This algorithm is used to identify the dominant precipitation

type within a "gate"

a)MDA

b)TVS

c)HCA

d)RHI

e)TBSS

TBSS

Answers

Answer 1
The algorithm used to identify the dominant precipitation type within a "gate" is TBSS (Thunderstorm-Based Storm-Tracking System).

Related Questions

K
Solve the system of equations by substitution.
2x + y = 6
y = 4x
Points: 0 of 1
Save
Select the correct choice below and, if necessary,
fill in the answer box to complete your choice.
OA.
There are a finite number of solutions. The
solution set is
(Simplify your answer. Type an
ordered pair.)
B. There are infinitely many solutions. The
solution set is {(x)}.
(Simplify your answer. Type an expression
in terms of x.)
OC. The solution set is Ø.

Answers

Answer:

The solution set is (1, 4)
There are a finite number of solutions.

Step-by-step explanation:

We have 2x+y=6 and y=4x.

Let's write the first equation into y=mx+b form.

We get: y=-2x+6

Now, we just set the equations equal to each other.

-2x+6=4x Add 2x to both sides.

6=6x Divide both sides by 6

x=1

Now, plug x back into either of the equations given to us.

y=4(1)

y=4

The solution set is (1, 4)

Substitute y = 4x into the first equation:

2x + 4x = 6

Simplifying, we get:

6x = 6

Dividing by 6, we get:

x = 1

Substituting x = 1 into y = 4x, we get:

y = 4(1)

y = 4

So, the solution is (1, 4), and there is a unique solution to the system of equations.

The answer is OA. The solution set is (1, 4).

The circle passes through the point ( − 7 , − 7 ) (−7,−7)left parenthesis, minus, 7, comma, minus, 7, right parenthesis. What is its radius? Choose 1 answer:

Answers

The radius of the circle with center ( -4 , -3) and passes through ( -7 , -7) is equal to 5 units.

The equation of a circle with center (a, b) and radius r is equal to,

(x - a)² + (y - b)² = r²

Here, the center of the circle is given as (-4,-3),

and the circle passes through the point (-7,-7).

Substituting these values in the equation of the circle, we get,

⇒ (-7 - (-4))² + (-7 - (-3))² = r²

⇒ ( -7 + 4 )² + ( -7 + 3 )² = r²

Simplifying the expression on the left-hand side, we get,

⇒ (-3)² + (-4)² = r²

⇒ 9 + 16 = r²

⇒ r² = 25

Taking the square root on both sides, we get,

⇒ r = 5

Therefore, the radius of the circle is 5 units.

learn more about circle here

brainly.com/question/31315232

#SPJ1

The above question is incomplete , the complete question is :

Circle is centered at (-4,-3)The circle passes through the point (-7,-7) . What is its radius?

Two fixed electric dipoles of dipole moment p are located in the x-y plane a distance 2a apart,their axes parallel and perpendicular to the plane, but their moments directed oppositely.The dipoles rotate with constant angular speed \omega about a 2 axis located halfwaybetween them. The motion is nonrelativistic (\omegaalc<<1)(a) Find the lowest nonvanishing multipole moments.(b) Show that the magnetic field in the radiation zone is, apart from an overall phase factor,H = cpa/2π k³ [(x+iy)cos∅-z sin ∅ejo∅]cos∅eikr/r(c) Show that the angular distribution of the radiation is proportional to (cos²+ cos⁴ e) and thetotal time-averaged power radiated isp=4/15π€0 ck⁶p²a²

Answers

(a) The electric dipole moment (p) is zero in this case due to equal and opposite charges.

(b) The magnetic field in the radiation zone is given by a complex formula involving various parameters and coordinates.

(c) The angular distribution of the radiation is proportional to a simplified expression involving cosines of angles.

The total time-averaged power radiated is calculated using a formula involving parameters such as speed of light, dipole moment, and distance.

(a) The lowest nonvanishing multipole moments are the electric dipole moment (p) and the magnetic dipole moment (m), which are given by:

p = qd

m = (1/c) ∫r x j dV

where q is the charge, d is the displacement vector, j is the current density, and V is the volume. In this case, the two electric dipoles have equal and opposite charges, so their net charge is zero and the electric dipole moment is:

p = qd = 0

(b) The magnetic field in the radiation zone is given by the formula:


H = (cpa/2πk³) [(x+iy)cos∅ - zsin∅e^(jo∅)]cos∅e^(ikr)/r
where c is the speed of light, p is the dipole moment, a is the distance between the dipoles, k is the wave number, r is the distance from the source, x, y, and z are the coordinates of the observation point, ∅ is the angle between the observation point and the axis of rotation, and e is the base of the natural logarithm. The overall phase factor is not important for the purposes of this problem.


(c) The angular distribution of the radiation is proportional to (cos²∅ + cos⁴∅), which can be simplified as follows:
cos²∅ + cos⁴∅ = (1/2)(1 + cos²∅ + 2cos⁴∅/2)
= (1/2)(1 + cos²∅ + (1/2)(1 + cos 2∅ + cos 4∅))
= (3/4) + (1/4)cos 2∅ + (1/8)cos 4∅
The total time-averaged power radiated is given by the formula:
p = (4/15π€₀)ck⁶p²a²
where €₀ is the vacuum permittivity.

To learn more about magnetic dipole moment visit : https://brainly.com/question/27962324

#SPJ11

consider the usual vector space (m2(r), , .) given the fixed matrix a = 1 −2 2 1 in m2(r), consider s = {b in m2(r) such that ab = ba}. prove or disprove whether s is a subspace of (m2(r), , .)

Answers

Since all three conditions are satisfied, we can conclude that S is a subspace of M2(R). To prove that s is a subspace of (m2(r), , .), we need to show that s satisfies the three axioms of a subspace:

1. s contains the zero vector:
The zero vector in m2(r) is the 2x2 matrix with all entries equal to zero. We can verify that this matrix satisfies ab = ba for any matrix b, so the zero vector is in s.

