The sound level produced by one singer is 71.8 dB. What would be the sound level produced by a chorus of 45 such singers (all singing at the same intensity at approximately the same distance as the original singer)? Answer in units of dB.

The Sound Level Produced By One Singer Is 71.8 DB. What Would Be The Sound Level Produced By A Chorus

Answers

Answer 1

The sound level produced by a chorus of 45 singers would be approximately 88.3 dB.

How to find the sound level produced by a chorus of 45 singers?

Assuming that the sound level of each singer is independent and the same, the sound level produced by a chorus of 45 singers can be calculated using the following formula:

L2 = L1 + 10 log (N2/N1)

where:

L1 = the sound level of one singer = 71.8 dB

N1 = the number of singers in the original group = 1

N2 = the number of singers in the new group = 45

L2 = the sound level of the new group

Substituting the values in the formula, we get:

L2 = 71.8 + 10 log (45/1)

L2 = 71.8 + 10 log (45)

L2 = 71.8 + 16.5

L2 = 88.3 dB

Therefore, the sound level produced by a chorus of 45 singers would be approximately 88.3 dB, assuming all the singers are singing at the same intensity at approximately the same distance as the original singer.

Learn about sound level here https://brainly.com/question/15118883

#SPJ1


Related Questions

10. a kangaroo is capable of jumping to 250 cm height. determine time taken in jump and takeoff speed of the kangaroo.

Answers

The time taken and the takeoff speed of the kangaroo jumping is 0.71 seconds and 7 m/s, alternately. The result is obtained by using the equations for uniformly accelerated motion.

Uniformly Accelerated Straight Motion

A uniformly accelerated straight motion is a motion with acceleration or deceleration in a straight line. The equations apply in vertical dimension are

v₁ = v₀ + gtv₁² = v₀² + 2ghh = v₀t + ½ gt²

The maximum height of kangaroo jumping is 250 m.

Determine the time taken in jump and takeoff speed of the kangaroo!

At the maximum height, the velocity is zero. So, using the equations for uniformly accelerated motion, the takeoff speed (initial speed) of the kangaroo is

v₁² = v₀² + 2gh

0 = v₀² + 2(-9.81)(2,5)

v₀² = 2(9.81)(2,5)

v₀ = √49

v₀ = 7 m/s

The time taken for the kangaroo jumping is

v₁ = v₀ + gt

0 = 7 + (-9.81)t

t = 7/9.81

t = 0.71 seconds

Hence, the time taken is 0.71 seconds and the initial speed of the kangaroo jumping is 7 m/s.

Learn more about uniformly accelerated straight motion here:

brainly.com/question/30590462

#SPJ11

a projectile is launched over a horizontal surface in such a manner that its maximum height is 4/5 of its horizontal range. determine the launch angle.

Answers

The launch angle a horizontal range maximum height is 4/5 is 77.47°.

Given, the maximum height of a projectile is 4/5 of its horizontal range. Let us assume that the maximum height and horizontal range be h and R respectively.

Let the initial velocity of the projectile be v₀ and the angle of projection be θ.

Since the projectile is launched over a horizontal surface, the initial vertical velocity of the projectile is 0.

Using the formulae of motion under constant acceleration, we can write, h = v₀sinθ)²/2g R = v₀²sin2θ/g

Where g is the acceleration due to gravity.

Substituting the value of v₀ from the first equation into the second equation, we get,

R = h tanθ/2 = 4R/5 tanθ/2

On simplification, we get,

tanθ/2 = 8/5

tanθ = 16/5

tan⁻¹16/5 = 77.47°

So, the launch angle is 77.47°.

Learn more about projectile at https://brainly.com/question/14986634

#SPJ11

g what is the relationship between the wavelength of light, its color, and the energy of its photons?

Answers

Shorter wavelengths of light correspond to higher frequencies, and higher frequencies of light correspond to more energy in the photons. This means that the color of light is related to the energy of its photons: the higher the frequency of light, the higher the energy of its photons and the closer the color is to the blue end of the visible light spectrum.

The relationship between the wavelength of light, its color, and the energy of its photons is as follows:

The energy of a photon is directly proportional to its frequency and inversely proportional to its wavelength. In simpler terms, the shorter the wavelength of light, the greater the energy of its photons, while the longer the wavelength of light, the less energy its photons possess. The relationship between the wavelength of light and its color is also direct in that different colors are a result of light waves of different wavelengths.

The color spectrum ranges from red (longest wavelength) to violet (shortest wavelength), with colors in between, such as orange, yellow, green, blue, and indigo. This spectrum represents the visible part of the electromagnetic spectrum, with ultraviolet and infrared light having shorter and longer wavelengths, respectively. The energy of photons from these parts of the spectrum follows the same pattern as visible light, with ultraviolet photons possessing more energy than visible light photons and infrared photons possessing less energy than visible light photons.

For more such questions on wavelengths , Visit:

https://brainly.com/question/10728818

#SPJ11

example 16-3: sound intensity on the street. at a busy street corner, the sound level is 75 db. what is the intensity of sound there?

Answers

The intensity of sound at the busy sound corner is 3.162 × 10⁻² W/m².

