V and E 2
=6.21 V and the internal resistances are effectively zero, what current (in A) flows through R 1
, the resistor at the center of this network?

Answers

The current flowing through resistor R1, which is located at the center of the network, can be determined using Ohm's Law. According to the schematic, the emfs (electromotive forces) of the batteries are E1 = 11.5 V and E2 = 6.21 V, and the internal resistances r1 and r2 are negligible.

To find the current through R1, we can consider it as part of a series circuit consisting of the two batteries and resistors R2 and R3. The total resistance in this series circuit is given by the sum of the resistances of R1, R2, and R3.

R_total = R1 + R2 + R3

= 2.7 Ω + 4.9 Ω + 7.53 Ω

= 15.13 Ω

The total voltage across the series circuit is equal to the sum of the emfs of the batteries.

E_total = E1 + E2

= 11.5 V + 6.21 V

= 17.71 V

Now, we can use Ohm's Law (V = IR) to find the current (I) flowing through the series circuit:

I = E_total / R_total

= 17.71 V / 15.13 Ω

≈ 1.17 A

Therefore, the current flowing through resistor R1, the resistor at the center of the network, is approximately 1.17 A.

Learn more about Ohm's Law

brainly.com/question/14874072

#SPJ11

Each of the statements below is a true statement that seems contradictory. For this discussion, choose one of the statements and carefully explain in your own words why it is true. Make sure you use the concepts in Ch 9 in your explanation. Give one everyday example that demonstrates your explanation.
1. Evaporation is a cooling process.
2. Condensation is a warming process

Answers

Evaporation is a cooling process. At first, it may sound counter-intuitive since evaporation involves the transformation . This indicates that it can cool its surroundings.

One everyday example of this is the process of sweating. When humans sweat, it evaporates from the surface of the skin and takes heat energy away from the body. As a result, people feel cooler as the heat is eliminated from their bodies, and the surrounding air is warmed up. gasoline, and perfume, all of which can evaporate and produce a cooling effect.

Condensation is a warming process. The process of condensation happens when gas molecules lose energy and . It contributes to the warming of the atmosphere by returning the latent heat energy that was consumed during evaporation back to the environment.
To know more about Evaporation visit:

https://brainly.com/question/28319650

#SPJ11

Question 9? A mass of 0.80 kg is attached to a relax bra of K = 2.9 N/m. The mass arrest on a horizontal, facialist surface. If the mass is displayed by 0.34m, what is the magnitude of the force (in N) extended in the mass by the springs? (Assume that the other end the spring is attached to a wall and that the spring is parallel to the surface. (Enter the magnitude.) thr 35m ago Question 10. As the baseball is being caught, it's speed goals from 32 to 0 m/s in about 0.008 seconds. It's mass is 0.145 kg. (Take the direction the baseball is thrown to be positive.) (a) what is the baseball acceleration in m/s2? --m/s2

Answers

A mass of 0.8 kg is attached to a relaxed spring of K = 2.9 N/m and is placed on a horizontal surface. When the mass is stretched by 0.34m, what is the magnitude of the force exerted by the spring on the mass?

From Hooke's Law, the force exerted by the spring can be calculated by multiplying the spring constant by the displacement of the mass from its equilibrium position. Therefore,

F = -kxWhere k = 2.9 N/m, x = 0.34 m, and the negative sign indicates that the force is in the opposite direction of the displacement. Substituting the values into the equation,F = -(2.9 N/m)(0.34 m) = -0.986 N.

Therefore, the magnitude of the force exerted by the spring on the mass is 0.986 N.

Therefore, the magnitude of the force exerted by the spring on the mass is 0.986 N.Question

The given variables are as follows:

Initial speed (u) = 32 m/sFinal speed (v) = 0 m/sTime (t) = 0.008 secondsMass (m) = 0.145 kgAcceleration (a) can be calculated by using the following kinematic equation:v = u + atRearranging the above equation, we get:a = (v - u) / t.

Substituting the given values into the above equation,a = (0 - 32) / 0.008 = -4000 m/s2Therefore, the acceleration of the baseball is -4000 m/s2 (negative because the direction is opposite to the direction of the baseball thrown).