2. s is closed under vector addition:
Let b1 and b2 be matrices in s. We need to show that their sum, b1 + b2, is also in s.

(ab1 + ab2) = a(b1 + b2) = ab1 + ab2 (using the distributive property of matrix multiplication)

Similarly,

(b1a + b2a) = (b1 + b2)a = b1a + b2a

So b1 + b2 satisfies the condition ab = ba and is therefore in s.

3. s is closed under scalar multiplication:
Let b be a matrix in s, and let c be a scalar. We need to show that the product cb is also in s.

(acb) = a(cb) = a(bc) = (ab)c = (ba)c = b(ac)

So cb satisfies the condition ab = ba and is therefore in s.

Since s satisfies all three axioms of a subspace, we can conclude that s is indeed a subspace of (m2(r), , .).
To determine if the set S is a subspace of the vector space M2(R), we need to check if it satisfies three conditions: closure under addition, closure under scalar multiplication, and the existence of the zero vector.

1. Closure under addition:
Let B1 and B2 be two matrices in S such that AB1 = B1A and AB2 = B2A. We need to check if the sum B1 + B2 is also in S.
A(B1 + B2) = AB1 + AB2 = B1A + B2A = (B1 + B2)A, which shows that the sum B1 + B2 is in S.

2. Closure under scalar multiplication:
Let B be a matrix in S such that AB = BA, and let c be a scalar in R. We need to check if cB is also in S.
A(cB) = c(AB) = c(BA) = (cB)A, which shows that the product cB is in S.

3. Existence of the zero vector:
The zero matrix 0 satisfies A0 = 0A = 0, so the zero matrix is in S.

Since all three conditions are satisfied, we can conclude that S is a subspace of M2(R).

Visit here to learn more about axioms brainly.com/question/24148930

#SPJ11


someone pls help with this problem.​

Answers

Larry has a 0.12 chance of hitting the inner bullseye and thus, his probability of winning is also 0.12.

How to explain the probability

His probability of hitting the outer bullseye is 0.31, thereby resulting in a winning likelihood of 0.19 when subtracting 0.12.

Pia holds a 0.13 likelihood for hitting the inner bullseye, estimating her overall probability of securing victory as 0.01 - being 0.13 after deducting 0.12. Moreover, her potential of hitting the outer bullseye stands at 0.35, rendering a probability of success to be 0.22 when considering the 0.13 deduction.

Lastly, Carina's chances of making it to the inner bullseye stand at 0.25, indicating a probability of attaining triumph at 0.13 - following a subtraction of 0.12 from 0.25. On top of that, her possibility of striking the outer bullseye rests at 0.49, resulting in an odds of conquering the game as 0.24 after subtracting 0.25.

Learn more about probability on

https://brainly.com/question/24756209

#SPJ1

in exercises 21–26, write as an iterated integral for the shaded region r

Answers

To write the iterated integral for the shaded region r in exercises 21-26, we need to use the concept of double integrals. A double integral is a type of iterated integral that allows us to integrate over a two-dimensional region.



The iterated integral for the shaded region r can be written as:

∫∫r f(x,y) dA

where f(x,y) is the function we are integrating and dA represents the infinitesimal area element.

To evaluate the double integral, we can use either the row-first or column-first method. The row-first method involves fixing the value of y and integrating with respect to x first, while the column-first method involves fixing the value of x and integrating with respect to y first.

For example, in exercise 21, the shaded region r is the rectangle with vertices (0,0), (0,2), (3,2), and (3,0). If we want to integrate the function f(x,y) over this region, we can write the iterated integral as:

∫0^3 ∫0^2 f(x,y) dy dx

This means we first integrate f(x,y) with respect to y from y=0 to y=2, and then integrate the resulting expression with respect to x from x=0 to x=3.

Similarly, we can write the iterated integral for the shaded region r in exercises 22-26 using the same concept of double integrals.

Learn more about two-dimensional here :-

https://brainly.com/question/10384363

#SPJ11

Write a formal proof for each.

Proposition 9. The function f : Z → N defined by f(n) =

2n+1 ifn≥0
−2n if n < 0

is a bijection

Answers

The function is f: Z → N, defined by f(n) = 2n+1 if n ≥ 0 and f(n) = -2n if n < 0, is a bijection, we need to show that it is both injective (one-to-one) and surjective (onto).

Step 1: Prove injectivity (one-to-one):


Assume f(a) = f(b) for some integers a, b. We need to show that a = b.

Case 1: a, b ≥ 0
f(a) = 2a+1, f(b) = 2b+1
2a+1 = 2b+1 => 2a = 2b => a = b

Case 2: a, b < 0
f(a) = -2a, f(b) = -2b
-2a = -2b => 2a = 2b => a = b

In both cases, f(a) = f(b) implies a = b, so f is injective.

Step 2: Prove surjectivity (onto):


We need to show that for any natural number m, there exists an integer n such that f(n) = m.

If m is odd (m = 2k+1 for some integer k):
n = k => f(n) = 2k+1 = m

If m is even (m = 2k for some integer k):
n = -k => f(n) = -2(-k) = 2k = m

In both cases, we can find an integer n such that f(n) = m, so f is surjective.

Since f is both injective and surjective, it is a bijection.

To know more about bijection function refer here:

https://brainly.com/question/30241427#

#SPJ11

Cosecx – sinx = cos x cot(3x – 50°)

Answers

The trigonometric equation presented is cosecx - sinx = cos x cot(3x-50°). X has a value of 25.