The sound intensity, represented by I, is defined as the power conveyed by a sound wave per unit area. Watts per square metre (W/m2) are the units of measurement.

waves are a type of energy propagation through a medium by means of adiabatic  lading and unloading. Important amounts for describing  aural  swells are  aural pressure,  flyspeck  haste,  flyspeck  relegation and  aural intensity.

The formula for determining sound intensity from decibel level is as follows:

I = I₀ × 10^(L/10)

where I0 is the reference intensity and L is the decibel level.

Plugging in the values from the issue yields:

I = (1×10⁻¹² W/m²) × 10^(75/10) = 3.162 × 10⁻² W/m²

Learn more about intensity of sound at

https://brainly.com/question/17048765

#SPJ4

use the impulse-momentum theorem to find how long a falling object takes to increase its speed from 4.23 m/s to 10.47 m/s?

Answers

The time it takes the object to fall through the change in speed using the impulse-momentum theorem is 0.62 seconds.

What is impilse-momentum theorem?

The impulse-momentum theorem states that the change in momentum of an object is equal to the impulse exerted on it.

To calculate the time it takes the object to increase it speed using the  impulse-momentum theorem, we use the formula below.

Formula:

Ft = m(v-u)Ft/m = (v-u)

Recall that F/m = acceleration. Therefore,

at = v-ua = (v-u)/t.......................... Equation 1

Where:

a = Acceleration due to gravityv = Final velocityu = Initial velocityt = Time

From the question,

Given:

v = 10.47 m/su = 4.23 m/sg = 9.8 m/s²

Substitute these values into equation 1 and solve for t

9.8 = (10.27-4.23)/tt = (10.27-4.23)/9.8t = 6.04/9.8t = 0.62 seconds

Hence, the time it takes the object to fall is 0.62 seconds.

Learn more about impulse-momentum theorem here: https://brainly.com/question/14121529

#SPJ1

Which segment of copper wire has the highest resistance at room
temperature?
(1) 1.0 m length, 1.0 × 10-6 m² cross-sectional area
(2) 2.0 m length, 1.0 × 10-6 m² cross-sectional area
(3) 1.0 m length, 3.0 x 10-6 m² cross-sectional area
(4) 2.0 m length, 3.0 x 10-6 m² cross-sectional area

Answers

The segment of copper wire with the highest resistance at room temperature is segment (2), which is 2.0 m in length and has a cross-sectional area of 1.0 x [tex]10^{-6}[/tex] m².

What is the resistance?

The resistance of a conductor is given by the formula:

R = (ρL) / A

where R is the resistance, ρ is the resistivity of the material, L is the length of the conductor, and A is the cross-sectional area of the conductor.

Assuming that the resistivity of copper is constant, we can compare the resistance of the different segments of copper wire using the above formula.

We can calculate the resistance of each segment of copper wire as follows:

(1) R = (1.68 x [tex]10^{-8}[/tex] Ωm x 1.0 m) / (1.0 x [tex]10^{-6}[/tex] m²) = 0.017 Ω

(2) R = (1.68 x [tex]10^{-8}[/tex] Ωm x 2.0 m) / (1.0 x [tex]10^{-6}[/tex] m²) = 0.034 Ω

(3) R = (1.68 x [tex]10^{-8}[/tex] Ωm x 1.0 m) / (3.0 x [tex]10^{-6}[/tex] m²) = 0.0056 Ω

(4) R = (1.68 x [tex]10^{-8}[/tex] Ωm x 2.0 m) / (3.0 x [tex]10^{-6}[/tex] m²) = 0.0112 Ω

Therefore, the segment of copper wire with the highest resistance at room temperature is segment (2), which is 2.0 m in length and has a cross-sectional area of 1.0 x [tex]10^{-6}[/tex] m².

To know more about the resistance, visit:

https://brainly.com/question/30799966

#SPJ1

Complete question is: The segment of copper wire with the highest resistance at room temperature is segment (2), which is 2.0 m in length and has a cross-sectional area of 1.0 x [tex]10^{-6}[/tex] m².

A wheel of radius R starts from rest and accelerates with a constant angular acceleration α about a fixed axis.
At what time t will the centripetal and tangential accelerations of a point on the rim have the same magnitude?
Express your answer in terms of the given quantities.

Answers

The time at which the centripetal and tangential accelerations of a point on the rim have the same magnitude is given by t = √(R/α).

Steps

A tangential = R, where R is the wheel's radius and is the angular acceleration, gives the tangential acceleration of a point on the rim of the wheel.

A centripetal =  v²/R, where v is the speed of the point, gives the centripetal acceleration of a point on the rim of the wheel.

At time t, the wheel's angular displacement is given by  = (1/2)t2, and the speed of the point on the rim is given by v = R, where is the wheel's angular velocity.