To know more about Hooke's Law :

brainly.com/question/30379950

#SPJ11

A. An object is placed 30 cm in front of a diverging mirror having a focal length of magnitude 20 cm. What is the image distance, in cm?
B. When an object is 20 cm in front of a spherical mirror, the image is 12 cm behind the mirror. What is the focal length of the mirror, in cm?
C. When an object is 20 cm in front of a spherical mirror, the image is 12 cm in front of the mirror. What is the focal length of the mirror, in cm?
D. Dentist wants to observe a magnified image of the tooth, what type of mirror should be used?
diverging mirror
plane mirror
fun house mirror
converging mirror

Answers

A. he image distance is -60 cm. B. the focal length of the mirror is -7.5 cm C. the focal length of the mirror is 30 cm D. a converging mirror.

A. To find the image distance in this case, we can use the mirror equation: 1/f = 1/v + 1/u= 1/-20 = 1/v + 1/-30. Simplifying the equation, we get: -1/20 = 1/v - 1/30= -1/20 + 1/30 = 1/v= -30 + 20 = 600/v= -10 = 600/v

v= 600/-10, v = -60 cm

So, the image distance is -60 cm, which means the image is formed on the same side as the object (virtual image).

B. In this case, we can use the mirror equation again: 1/f = 1/di + 1/do= 1/f = 1/-12 + 1/-20, 1/f = -1/12 - 1/20, 1/f = (-5 - 3)/60, 1/f = -8/60. Simplifying further, we get: 1/f = -2/15, f = -15/2, f = -7.5 cm

So, the focal length of the mirror is -7.5 cm (negative because it's a concave mirror).

C. In this case, we can use the mirror equation again: 1/f = 1/di + 1/do

1/f = 1/12 + 1/-20, 1/f = 5/60 - 3/60, 1/f = 2/60

f = 30 cm. So, the focal length of the mirror is 30 cm (positive because it's a convex mirror).

D. To observe a magnified image of a tooth, a converging mirror should be used.

Let's learn more about convex mirror:

https://brainly.com/question/31955386

#SPJ11

Other Questions
Suppose your company has an equity beta of 0.5 and the current risk-free rate is 3.0%. If the expected market risk premium is 8.6%, what is your cost of equity capital? 7.3% 8.6% 11.1% 10.3%. There are many different ecological and environmental conservation methods. Which is not a conservation method? wind and wave erosion on coastal areas limiting of clear cutting of forests water harvesting fishing seasons and limits What should you never do in the laboratory (choose multiple answers)? put your hands to your mouth pipette by mouth drink eat 0000 QUESTION 5 4.83 kcal/L is the amount of heat generated for each liter of oxygen metabolically consumed for.... a high protein diet a mixed diet a pure carbohydrate diet the water diet QUESTION 6 A human's metabolic rate when the person is at rest, fasted and at a thermal neutral temperture is called the 1. basal metabolic rate 2. VO2 max 3. standard metabolic capacity 4. resting metabolic observation "United States v. Susan B. Anthony: Justice Ward Hunt's CourtRuling:" How does the case of Bradwell v. State described inParagraph 4 add to the development of Justice Hunt's ruling? List the steps in order of priority to manage a pregnant client who is actively seizing? (eclampsia) Bob is a respiratory therapist in a small town in Michigan. The town has a small hospital and a small durable medical supply company. Bob is known in town as an entrepreneur ball of fire and has managed to become both head of the hospital respiratory therapy department and the owner of the small durable medical supply company. 1.In that most of the referrals from Bob's department for home care equipment are to Bob's home care business, does this represent a conflict of interest?2.What should Bob do? What are triglycerides and what do they do?Describe the significance of "apple" vs "pear shape" in Metabolic Syndrome.Describe the significance of food quantity and quality in Metabolic Syndrome.What is the Glycemic Index? Why is awareness of this of significance in Metabolic Syndrome?Is Metabolic Syndrome reversible? If so, how is this achieved? A four-cylinder gasoline engine has an efficiency of 21 %% anddelivers 210 JJ of work per cycle per cylinder.If the engine runs at 25 cycles per second (1500 rpm), determinethe work done per second anna rolled a pair of number cubes what is the probability of getting even number on both sides PLSSS HELP ME 4. Parallel (6 points) Two long, parallel wires, Ax = 0.012 m apart, extend in the y direction, as shown in the figure below. Wire 1 carries a current I, = 54 A in the y direction. (a) (3 points) In order for the wires to attract each other with a force per unit length of 0.029 N/m, what must be the current in wire 2? Be sure to include the direction of the current in your answer. (b) (3 points) Now, suppose wire 2 has a current 1, = 41 A in the y direction. What is the magnetic field half way from wire 1 to wire 2? Be sure to specify both the magnitude and the direction of the magnetic field. (c) (Extra Credit - 3 points) Suppose the current in wire 2 is still 1, = 41 A in the y direction, at what location between the wires does the magnetic field have a magnitude of 3.2 x 10-4T? AX L 11 12 Chapter 14, Risk of Infectious and Communicable DiseasesCase Study # 2A public health nurse is asked to investigate the number of cases of HPV in women in the community. The public health nurse needs to put a series of educational programs together. (Learning Objective: 7)a. What is the estimation of sexually active men and women acquiring genital HPV infection in their lifetime?b. What is the difference between the two groups of genital HPV?c. What recommendations has the CDC put forth about HPV vaccines?d. What age group has the highest prevalence of HPV? a Americium-241 has a half-life of 432.2 years when it is nearly at rest. If we include a smoke detector on a rocket, and the smoke detector contains americium, we could determine the speed of the rocket from the observed half-life. (a) Suppose the observers on Earth see the half-life of the americium on the rocket was 864.4 years. How fast is the rocket going (according to the observers on Earth)? (b) What half-life would observers on the rocket see? During the Great Depression, the U.S. economy was functioning far below full capacity. At that time, what would have been the effect of a large increase in government spending? OA. A small decrease in aggregate supply and a large decrease in price levels OB. A small increase in wages and a large increase in price levels OC. A small increase in price levels and a large increase in RGDP OD. A small decrease in aggregate demand and a large decrease in RGDP A Vulcan Industries zero-coupon bond has a market price of$565.18. The bond has 14 years to maturity. What is theyield-to-maturity for this bond?4.12%2.06%3.64%8.32%7.98% !!!!PLEASE HELP!!!!! You get to play journalist today. The topic of your story is one of the laws discussed in this lesson. You will select one of them to research. While researching, you will learn more about the law and will locate a case that went to court. Then you will write an unbiased article or broadcast describing the law and summarize the case and the stand of the parties involved. Be sure to review and abide by The Cannons of Journalism. Be sure to include:a description of the law;how the law relates to digital media;one example of a case that went to court;a discussion of the case and the parties involved; anda summary of the outcome of the case.Some helpful hints in finding a case are:Search for case law, court case examples, and case studies.Include the full name of the law and the acronym.Discuss the impact these laws have on one or more media outlets in your community.You will write your report as an article with at least 500 words that will be posted on an online news site or that a broadcast journalist will report on TV news.Upload your 500-word story that describes one law, including how it relates to digital media, and summarizes a case that went to the courts and the stand of the parties involved. A coffee place is selling coffees for $2.50 each and cappuccinos for $3.75 each.Today the coffee place sold a total of 70 drinks (coffees and cappuccinos) for a total of $222.50.a) Write an equation that represents the information.b) Solve the equation in (a) to find how many coffees and how many cappuccinos the coffee place sold today. Lab 1, Simple InterestThis lab covers some basic algebra and graphing skills. You willenter formulas, createText Boxes, use the Solver, and create a graph. In Part I you willcreate a cover page to A $45-strike call option on a stock priced at $51.5 is priced at $8.00. This call has an intrinsic value of A) $5.00bty B) $8.00 C) $7.50 D) $1.50 E) $6.50 Suppose you buy a house with a $100,000 loan. The mortgage rate is 6%, the mortgage matures in 30 years. The face value is zero. Based on the amortization schedule what is the ending balance at the end of month 1 ? Select one: a. $99,638 b. $100,000 c. $99,880 d. $99,900 Provide 4 examples of each of the following, what are they used for and their environmental health and safety impacts: - Natural Nanomaterial - Engineered Nano materials - Organic Nano materials - Inorganic Nanomaterials Steam Workshop Downloader