To solve this equation, we will use the trigonometric identity cot(x) = cos(x) / sin(x) and simplify both sides of the equation.

cosec x - sin x = cos x * cot(3x - 50)

1/(sin x) - sin x = cos x * cot(3x - 50)

(1 - sin² x)/(sin x) = cos x * cot(3x - 50)

(cos² x)/(sin x * cos x) = cot(3x - 50)

(cos x)/(sin x) = cot(3x - 50)

cot x = cot(3x - 50)

x = (3x - 50)

2x = 50

x = 25

Hence the required value of x = 25

Learn more about Trigonometric Identities:

https://brainly.com/question/3785172

#SPJ4

50 points!!!! Algebra 2 question





Linear functions model situations that are continually increasing or continually decreasing. Quadratic functions model situations that increase and then decrease, or vice versa.




Polynomial functions can model situations that change directions multiple times. What is a situation in which a polynomial model might make sense, and why?

Answers

Different function model used in to model different situations of real life.l, for example Linear, quadratic and polynomial function model. The slope of a hill, roller coaster designers are real life example of polynomial model.

Various functions can be used to test real-world situations. We have a linear business model associated with the product or the main features of the business that makes them ascending or descending. A quadratic function simulates an increase followed by a decrease.

Polynomial functions simulate many changes in direction. Multinomial models can now be used to investigate situations where the relationship between variable and estimator is curvilinear. Sometimes nonlinear relationships at the small scale of the description can also be modeled with polynomials. For example, roller coaster designers may use polynomial model to describe the bends of their rides. Other examples include the continuation of slopes, curved bridges or mountains which are based on polynomial function modelling.

For more information about polynomial function , refer:

https://brainly.com/question/2833285

#SPJ4

The sum of three consecutive integers is 27. Find the value of the greatest of thrrr

Answers

The greatest of the three consecutive integers whose sum is 27 is 10.

We are given that sum of three consecutive integers is 27 and we have to find the greatest of these integers. Consecutive integers are those integers that follow each other in sequence or order. They have a difference of 1 between every two numbers. The mean and the median in a set of consecutive numbers are equal. If n is an integer, then n, n+1, and n+2 would be consecutive integers.

According to the question, the sum of three consecutive integers is 27. Let us assume that those integers are x, x+1, and x + 2. Now, the sum of x, x+ 1, and x+2 is 27.

Therefore,

(x) + (x+1) + (x+2) = 27

x + x + 1 + x + 2 = 27

3x + 3 = 27

3x = 24

x = 8

x + 1 = 9

x + 2 = 10

The three consecutive integers whose sum is 27 are 8, 9, and 10.

We have to find the value of the greatest integer which is x + 2 and that is 10.

Therefore, the greatest integer out of three consecutive integers having the sum of 27 is 10.

To learn more about Consecutive integers;

https://brainly.com/question/28576128

#SPJ4

The complete question is "The sum of three consecutive integers is 27. Find the value of the greatest of three consecutive integers."

In the year 1998, a survey was undertaken to find the salary of employees working in software companies. In a sample of 450 employees, 25% of them received a salary of $4000 per month. A similar survey was conducted three years later and showed that 15% of employees received $4000 per month in a sample of 600 employees. Construct a 99% confidence interval for the difference in population proportions of employees whose salary was $4000 per month in 1998 and employees whose salary was $4000 per month three years later. Assume that random samples are obtained and the samples are independent. (Round your answers to three decimal places.)
z0.10 z0.05 z0.025 z0.01 z0.005
1.282 1.645 1.960 2.326 2.576
Select the correct answer below:
(0.075,0.125)
(0.035,0.165)
(0.059,0.141)
(0.068,0.132)

Answers

The Confidence Interval is (0.068, 0.132). So the correct answer is option (d): (0.068, 0.132).

Confidence interval estimation:

To construct the confidence interval estimation for the difference in population proportions use the formula for constructing a confidence interval for the difference in population proportions, which takes into account the sample proportions, sample sizes, and the critical value of the standard normal distribution at the desired level of significance.

Here we have

In a sample of 450 employees, 25% of them received a salary of $4000 per month. A similar survey was conducted three years later and showed that 15% of employees received $4000 per month in a sample of 600 employees.

We can use the following formula to construct the confidence interval for the difference in population proportions:

[tex]$\text{Confidence Interval} = (\hat{p}_1 - \hat{p}2) \pm z{\alpha/2} \sqrt{\frac{\hat{p}_1 (1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2 (1 - \hat{p}_2)}{n_2}}$[/tex]

where:

[tex]$\hat{p}_1$[/tex] and [tex]$\hat{p}_2$[/tex] are the sample proportions of employees who received a salary of $4000 per month in 1998 and three years later, respectively.

[tex]$n_1$[/tex] and [tex]$n_2$[/tex] are the sample sizes.

[tex]$z_{\alpha/2}$[/tex] is the critical value of the standard normal distribution at the [tex]$\alpha/2$[/tex] level of significance.

Plugging in the values, we get:

[tex]$\hat{p}_1 = 0.25$[/tex],  [tex]$\hat{p}2 = 0.15$[/tex], [tex]$n_1 = 450$[/tex], [tex]$n_2 = 600$[/tex], [tex]$\alpha = 0.01$[/tex], and [tex]$z{\alpha/2} = 2.576$[/tex]

Substituting the values into the formula, we get:

[tex]$\text{Confidence Interval} = (0.25 - 0.15) \pm 2.576 \sqrt{\frac{0.25(1 - 0.25)}{450} + \frac{0.15(1 - 0.15)}{600}} \approx (0.068, 0.132)$[/tex]

Therefore,

The Confidence Interval is (0.068, 0.132). So the correct answer is option (d): (0.068, 0.132).

Learn more about Confidence intervals at

https://brainly.com/question/29680703

#SPJ4

How do you know if 155,779 - 155,779 is reasonable

Answers

155,779 - 155,779 is equal to 0. In general, if we are subtracting two very close numbers, we can expect the result to be close to zero.