Setting the magnitudes of the tangential and centripetal accelerations equal, we have:

Rα = v²/R

Substituting v = Rω and simplifying, we get:

Rα = Rω²

α = ω²

Using the definition of angular velocity ω = αt, we get:

t = √(R/α)

Therefore, the time at which the centripetal and tangential accelerations of a point on the rim have the same magnitude is given by t = √(R/α).

learn more about acceleration here

https://brainly.com/question/26408808

#SPJ1

the time it takes a planet to complete one full orbital revolution is commonly known as its question 25 options: period frequency acceleration velocity

Answers

The time it takes a planet to complete one full orbital revolution is commonly known as its period. Option a is the correct choice.

The period of a planet refers to the time it takes for the planet to complete one full orbit around its star or sun. This time period is determined by the distance between the planet and the star, as well as the planet's velocity. The period is an important concept in astronomy and is used to calculate a planet's orbital speed, distance, and other orbital parameters. By studying the periods of planets, astronomers can make predictions about their behavior and gain insights into the workings of the solar system and the universe as a whole. Therefore, option a is correct.

To know more about planet, here

brainly.com/question/15524842

#SPJ4

through what potential difference should electrons be accelerated so that their speed is 1.2 % % of the speed of light when they hit the target?

Answers

The potential difference of the electron is 370V.

To determine the potential difference required to accelerate electrons to a speed of 1.2% of the speed of light, we can use the following equation:

v = √[(2qV)/m]

where:

v is the velocity of the electron

q is the charge of the electron

V is the potential difference

m is the mass of the electron

Since we are given the desired velocity of the electrons, we can rearrange the equation to solve for V:

V = (mv^2)/(2q)

We know the mass of an electron, which is approximately 9.11 × 10^-31 kg. We also know the charge of an electron, which is -1.6 × 10^-19 C.

So, plugging in the values, we get:

V = [(9.11 × 10^-31 kg) × (0.012c)^2] / (2 × -1.6 × 10^-19 C)

where "c" is the speed of light.

Simplifying and solving for V, we get:

V = 370 V

Therefore, electrons should be accelerated through a potential difference of 370 V so that their speed is 1.2% of the speed of light when they hit the target.

To know more about "potential difference": https://brainly.com/question/24142403

#SPJ11

speed camera uses electromagnetic radiation, with a wavelength 26 mm, to identify cars moving at 60 km/h or faster away from the camera. the cars act as the use of radiation, reflecting the radiation from the camera. what range of frequency decrease identifies cars above the speed limit?

Answers

The range of frequency decrease that identifies cars above the speed limit is determined by the wavelength of the electromagnetic radiation used by the high-speed camera. Since the wavelength of the radiation is 26 mm, the frequency of the radiation must be 11.54 GHz.

Thus, any frequency decrease below 11.54 GHz will identify cars moving at 60 km/h or higher. This works because, as the car moves away from the camera, it reflects some of the radiation instead of all of it.

This reduces the frequency of the radiation, and any reduction below 11.54 GHz indicates that the car is moving faster than the speed limit. This ability of the camera to identify cars moving at or above the speed limit is essential for safety and enforcement of traffic laws.

Know more about electromagnetic radiation here

https://brainly.com/question/4185163#

#SPJ11

find the tension in an elevator cable if the 1 500-kg elevator is descending with an acceleration of 2.8 m/s2, downward.

Answers

The tension in an elevator cable if the 1 500-kg elevator is descending with an acceleration of 2.8 m/s² is 18,900 N.

The tension in the elevator cable, for net force is :

[tex]F_{net} = ma[/tex]

where [tex]F_{net}[/tex] is the net force,

m is the mass of the elevator, and

a is the acceleration of the elevator.

Since the elevator is descending, we can take the upward direction as positive.

The forces acting on the elevator are the force of gravity (mg) and

the tension in the cable (T), where T is in the upward direction.

Therefore, the net force acting on the elevator is:

[tex]F_{net}= T - mg[/tex]

where g is the acceleration due to gravity (9.8 m/s²).

Substituting the given values into the equation:

[tex]F_{net} = T - mg[/tex]

[tex]ma = T - mg[/tex]

Rearranging the equation, we get:

[tex]T = ma + mg[/tex]

where T is the tension in the cable,

m is the mass of the elevator,

a is the acceleration of the elevator, and

g is the acceleration due to gravity.

Also Substituting the given values:

T = (1500 kg) × (2.8 m/s²) + (1500 kg) × (9.8 m/s²)

T = 4200 N + 14700 N

T = 18900 N

Therefore, the tension in the elevator cable is 18,900 N when the 1,500-kg elevator is descending with an acceleration of 2.8 m/s², downward.

To practice more questions about 'tension':

https://brainly.com/question/26116693

#SPJ11

a box is given a push so that it slides across the floor. how far will it go, given that the coefficient of kinetic friction is 0.11 and the push imparts an initial speed of 3.8 m/s ?

Answers

The box will slide a distance of 6.96 m before coming to a stop due to the force of kinetic friction.

To determine how far the box will slide on the floor after it is given a push with an initial speed of 3.8 m/s, we need to use the equations of motion for constant acceleration. The force of kinetic friction acting on the box will cause it to decelerate, eventually coming to a stop.

The distance traveled by the box can be found using the equation:

d = [tex](v_i^2 - v_f^2) / (2 * a)[/tex]

where d is the distance traveled, v_i is the initial speed, v_f is the final speed (which is zero since the box comes to a stop), and a is the deceleration caused by the force of kinetic friction.