Subtracting two very close numbers will generally result in a smaller number, and if the numbers are very close, the result will be very small or close to zero.

In this case, the two numbers being subtracted are exactly the same, so we can expect the result to be zero.

This is a reasonable result because it aligns with our expectation that subtracting two equal numbers should result in zero. Therefore, we can say that 155,779 - 155,779 is a reasonable result.

In this case, since the two numbers are exactly the same, we can expect the result to be zero.

Therefore, 155,779 - 155,779 is a reasonable result.

For more details regarding reasonable result, visit:

https://brainly.com/question/28302722

#SPJ1

there are 68% of students drive to school in one university. here is a sample of 20 students. (1) what is the probability that only 12 students drive to school? (2) what is the probability that more than 15 students drive to school? (3) what is the probability that no more than 10 students drive to school? (4) what is the mean and standard deviation? (5) what is the percentage falling with 1 standard deviation? does it satisfy the empirical rule?

Answers

1. The probability that exactly 12 students drive to school is 0.169.

2.The probability that more than 15 students drive to school is 0.027.

3. The probability that no more than 10 students drive to school is 0.004.

4. The mean and standard deviation of the sample are 13.6 and 2.4, respectively.

5. The percentage falling within 1 standard deviation of the mean is approximately 68%, which satisfies the empirical rule for normal distributions.

This problem involves the binomial distribution, since each student either drives to school (success) or does not (failure), and the probability of success is given as 0.68 for each student.

(1) The probability that exactly 12 students drive to school is given by the binomial probability mass function:

P(X = 12) [tex]= (20 choose 12) * (0.68)^12 * (1 - 0.68)^(20 - 12) = 0.169[/tex]

(2) The probability that more than 15 students drive to school is given by the complement of the probability that at most 15 students drive to school:

P(X > 15) = 1 - P(X <= 15) = 1 - sum[(20 choose i) * [tex](0.68)^i * (1 - 0.68)^{20 - i)}[/tex] for i = 0 to 15.

This is approximately 0.027.

(3) The probability that no more than 10 students drive to school is given by the cumulative distribution function:

P(X <= 10) = sum[(20 choose i) * [tex](0.68)^i * (1 - 0.68)^{20 - i}[/tex] for i = 0 to 10. This is approximately 0.004.

(4) The mean of the binomial distribution is given by the formula np, where n is the sample size and p is the probability of success.

Thus, the mean is 200.68 = 13.6.

The standard deviation of the binomial distribution is given by the formula sqrt(np(1-p)), which is approximately 2.4.

(5) The percentage falling within one standard deviation of the mean is approximately 68% by the empirical rule, which is the same as the percentage of students who drive to school in the university.

However, the empirical rule applies to normal distributions, and the binomial distribution is not exactly normal.

Nonetheless, for large sample sizes, the binomial distribution can be approximated by a normal distribution using the central limit theorem, which would make the empirical rule applicable.

For similar question on probability.

https://brainly.com/question/24756209

#SPJ11

Question 4: a) Find the matrix A, if A=CD+ED Bi 31 32) -1 1 4 2 1 c=10 i [1].0- 12 0 3 and E = 1-3 D- 1 3 16 1 - 1 [2 marks] 0 1 b) Solve the following systems using Cramer's rule -2x - y - 32 = 3 2x

Answers

a) The matrix A=  CD = (10 * [1 0 -12 0; 3 0 1 0]) = [10 0 -120 0; 30 0 10 0] ED = ([1 -3; 16 1; -1 0] * [0 1]) = [3 -3; 16 1; -1 0] =[13 -3 -120 0; 46 1 10 0]  b) The determinant is 0, Cramer's rule cannot be used to solve this system.

a) To find matrix A, we need to use the given equation A = CD + ED. We can first calculate CD and ED separately, and then add them together to get A. CD = (10 * [1 0 -12 0; 3 0 1 0]) = [10 0 -120 0; 30 0 10 0] ED = ([1 -3; 16 1; -1 0] * [0 1]) = [3 -3; 16 1; -1 0]

Adding CD and ED together gives us: A = CD + ED = [10 0 -120 0; 30 0 10 0] + [3 -3; 16 1; -1 0] A = [13 -3 -120 0; 46 1 10 0]

b) To solve the system -2x - y - 32 = 3 and 2x + y = 1 using Cramer's rule, we first need to write the system in matrix form: [-2 -1; 2 1] * [x; y] = [35; 1]

The determinant of the coefficient matrix is: det([-2 -1; 2 1]) = (-2 * 1) - (-1 * 2) = 0 Since the determinant is 0, Cramer's rule cannot be used to solve this system.

Visit here to learn more about Matrix:

brainly.com/question/29810899

#SPJ11

Pls

answer correctly. Will upvote

Find the surface area of revolution about the y-axis of y = 36 - 4x² over the interval 0

Answers

The surface area of revolution about the y-axis of y = 36 - 4x² over the interval 0 is approximately 2261.63 square units.

To find the surface area of revolution about the y-axis of y = 36 - 4x² over the interval 0, we can use the formula:

SA = 2π ∫[a,b] x √(1 + (dy/dx)²) dx In this case, a = 0 and b = 6 (since y = 0 when x = ±3), so we have: SA = 2π ∫[0,6] x √(1 + (dy/dx)²) dx

To find dy/dx, we can take the derivative of y with respect to x: dy/dx = -8x Substituting this into the formula, we get: SA = 2π ∫[0,6] x √(1 + (-8x)²) dx

Integrating this function is not trivial, but we can use a substitution u = 1 + (-8x)² to simplify it: SA = π ∫[1,1+(-8*6)²] (u-1)/16 √u du

Now we can use the power rule to integrate: SA = π [(2/3)(u-1)^(3/2)]|[1,1+(-8*6)²] SA = π [(2/3)(1+(-8*6)²-1)^(3/2)-(2/3)(1-1)^(3/2)] SA = π (2/3)(1+(-8*6)²)^(3/2) SA ≈ 2261.63

Visit here to learn more about Derivative:

brainly.com/question/28376218

#SPJ11

A box contains only apple sweets, pear sweets and cherry sweets. The ratio of apple sweets to pear sweets is 2: 5. Olivia picks a sweet at random from the box. The probability that it is an apple sweet is 2/11 What is the probability that it is a cherry sweet? Give your answer as a fraction in its simplest form.​

Answers

The probability that the sweet is a cherry sweet is given as follows:

p = 4/11.

How to calculate a probability?

A probability is calculated as the division of the desired number of outcomes by the total number of outcomes in the context of a problem/experiment.

The probability that it is an apple sweet is 2/11, and the ratio of apple sweets to pear sweets is 2: 5, hence the probability of a pear sweet is given as follows:

p = 5/11.

Then the probability that the sweet is a cherry sweet is given as follows:

p = 1 - (5/11 + 2/11)

p = 1 - 7/11

p = 11/11 - 7/11.

p = 4/11.

More can be learned about probability at https://brainly.com/question/24756209

#SPJ1

2y^(4) +11y^(3) + 18y" + 4ť' - 8y=0 Hint: 2r^4 +11r^3 + 18r^2 + 4r – 8 = (2r - 1)(r + 2)^3.

Answers

To solve the equation 2y^(4) +11y^(3) + 18y" + 4ť' - 8y=0, we can first factor out a common factor of 2y: 2y(y^3 + 5y^2 + 9y + 2ť' - 4) = 0 Next, we can focus on the expression inside the parentheses, which can be written as:

y^3 + 5y^2 + 9y + 2ť' - 4

We can recognize this expression as the polynomial 2r^4 +11r^3 + 18r^2 + 4r – 8 evaluated at r=y-1/2.

So, 2r^4 +11r^3 + 18r^2 + 4r – 8 = (2r - 1)(r + 2)^3.


Finally, we can factor out a common factor of 2 and use the factored form of the polynomial:


2(y-1)(y+2)^3(2y+1) = 0

Therefore, the solutions to the original equation are:

y = 1, -2, -1/2 (multiplicity 3)
To solve the given polynomial equation, we will first rewrite it in a more accurate and coherent form by removing the irrelevant terms:

2y^4 + 11y^3 + 18y^2 + 4y - 8 = 0

We are given a hint that the equation can be factored as:

(2r - 1)(r + 2)^3

Now, we will replace r with y to match the variable in the given equation:

(2y - 1)(y + 2)^3 = 0

Now that we have the factored form of the equation, we can set each factor equal to zero and solve for y:

1) 2y - 1 = 0
2y = 1
y = 1/2

2) (y + 2)^3 = 0
y + 2 = 0
y = -2

So the solutions to the given equation are y = 1/2 and y = -2.

To know more about polynomial equations:- https://brainly.com/question/25958000

#SPJ11

Let X ~ Exponential(). Show that

a. EX" = "EXn-1, for n = 1,2,3,...;
b. EX" = n!, for n = 1,2,3,....

Answers

The exponential distribution is a continuous probability distribution that describes the time between events in a Poisson process, where events occur continuously and independently at a constant rate. The probability density function of the exponential distribution is given by f(x) = λe^(-λx), where λ is the rate parameter.

a. To show that EX" = EXn-1, we need to use the memoryless property of the exponential distribution. This property states that the conditional probability of X > t+s given that X > s is equal to the unconditional probability of X > t, for any s,t > 0. Using this property, we can write:

EX" = E(X|X > n-1) + (n-1) = E(X) + n-1 = 1/λ + n-1

EXn-1 = E(X|X > 1) + (n-2) = E(X) + n-2 = 1/λ + n-2

Since EX" = EXn-1, we have shown that the memoryless property holds.

b. To find EX" = n!, we can use the moment generating function (MGF) of the exponential distribution, which is given by M(t) = λ/(λ-t). The nth moment of X is defined as E(X^n) = (-1)^n d^n M(t)/dt^n at t=0. Differentiating the MGF n times, we get:

E(X^n) = n!λ^n/(λ-t)^n+1 at t=0

Setting n=1, we get E(X) = 1/λ, which is the mean of the exponential distribution. Setting n=2, we get E(X^2) = 2/λ^2, which is the variance of the exponential distribution.

For n>2, we can use the formula above to find the nth moment:

E(X^n) = n!λ^n/(-1)^{n+1} = n!/(λ^n)

Therefore, for n = 1,2,3,..., we have:

EX" = E(X^n|X > n-1) = (n-1)!/(λ^n-1) = n!/λ^n

Thus, we have shown that EX" = n! for n = 1,2,3,...

To know more about The exponential distribution refer here

https://brainly.com/question/28235111#

#SPJ11

(PLEASE HELP!!!!) A family recipe calls for sauce and oregano. The table below shows the parts of sauce to oregano used to make the recipe.



Servings Sauce (cups) Oregano (tsp)

3 6 one and a half

8



At this rate, how much sauce and oregano will be needed to make 8 servings?

The recipe will need 16 cups of sauce and three and a half teaspoons of oregano for 8 servings.

The recipe will need 16 cups of sauce and 4 teaspoons of oregano for 8 servings.

The recipe will need 14 cups of sauce and 4 teaspoons of oregano for 8 servings.

The recipe will need 14 cups of sauce and three and a half teaspoons of oregano for 8 servings.

Answers

The recipe will need 16 cups of sauce and 4 teaspoons of oregano for 8 servings.

How much sauce and oregano will be needed to make 8 servings?