The deceleration can be found using the equation:

a = -F[tex]_friction / m[/tex]

where Ffriction is the force of kinetic friction and m is the mass of the box.

Assuming a mass of 5 kg for the box and a coefficient of kinetic friction of 0.11, the force of kinetic friction can be found using the equation:

F_friction = friction coefficient * F_normal

where F_normal is the normal force (equal to the weight of the box) and the friction coefficient is a dimensionless quantity that depends on the nature of the contact surface.

The weight of the box is:

Fweight = m * g

where g is the acceleration due to gravity (9.81 m/s²).

Therefore, the force of kinetic friction is:

F_friction = (0.11) * (5 kg * 9.81 m/s²) = 5.40 N

Using the equation for deceleration, we get:

a = -Ffriction / m = -(5.40 N) / (5 kg) = -1.08 m/s²

Finally, we can use the equation for distance traveled to find the distance the box will slide:

d = [tex](v_i^2 - v_f^2) / (2 * a)[/tex] =[tex](3.8 m/s)^2 / (2 * 1.08 m/s^2)[/tex] = 6.96 m

Learn more about kinetic: https://brainly.com/question/26472013

#SPJ11

over the course of a half of a year the relative position of the sample star, as seen from earth, is seen to change by 0.400''. what is the parallax angle (p) in this case?\

Answers

Over the course of half of a year the relative position of the sample star, as seen from earth, is seen to change by 0.400''. The parallax angle in this case is: 0.400''

Given that the relative position of the sample star as seen from earth is seen to change by 0.400'' over the course of half of a year. We are to determine the parallax angle in this case. Parallax angle (p) can be defined as the angle between the baseline and the line of sight to the star. It is the angle between two lines drawn from the star to the Earth, separated by six months, and viewed at a right angle to the baseline.

It is measured in seconds of arc (or arcseconds), and it is usually too small to measure directly. The parallax angle can be calculated using the formula below: parallax angle (p) = (d/b)

where d is the distance from the Earth to the star and b is the baseline, which is half of the distance that the Earth moves in its orbit over six months, which is equal to 1 astronomical unit (AU).

Thus, using the given values, we can calculate the parallax angle as follows: [tex]p = (d/b) = (0.400/1) = 0.400''[/tex]

Thus, the parallax angle, in this case, is 0.400'' (arcseconds). Therefore, the relative position of a star as seen from Earth changes with the change in the Earth's position. The change in position helps to determine the distance from the Earth to the star using the parallax angle.

To know more about parallax angles refer here:

https://brainly.com/question/20296211#

#SPJ11

I need help with this

1)Hypothesis: what you expect

2)Aim:To determine

3) Apparatus/material

4)Variables
Controlled: Keep constant
Manipulated-Change this
Reporting -What you expect to change

5) Expected results

6) Limitations

7)Source of errors

8)Precaution ​

Answers

Answer:

Explanation

What exactly do you need? More context to this problem would help me in helping you!

mountain bike tires have large, knob-like treads. these tires are useful on steep slopes because they responses increase friction. increase friction. carry heavy weights. carry heavy weights. increase the stopping distance. increase the stopping distance. prevent braking of the bicycle.

Answers

The correct option for the given statement is the first option i.e., they increase friction.

Mountain bike tires have large, knob-like treads. These tires are useful on steep slopes because they increase friction. Friction is a force that opposes motion between two surfaces that are in contact, and this force can be helpful when trying to stop or slow down the bike.

The treads help the tire to grip the surface better, which increases friction and makes it easier to control the bike. Additionally, mountain bike tires are wider than road bike tires, which also increases their contact area with the ground and thus, the friction.

They are also designed to withstand more abuse than road bike tires, as they are meant to handle rougher terrain, so they are less likely to puncture or wear down quickly. Hence, it can be concluded that mountain bike tires are useful on steep slopes because they increase friction.

To learn more about friction:

https://brainly.com/question/13000653#
#SPJ11

a pen placed 13.2 cm from a concave spherical mirror produces a real image 14.0 cm from the mirror. a) what is the focal length of the mirror? answer in units of cm.

Answers

The focal length of the mirror is  8.57 cm.

The focal length is the distance between the mirror and the focal point.

For a convex lens the focal point is that point at which parallel rays will be focused after passing thru the lens.

For a convex lens, which is thicker at the center and thinner at the edges, the focal point is the point where parallel rays of light that pass through the lens converge.

When parallel rays of light pass through a convex lens, they are refracted, or bent, towards the center of the lens due to the lens's shape and refractive index.

As a result, these rays of light converge at a point on the opposite side of the lens from where the light entered, and this point is known as the focal point of the lens.

The distance between the convex lens and its focal point is called the focal length. It is usually denoted by the symbol 'f' and is an important parameter in lens design and optical systems.

The focal length of a convex lens determines how much the lens will bend or refract light and how much the light will converge at the focal point.

A lens with a shorter focal length will bend light more and converge it at a closer focal point, while a lens with a longer focal length will bend light less and converge it at a farther focal point.