Given that

Servings Sauce (cups) Oregano (tsp)

3 6 one and a half

Rewrite as

Servings Sauce (cups) Oregano (tsp)

3                         6              1.5

Divide through by 3

Servings Sauce (cups) Oregano (tsp)

1                         2              1.5/3

Multiply through by 8

Servings Sauce (cups) Oregano (tsp)

8                         16              4

Hence. the recipe will need 16 cups of sauce and 4 teaspoons of oregano for 8 servings.

Read more about unit rates at

https://brainly.com/question/30073411

#SPJ1

Use a double integral to find the area of the region inside the cardioid r=1+cosθ and outside the circle r=3cosθ.

Answers

The area of the region inside the cardioid and outside the circle is 3π/2 square units.

The area of the region inside the cardioid r=1+cosθ and outside the circle r=3cosθ using a double integral, follow these steps:

1. Determine the bounds of integration for θ: Find where the cardioid and circle intersect by setting r equal for both equations: (1+cosθ) = 3cosθ. Solve for θ, which results in θ = 0 and θ = π.

2. Set up the double integral: The area of the region can be found using the double integral of the difference between the two polar functions with respect to r and θ: Area = ∬(1+cosθ - 3cosθ) rdrdθ.

3. Determine the bounds of integration for r: The lower bound for r is the circle r=3cosθ, and the upper bound is the cardioid r=1+cosθ.

4. Integrate with respect to r: ∫[∫(1+cosθ - 3cosθ) rdr]dθ from r=3cosθ to r=1+cosθ. This results in: [1/2(r^2)] evaluated from r=3cosθ to r=1+cosθ.

5. Plug in the limits of integration for r: [(1/2)((1+cosθ)^2) - (1/2)(3cosθ)^2]dθ.

6. Integrate with respect to θ: ∫[(1/2)((1+cosθ)^2) - (1/2)(3cosθ)^2] dθ from θ=0 to θ=π.

7. Evaluate the integral: After integrating and evaluating the limits, you will find that the area of the region inside the cardioid and outside the circle is 3π/2 square units.

To know more about cardioid refer here:

https://brainly.com/question/29556891#

#SPJ11

a poll surveyed 341 video gamers, and 72 of them said that they prefer playing games on a console, rather than a computer or hand-held device. an executive at a game console manufacturing company claims that less than 27% of gamers prefer consoles. does the poll provide convincing evidence that the claim is true? use the a

Answers

The given problem is a hypothesis testing problem, where we have to test whether the claim made by the executive is true or not based on the sample data.

The null hypothesis, denoted as H0, assumes that the proportion of gamers who prefer consoles is equal to or greater than 27%, while the alternative hypothesis, denoted as Ha, assumes that the proportion is less than 27%. To test this hypothesis, we can use a one-tailed z-test at a significance level of 0.05. If the p-value obtained from the test is less than 0.05, we reject the null hypothesis and conclude that the claim made by the executive is false.

To calculate the test statistic, we first need to find the sample proportion of gamers who prefer consoles, denoted as p-hat. This can be calculated as 72/341 = 0.211. Next, we calculate the standard error of the sample proportion, which is the square root of [(0.27 * 0.73) / 341] = 0.027. Using these values, we can calculate the z-score as (0.211 - 0.27) / 0.027 = -2.19. Looking up the z-table or using a calculator, we find that the p-value is 0.014. Since the p-value is less than 0.05, we reject the null hypothesis and conclude that there is convincing evidence to suggest that less than 27% of gamers prefer consoles. The executive's claim is therefore false, based on the given sample data.

To learn more about null hypothesis, click here:

brainly.com/question/30821298

#SPJ11

Find a polynomial P(x)=x3+ax2+bx+c

satisfying all of the following properties:

i) x=−3

is a local maximum of P(x)

.

ii) x=7

is a local minimum of P(x)

.

iii) P(0)=0

.

Answers

For i) we get: a = -1/3 and b = -20/3 and for ii) we get the polynomial satisfying all the given properties is: P(x) = x³ - (1/3)x² - (20/3) and for iii) we get c=0

Explanation:

To satisfy property iii) P(0)=0, we know that c must be equal to 0.

Let's now use the first two properties to find the values of a and b.

i) At x = -3, P'(x) = 0 and P''(x) < 0 for a local maximum.

P'(x) = 3x² + 2ax + b

P''(x) = 6x + 2a

Substituting x = -3 in the above equations, we get:

9a - 9 + b = 0

-18 + 2a < 0

Solving the above two equations simultaneously, we get:

a = -1/3 and b = -20/3

ii) At x = 7, P'(x) = 0 and P''(x) > 0 for a local minimum.

Using the same approach as above, we get:

a = -2/3 and b = 532/9

Therefore, the polynomial satisfying all the given properties is:

P(x) = x³ - (1/3)x² - (20/3)x

Note that property iii) is satisfied because we set c=0 earlier.

Visit here to learn more about local minimum brainly.com/question/10878127

#SPJ11

Consider the following. W = xyz x= + 2t, y =s - 2t, z = st? (a) Find aw/as and aw/at by using the appropriate Chain Rule. aw 3522 - 40 v as aw at - 231 – 1668 (b) Find aw/as and aw/at by converting w to a function of sand before differentiating.

Answers

To find aw/as and aw/at using the Chain Rule:

(a) Using the

Chain Rule

, we have:

aw/as = (dw/ds) * (ds/as) = ((dw/dx) * (dx/ds) + (dw/dy) * (dy/ds) + (dw/dz) * (dz/ds)) * (ds/as)

Substituting

the given expressions for x, y, and z, we get:

x = 2t, y = s - 2t, z = st

dx/ds = 0, dy/ds = 1, dz/ds = t

dx/dt = 2, dy/dt = -2, dz/dt = s

Therefore:

aw/as = ((z/x) * 2 + (z/y) * (-2) + (x*y)) * (1/s) = (2st/x - 2st/y + 2st) * (1/s)

= 2st * (y/x - y/y + 1) * (1/s) = 2st * (1 - 2/s) * (1/s)

= 2t * (1 - 2/s)

Similarly, we can find

aw/at

:

aw/at = (dw/dx) * (dx/dt) + (dw/dy) * (dy/dt) + (dw/dz) * (dz/dt)

= z * 2 + (-z) * 2 + xy

= 2st - 2st + 2ts

= 2ts

Therefore, aw/as = 2t * (1 - 2/s) and aw/at = 2ts.

(b) To find aw/as and aw/at by converting w to a function of s, we substitute the expressions for x and y in terms of s:

x = 2t, y = s - 2t

into the expression for w:

w = xyz = (2t)(s - 2t)(st) = 2st^2 - 4t^2s

Then we differentiate w with respect to s and t to get:

dw/ds = 4t^2 - 4t

dw/dt = 4st - 8ts

Using the Chain Rule, we can find aw/as and aw/at:

aw/as = dw/ds = 4t^2 - 4t

aw/at = dw/dt = 4st - 8ts

Therefore,

aw/as = 4t^2 - 4t

and aw/at = 4st - 8ts.

Learn more about

Chain Rule

here:- brainly.com/question/30895266

#SPJ11

The numerator of a fraction is 3 less than the denominator. If the fraction is equivalent to 9/10, find the fraction

Answers

If numerator of fraction is 3 less than denominator which is equivalent to "9/10", then the fraction is 27/30.

A "Fraction" is a mathematical representation of a part of a whole, expressed as one number (the numerator) divided by another (the denominator), separated by a horizontal line.

Let us assume the denominator of the fraction be = x.

According to the problem, the numerator of the fraction is 3 less than the denominator.

So, numerator of fraction can be represented as :  x - 3,

We also know that the fraction is equivalent to 9/10.

So, the equation is :

⇒ (x - 3)/x = 9/10,

Next, we cross-multiply,

⇒ 10(x - 3) = 9x,

⇒ 10x - 30 = 9x,

⇒ x = 30,

Now, we substitute it in the expression for the numerator:

We get,

⇒ x - 3 = 30 - 3 = 27,

Therefore, the fraction is 27/30, which can be simplified by dividing both the numerator and denominator by 3 to get : 9/10.

Learn more about Fraction here

https://brainly.com/question/12530877

#SPJ1

Consider the following equations:

f(y) = y^2 + 2

g(y) = 0

y = -1

y = 2

Sketch the curve

Answers

To sketch the curve, we first need to plot the points where the equations intersect with the y-axis. For f(y) = y^2 + 2, when y = 0, f(y) = 2. So the point (0, 2) is on the curve. For g(y) = 0, the equation intersects with the y-axis at y = 0.

To sketch the curve for the given equations, follow these steps:

1. Identify the equations: We have f(y) = y^2 + 2, g(y) = 0, y = -1, and y = 2.
2. Plot the functions: f(y) is a parabolic curve with a vertex at (0, 2). g(y) is a horizontal line along the y-axis (y = 0). y = -1 and y = 2 are two horizontal lines at y = -1 and y = 2 respectively.
3. Sketch the curve: Draw the parabola f(y) = y^2 + 2 with its vertex at (0,

To learn more about parabola : brainly.com/question/31142122

#SPJ11

I need help ASAP Which of the following sets of ordered pairs represents a function?

A.

{ (0, -5), (10, -5), (0, -5), (-5, 10) }

B.

{ (5, -5), (8, -5), (0, -5), (-5, 8) }

C.

{ (5, 10), (5, 0), (0, 0), (7, 12) }

D.

{ (-5, 5), (-5, 8), (-5, 0), (8, -5) }

Answers

It’s B because your x can’t repeat if it’s a function

Option B, consisting of the ordered pairings {(5, -5), (8, -5), (0, -5), and (-5, 8)} is the set that represents a function since it does not contain repeated x-values, which is a prerequisite for a set to be regarded as a function.

A function is a relation between two sets, where each element in the first set corresponds to one and only one element in the second set. In other words, for a set of ordered pairs to represent a function, there should not be any repeated values in the first element (x-value) of the ordered pairs.

Option A has a repeated value of (0, -5), which means that the x-value 0 corresponds to two different y-values (-5 and -5), so it does not represent a function.

Option B has no repeated x-values, so it represents a function.

Option C has a repeated x-value of 5, which corresponds to two different y-values (10 and 0), so it does not represent a function.

Option D has a repeated x-value of -5, which corresponds to two different y-values (5 and 8), so it does not represent a function.

Therefore, the set of ordered pairs that represents a function is option B: { (5, -5), (8, -5), (0, -5), (-5, 8) }.

Learn more about ordered pair:

https://brainly.com/question/30805001

As part of a science experiment. Sam measured the amount of rainfall in inches over the course of a week.
A table of the measurements Sam collected is shown.

Daily Rainfall (Day, Rainfall [inches])
Sunday, 0
Monday, 1 1/3
Tuesday, 3 1/2
Wednesday, 2/3
Thursday, 2 2/3
Friday, 1 1/2
Saturday, 0

What was the mean amount of rainfall, in inches over the course of this week?

Answers

Answer:

13/21 or 0.61904761904 inches

Step-by-step explanation:

Add all the values up together, then divide this by the number of values in this case being 7. This gets you the final answer.

i need help asap ! i don’t understand this!!