The focal length of the concave spherical mirror can be calculated using the formula: 1/f = (1/p) + (1/q),

where p is the distance from the object to the mirror (13.2 cm) and q is the distance from the image to the mirror (14.0 cm).

Therefore, the focal length of the mirror is 8.57 cm.

To know more about focal length, refer here:

https://brainly.com/question/29870264

#SPJ11

given two identical iron bars, one of which is a permanent magnet and the other unmagnetized, how could you tell which is which by using only the two bars?

Answers

There are two identical iron bars, one of which is a permanent magnet and the other unmagnetized. We can identify that: when the magnetized bar is brought near the other bar, it will stick to it, indicating that it is magnetized. The bar that does not stick is unmagnetized.

Iron bars are used to make permanent magnets by a process called magnetization. Permanent magnets are composed of atoms and aligned electrons that have magnetic properties. The other bar that is not magnetized does not have aligned electrons, so it will not attract other magnets as a magnetized bar would.

The direction of a magnetic field will change when a magnet is brought near it. The North Pole will attract the South Pole, and they will come together. The North Pole will repel the North Pole, and the South Pole will repel the South Pole. The magnetized bar will be attracted to the unmagnetized bar, and the unmagnetized bar will not be attracted to the magnetized bar.

As a result, when the magnetized bar is brought near the other bar, it will stick to it, indicating that it is magnetized. The bar that does not stick is unmagnetized. Thus, with the aid of two bars, one magnetized and the other unmagnetized, we can determine which is which.

To know more about permanent magnets refer here:

https://brainly.com/question/6458972#

#SPJ11

a standing wave experiment is performed to determine the speed of waves in a rope. the rope makes 36 complete vibrational cycles in exactly one minute. if the wavelength is 3 m, what is the speed (in m/s) of the wave?

Answers

The speed of the wave is 1.8 m/s.

The speed of a wave in a rope is equal to the wavelength divided by the time it takes for a single cycle. In this experiment, the wavelength is 3 m and the time for a single cycle is 1/36 min, so the speed is:

Speed = \frac{3 \text{m}}{\frac{1 \text{min}}{36}} = \frac{3 \times 36 \text{m}}{1 \text{min}} = 108 \text{m/s}

A standing wave experiment is performed to determine the speed of waves in a rope. The rope makes 36 complete vibrational cycles in exactly one minute. If the wavelength is 3 m, The formula for wave speed (v) is given by v = λfWhere,v = Wave speedλ = Wavelength f = Frequency. Since the rope makes 36 complete vibrational cycles in exactly one minute or 60 seconds, its frequency is give by f = Number of cycles/time= 36/60= 0.6 Hz. Substituting the values of wavelength and frequency, we get

v = λf= 3 m × 0.6 Hz= 1.8 m/s

To learn more about Speed :

https://brainly.com/question/3004254

#SPJ11

skateboarder begins down a ramp at a speed of 1.0 m/s. after 3 seconds, her speed has increased to 4.0 m/s. calculate her acceleration

Answers

The acceleration of the skateboarder while going down the ramp is found to be 1m/s².

The skateboarder began to go down the ramp and that at a speed of 1.0m/s. After 3 seconds it is found that the speed of the skater is increased to 4.0m/s.

We can use the equation,

V = U+at, where, V is final speed, a is acceleration, t is time and U is initial speed.

Putting all the values,

4 = 1 +a(3)

a = 3/3

a = 1m/s²

The acceleration of the skateboarder is 1m/s².

To know more about acceleration, visit,

https://brainly.com/question/460763

#SPJ4

a long, straight wire carries a current of 8.60 a. an electron is traveling in the vicinity of the wire. at the instant when the electron is 4.50 cm from the wire and traveling at a speed of 6.00 * 104 m>s directly toward the wire, what are the magnitude and direction (relative to the direction of the current) of the force that the magnetic field of the current exerts on the electron?

Answers

The magnitude and direction of the force that the magnetic field of the current exerts on the electron in a a long, straight wire is 1.96 x 10⁻¹⁸ N and direction of the force is opposite to the direction of the current.

The magnetic field of the current exerts a force on the electron of magnitude 6.072 x 10⁻¹³ N in a direction that is opposite to the direction of the current.

where

Current, I = 8.60 A

Distance of electron from wire, r = 4.50 cm = 0.045 m

Velocity of electron, v = 6.00 x 10^4 m/s

The force on the electron due to magnetic field of current-carrying wire is given by:

F = (μ * I * q) / (2 * π * r)

where μ is the magnetic permeability of free space and is equal to 4π x 10⁻⁷ Tm/A,

q is the charge of electron and is equal to -1.6 x 10⁻¹⁹ C, and

r is the distance between the electron and the wire.

Substituting the values, we get:

F = (4π x 10⁻⁷ Tm/A) * (8.60 A) * (-1.6 x 10⁻¹⁹ C) / (2 * π * 0.045 m)

F = -1.96 x 10⁻¹⁸ N.

The negative sign indicates that the direction of force is opposite to the direction of the current.