Answers

The missing side lengths and the missing angles of the parallelogram are computed below


Calculating the missing side lengths and the missing angles

Given that we have

The parallelogramThe angle measures ABD = 75 and ACB = 45The side lengths AB = 17, BD = 9The half diagonals AT = 10.5 and TC = 7

The opposite sides and angles of a paralleogram are equal

So, we have

CD = 17

AC = 9
CB = 17.5

TD = 10.5

Also, we have

ACD = 75

CDB = 105

CAB = 105

DBC = 45


Read more about parallelogram at

https://brainly.com/question/970600

#SPJ1

Drag the red and blue dots along the x-axis and y-axis to graph

Answers

Answer:

Step-by-step explanation:

solve this problem and I will give u brainlst.
A coach draws up a play so a quarterback throws the football at the same time a receiver runs straight down the field. Suppose the quarterback throws the football at a speed of 20​ ft/s and the receiver runs at a speed of 12​ ft/s. At what angle x to the horizontal line must the quarterback throw the football in order for the receiver to catch​ it? Explain.

Answers

The measure of angle x is 37⁰.

What is the measure of angle x?

The measure of angle x is calculated as follows;

let the time of throw = t

Apply Pythagoras theorem as follows;

(20t)² = 75² + (12t)²

400t² = 5625 + 144t²

400t² - 144t² = 5625

256t² = 5625

t² = 21.97

t = 4.7 s

The height of the right triangle is calculated as follows;

h = 12 ft/s x 4.7 s

h = 56.4 ft

The value of angle x is calculated as follows;

tan x = 56.4/75

x = arc tan (56.4/75)

x = 37⁰

Learn more about angle of triangle here: https://brainly.com/question/25215131

#SPJ1

Other Questions
Clouds of gas and dust as well as new star formation are typically seen in which of the following galaxy types?a.Irregularb.Spiralc.Elliptical There are two bags containing only yellow and white marbles. Bag A has 6 white marbles and 2 yellow marbles. Bag B has 10 white marbles and 6 yellow marbles. A marble is randomly chosen from each bag. List these events from least likely to most likely. Event : choosing a white marble from Bag A. Event : choosing a white marble from Bag B. Event : choosing a white or yellow marble from Bag A. Event : choosing a green marble from Bag B. Lina purchased a new car for use in her business during 2015. The auto was the only business asset she purchased during the year and her business was extremely profitable. Calculate her maximum depreciation deductions (including 179 expense unless stated otherwise) for the automobile in 2015 and 2016 (Lina doesn't want to take bonus depreciation for 2015 or 2016) in the following alternative scenarios (assuming half-year convention for all and that 2014 179 amounts are extended to 2015):a. The vehicle cost $15,000 and business use is 100 percent (ignore 179 expense).b. The vehicle cost $40,000, and business use is 100 percent.c. The vehicle cost $40,000, and she used it 80 percent for business.d. The vehicle cost $40,000, and she used it 80 percent for business. She sold it on March 1 of year 2.e. The vehicle cost $40,000, and she used it 20 percent for business.f. The vehicle cost $40,000, and is an SUV that weighed 6,500 pounds. Business use was 100 percent. when evaluating the financial performance of the firm, it is important also to compare it with industry norms. T/F Consider an ideal Brayton cycle operating with the air input to the compressor is at 100 kpa, 20 oC, and the overall cycle efficiency is 50%. The max temperature in the cycle is 110 0C, and the air flow rate is 10 kg/s. Assume cycle operates under cold air standards.(Can assume the specific heats of air as: cp = 1.005 kJ/kg-K; cv = 0.717 kJ/kg-K)a) Sketch the T-s plot for the cycle with all states marked on the diagram Ignore parts B through Eb) Calculate the pressure ratio across the compressor.c) Calculate the power input to the compressord) Calculate the power output of the turbine while other newspapers relied heavily on subscriptions and daily sales, a new business model in the 1800s depended on advertising sales to subsidize publication costs. this type of newspaper was generally known as: what is society ? why it is necesssary a client comes to the college campus nurse complaining of unilateral pain, swelling, and redness on his scrotal area. the nurse knows these clinical manifestations are likely caused by: Un trabajo puede ser realizado por 30 obreros durante 40 das. si el plazo para terminarlo es de 12 das, cuntos obreros ms se deben contratar? _____ are sometimes used to alleviate problems caused by potential conflicts of interest between shareholders and CEOs.A) mergersB) acquisitionsC) incentivesD) buyout Mcgraw hill interactive student addition geometry volume 2 2. In the figure, a regular polygon is inscribed in a triangle identify the center a radius and apothem and a central angle of the polygon, then find the measure of a central angle (example 1) the distance from the ground of a person riding on a ferris wheel can be modeled by the equation d equals 20 times the sine of the quantity pi over 30 times t end quantity plus 10 comma where d represents the distance, in feet, of the person above the ground after t seconds. how long will it take for the ferris wheel to make one revolution? 10 seconds 20 seconds 30 seconds 60 seconds Reread this sentence from the lesson:The more widespread voting became, the more the nation truly became of the people.Which principle of American democracy is most closely associated with the expansion of voting rights? A. checks and balancesB. federalismC. popular sovereigntyD. rule of law you can obtain the server's hostname by invoking ________ on an applet. Write the chemical equation for the ionization of each of the following weak acids in water. (Some are polyprotic acids; for these write only the equation for the first step in the ionization.) Do not include physical states, and use the smallest possible integer coefficientsa) HNO2b) HAsO42c)(CH3)3NH yesterday, your portfolio's closing market value was $350,000. when the market opened this morning, its value immediately dropped to $340,000. by noon, the value had risen to $355,000. it is currently 2:00 pm. and your portfolio's value is $365,000. what's the p&l? the optimal capital structure is the funds mix that will a. maximize total leverage. b. achieve an equal proportion of debt, preferred stock, and common equity. c. minimize the use of debt. d. minimize the firm's composite cost of capital. Amanda graphed the equation 10x + 5y = 20 taylor is the owner of a new apartment building. she has 15 units she needs to lease, so she has enlisted pablo as her agent. is pablo required to give taylor an agency disclosure form? nonacademic stuff being informally taught beneath the surface in a classroom setting is referred to by sociologists as the . group of answer choices chamber of secrets hidden curriculum special function equal access factor