So, the magnitude of the force exerted by the magnetic field on the electron is 1.96 x 10⁻¹⁸ N, and the direction of the force is opposite to the direction of the current.

To practice more questions about the 'magnetic field':

https://brainly.com/question/26257705

#SPJ11

which satellite channel measures the temperature of the underlying surfaces (i.e., clouds, ocean, land)? group of answer choices visible infrared water vapor

Answers

Visible Infrared (IR) satellite channels measure the temperature of underlying surfaces. This includes clouds, oceans, and land.

IR channels work by detecting the amount of infrared radiation emitted from the Earth's surface. The intensity of the radiation is then converted into a digital number, which is displayed as a color on a satellite image. The higher the digital number, the warmer the surface temperature. This data can then be used to track changes in temperatures over time. The satellite channel that measures the temperature of the underlying surfaces is visible infrared. The surface temperature measurement is made possible by the difference in temperatures of objects in the infrared spectrum. An object's temperature and the level of radiation it emits have a direct correlation, and this is what visible infrared satellites use to take the temperature of the underlying surfaces. The visible infrared (VI) channel is used to estimate cloud cover and surface temperature. Infrared radiation from the surface of the earth is detected in this channel. The temperature of clouds, oceans, and land can be estimated using the visible infrared (VI) channel. It also provides data on how temperature changes with latitude and over time. Furthermore, the VI channel aids in the identification of cold and hot surfaces. Water vapor (WV) is another channel utilized in satellite imagery to observe the atmosphere's water vapor content. It enables meteorologists to forecast the occurrence of rainfall and other weather patterns. In general, satellite measurements assist in understanding Earth's weather and its impact on humans and the environment. These satellites help scientists to forecast severe weather, monitor weather changes over time, and analyze natural disasters. In addition, they assist in tracking the effects of climate change on the planet.

For more such questions on Satellites.

https://brainly.com/question/15168838#

#SPJ11

two long conducting cylindrical shells are coaxial and have radii of 20 mm and 80 mm. the electric potential of the inner conductor, with respect to the outer conductor, is 600 v. what is the maximum electric field magnitude between the cylinders? ( k

Answers

We can use the formula for electric field between two cylindrical conductors to calculate the maximum electric field magnitude between the cylinders:

E = (V ln(b/a))/d

where V is the potential difference between the conductors, ln is the natural logarithm, b and a are the radii of the outer and inner conductors, respectively, and d is the distance between the conductors.

Given:

V = 600 V

a = 20 mm = 0.02 m

b = 80 mm = 0.08 m

The distance between the conductors is the difference in their radii:

d = b - a = 0.08 m - 0.02 m = 0.06 m

The electric constant, k, is also needed:

k = 8.98755 × 10^9 N·m^2/C^2

Substituting these values into the formula, we get:

E = (V ln(b/a))/d

E = (600 V ln(0.08/0.02))/0.06

E = 3.5983 × 10^8 V/m or approximately 3.60 × 10^8 V/m

Therefore, the maximum electric field magnitude between the cylindrical conductors is approximately 3.60 × 10^8 V/m.

For more questions like electric field visit the link below:

https://brainly.com/question/17113616

#SPJ11

at what angle is the first-order maximum for 450-nm wavelength blue light falling on double slits separated by 0.0500 mm?

Answers

The first-order maximum for 450-nm wavelength blue light falling on double slits separated by 0.0500 mm is approximately 6.2°.


The angle of the first-order maximum refers to the angle at which the brightest interference pattern appears on a screen placed behind two closely spaced slits when illuminated with the blue light of 450-nm wavelength.

The angle is determined by the equation:

theta_m = (m*lambda)/d

where m is the order, lambda is the wavelength, and d is the slit separation.
theta_m = (1*450E-9 m)/0.0500 mm
theta_m = 6.2°

Thus, the first-order maximum for double slits of 0.0500 mm at 450 nm λ blue light is around 6.2°.

To know more about  first-order maximum click here:

https://brainly.com/question/14703717

#SPJ11

a ball is thrown upward from the ground with an initial speed of 35 m/s; at the same instant, another ball is dropped from a building 5.0 m high. after how long will the balls be at the same height?

Answers

The time taken by both balls to be at the same height is 1.02 seconds.

The time taken by two balls to be at the same heightGiven,Initial speed of the ball that is thrown upward from the ground, u = 35 m/s,Initial height of the ball that is dropped from a building, h = 5.0 m,Finding out the time taken by both balls to be at the same height,Time taken by ball that is thrown upward from the ground, t = ?

For the first ball (that is thrown upward from the ground), the acceleration, a = -9.8 m/s² (negative because it's going against the gravity).Using the formula of motion,S = ut + 1/2 at²where,S = height of the ball above the ground, t = time taken by the ball to reach that height, and u = initial speed of the ball that is thrown upward from the ground.

Here, h = S and u = 35 m/s, and a = -9.8 m/s². Then putting the values we get,h = ut + 1/2 at²5 = (35)t + 1/2 (-9.8)t²5 = 35t - 4.9t²----------------(1)Also, for the second ball (that is dropped from a building), the time taken to reach the ground can be found using the formula, h = 1/2gt². Here, h = 5.0 m.

Therefore,5 = 1/2 × (-9.8) × t²5 = -4.9t²t² = -5/-4.9t² = 1.02t = √1.02

Therefore, the time taken by both balls to be at the same height is 1.02 seconds.

Learn more about Speed

brainly.com/question/17661499

#SPJ11

when a knowledgeable amateur astronomer tells you that she has a 14-inch telescope, what does the number 14 refer to?

Answers

When a knowledgeable amateur astronomer tells you that she has a 14-inch telescope, the number 14 refers to the diameter of the telescope’s objective lens.

A telescope is a device used to view distant objects by utilizing electromagnetic radiation to either magnify their apparent size or gather more light than the human eye can. Telescopes are used for scientific, commercial, and amateur purposes. The telescope comprises an objective lens or mirror and an eyepiece to magnify the images created by the objective. Most telescopes have a viewfinder to make it simpler to aim the telescope precisely at the object of interest. They may also have a motorized mount to track celestial objects as they move across the sky.

Telescopes come in a variety of sizes, designs, and shapes and they range from large observatory telescopes to handheld amateur models. They are often classified into two types, reflecting and refracting telescopes and the size of a telescope is determined by the diameter of its objective lens or mirror. The bigger the diameter, the more light the telescope can collect, and the clearer the image. The diameter of the objective is the most significant aspect of a telescope when it comes to observing the heavens. For instance, a 14-inch telescope has an objective lens with a diameter of 14 inches, this large lens is capable of collecting a lot of light and providing clear images, making it a perfect tool for viewing the night sky.

Learn more about telescope at:

https://brainly.com/question/3841719

#SPJ11

each resistor is rated at 0.50 w w (maximum without overheating), what is the maximum voltage that can be applied across the whole network?

Answers

The maximum voltage that can be applied across the whole network is 1.28 V.

To calculate the maximum voltage that can be applied across the whole network, you need to apply Ohm's Law and power formula.

The equation for power is P = V²/R,

where P is power, V is voltage, and R is resistance.

Therefore, V = sqrt(P * R).

Given that each resistor is rated at 0.50 W, the power of the network is 2 x 0.50 W = 1 W.

Since the resistors are in parallel, the equivalent resistance can be calculated as follows:

1/R = 1/R1 + 1/R2 + 1/R3 + 1/R4 + 1/R5R = 1/(1/3 + 1/3 + 1/6 + 1/8 + 1/16)R = 1.6375 Ω

Therefore, the maximum voltage that can be applied across the whole network is V = sqrt(P * R) = sqrt(1 * 1.6375) = 1.28 V (approx).

Therefore, the maximum voltage that can be applied across the whole network is 1.28 V.

To know more about maximum voltage, refer here:

https://brainly.com/question/29359166#

#SPJ11

how much tension must a rope withstand if it is used to accelerate a 1410- kg k g car horizontally along a frictionless surface at 1.40 m/s2 m / s 2 ?

Answers

The amount of tension a rope must withstand if it is used to accelerate a 1410 kg car horizontally along a frictionless surface at 1.40 m/s² is 1974 N.

What is tension in physics?

Tension is the force that stretches or pulls something tightly. In physics, the term "tension" refers to the force that is transmitted through a string, cable, chain, or wire when it is pulled taut by forces acting on either end. The acceleration of the car is given as 1.40 m/s². This means that the force required to move the car is given as F = m × a. Where, F = force acting on the car M = mass of the car = 1410 kg.a = acceleration = 1.40 m/s²Therefore, F = 1410 × 1.40= 1974 N. The rope or cable used to pull the car must generate enough force to overcome the weight of the car and move it forward. The force of tension in the rope or cable required to move the car at the given acceleration is Ft = F= 1974 N.

Learn more about tension at https://brainly.com/question/24994188

#SPJ11

once body density is determined as with hydrostatic weighing and air displacement plethysmography, percent body fat can be calculated using

Answers

Once body density is determined as with hydrostatic weighing and air displacement plethysmography, percent body fat can be calculated using the Siri equation. Body density refers to the measurement of an individual's body mass. It is the mass of an individual's body divided by the volume of their body.

It is expressed in kilograms per cubic meter in SI units. Body density can be used to calculate body fat percentage. Body fat percentage, also known as adiposity index, is the amount of body fat present in an individual's body divided by their total body mass. Body fat is essential for proper functioning of the body, but it needs to be maintained in the right amount for overall health and well-being.

Percent body fat calculation using the Siri equation Once the body density is determined, percent body fat can be calculated using the Siri equation. The Siri equation is expressed as: Percent body fat = [(4.95/Body Density) - 4.50] x 100The Siri equation is an accurate way of calculating percent body fat. It uses body density as its basis for measurement.

Body density is determined by measuring the mass and volume of the individual's body. Hydrostatic weighing and air displacement plethysmography are the two most common methods for determining body density. These methods are accurate and reliable for body density measurement.

To know more about Body density  refer here:

https://brainly.com/question/4211696#

#SPJ11

a certain truck has twice the mass of a car. both are moving at the same speed. if the kinetic energy of the truck is k, what is the kinetic energy of the car?

Answers

The kinetic energy of the car is also (m_car) (v_car)², which is half the kinetic energy of the truck.

What is kinetic energy?

The kinetic energy of an object is given by the equation:

KE = (1/2)mv²

where KE is the kinetic energy, m is the mass of the object, and v is the speed of the object.

Given that the truck has twice the mass of the car and both are moving at the same speed, we can write:

m_truck = 2m_car

v_truck = v_car

The kinetic energy of the truck is given as k. Therefore, we can write:

k = (1/2)(m_truck)(v_truck)²

Substituting the values of m_truck and v_truck, we get:

k = (1/2)(2m_car)(v_car)²

k = (m_car)(v_car)²

Therefore, the kinetic energy of the car is also (m_car)(v_car)², which is half the kinetic energy of the truck.

To know more about kinetic energy, visit:

https://brainly.com/question/15764612

#SPJ1

explain how apostivley charged object can be used to leave another metalic boject with a net negative charge

Answers

When an object acquires an electric charge, it gains either a positive or a negative charge. Positively charged objects can be used to leave another metallic object with a net negative charge. The process is known as charging by conduction.

The process of charging a conductor without touching it to the charging body but by bringing the charged body near the uncharged conductor is known as charging by conduction. A positively charged object can be used to leave another metallic object with a net negative charge by charging through conduction. It is possible because of the conservation of charges.

Charging through conduction involves the following steps: Bring a positively charged object closer to an uncharged metallic object. The positive object will transfer some of its electrons to the uncharged object because of its close proximity. The uncharged metallic object, after gaining electrons from the positively charged object, becomes negatively charged. The positive object loses electrons in the process and becomes less positively charged or sometimes negatively charged, depending on the situation.

When a positively charged object is brought near an uncharged metallic object, it gains electrons from the positive object, which creates a net negative charge in the metallic object. As a result, the metallic object is negatively charged due to the transfer of electrons from the positive object.

Learn more about Charging through conduction at https://brainly.com/question/11385146

#SPJ11

Other Questions
there are many different types of virtual teams. we can distinguish one from another by using two criteria: boundaries in membership and the nature of what is the pressure in a 22.0- l cylinder filled with 41.1 g of oxygen gas at a temperature of 331 k ? question 9: what is the total lifetime of the sun (up to the point when it becomes a whitedwarf and no longer supports fusion)? How does a lyric poem differ from other types of poetry you know about? Cite at least two examples of contrastingtypes of poetry as evidence. Your response should be at least 150 words. what is living things up to 25% of a cell's atp is used to run sodium-potassium pumps. without the resulting sodium and potassium gradients, neurons and muscles cannot fire properly. if a person is poisoned with cyanide, they cannot generate atp, and die within a few minutes. in relation to the sodium-potassium pump, what specific impact would cyanide have on concentrations across the cell membrane? the electric field 0.300 m from a very long uniform line of charge is 850 n/c . part a how much charge is contained in a section of the line of length 1.70 cm ? express your answer in coulombs. find the pka of an acid which has an initial concentration of 1.497 m for the acid and an equilibrium ph of 2.546. which of the following statistics is usually regarded as the best single measure of a society's economic well-being?a.the gdp deflatorb.the producer price indexc.gross domestic productd.the size of the government surplus Which option best describes the outer shell of the atoms inGroup 17 on this illustration of the Periodic Table?O They have 7 protons.OThey have 17 protons.OThey have 7 electrons.OThey have 17 electrons. 1 is subtracted from the square of a number. Represent the following sentence as an algebraic expression. Where a number is the letter X. You dont need to simplify. Please help. 1. Explain the connection between a codon and an amino acid.2. Briefly describe how the process of translation is strated.3. Suppose a tRNA molecule had the anticodon AGU. What amino acid would it carry?4. The DNA of eukaryotic cells has many copies of genes that code for rRNA molecules. Suggest a hypothesis to explain why a cell needs so many copies of these genes.5. Enzymes have shapes that allow them to bind to a substrate. Some types of RNA also form specific three-dimensional shapes. Why do you think RNA, but not DNA catalyzes biochemical reations? which of the following should you ask yourself when evaluating the effectiveness of your message? check all that apply. do i impress readers with complex and technical words and phrases? is it clear and polished? will it achieve my purpose? how successful will the message be? which policy requires an agent to register with the national association of security steelers nasd before selling which of the following statements is true of segregation? group of answer choices complete segregation is a frequent phenomenon. segregation by race, ethnicity, and religion occurs solely in the u.s. intergroup contact is highly unlikely to occur in most segregated societies. generally, the dominant group imposes segregation on a subordinate group. the chromosome pairs line up in the center of the cell is called (A) prophase (b)mitosis (c)meiosis l (D)meiosis ll in what way is the social cognitive perspective on personality similar to the humanistic perspective on personality? Which two of these items were requirements that the Berlin Conference imposed on European nations claiming colonies in Africa? Where are there examples symbolism in The Ballad Of Ira Hayes ? Provide verse number. mention 5 floor activities in gymnastic