The right-hand rule, which is a convention for identifying the direction of the force on a current or a moving charged positively charged particle, has several correct versions. Which one of the descriptions below is the right-hand rule for the magnetic force exerted on a current or a moving charged particle recommended in this textbook?
A. Thumb of the right hand points in the direction of current or the velocity of the charged particle, the fingers in the direction of B, and the force (F) is directed perpendicular to the right hand palm.
B. Keeping your right hand flat, point your thumb in the direction of the current or the velocity of the charged particle, the remaining four fingers perpendicular to the thumb in the direction of magnetic field. The magnetic force, as the result of the magnetic field on the current, is the direction your palm is facing.
C. Using your right hand, point your thumb in the direction of the current or the velocity of the charged particle, your fingers in the direction of magnetic field, and your palm points in the direction of the cross-product.
D. Using your right-hand, point your index finger in the direction of the current or the velocity of the charged particle. Point your middle finger in the direction of the magnetic field. Your thumb now points in the direction of the magnetic force.
E. Using the right hand, the direction of the thumb is the direction of the force, the direction of the index finger indicates the direction of the magnetic field, and the direction of the middle finger is the direction of the electric current. Submit

Answers

Answer 1

Answer:

B. Keeping your right hand flat, point your thumb in the direction of the current or the velocity of the charged particle, the remaining four fingers perpendicular to the thumb in the direction of magnetic field. The magnetic force, as the result of the magnetic field on the current, is the direction your palm is facing.

Explanation:

This is the Fleming's right hand rule, which was stated to explain the relationship or induction ability of the magnetic field, current or velocity of charged particles and magnetic force. These three variables are held mutually perpendicularly to one another.

The most suitable description of the right-hand rule is option B which clarifies the perpendicular mutual relationship of the thumb in the direction of the current or the velocity of the charged particle, the remaining four fingers perpendicular to the thumb in the direction of magnetic field. The magnetic force, as the result of the magnetic field on the current, is the direction your palm is facing.


Related Questions

Two protons are released from rest, with only the electrostatic force acting. Which of the following statements must be true about them as they move apart? (There could be more than one correct choice.)
A. Their electric potential energy keeps decreasing.
B. Their acceleration keeps decreasing.
C. Their kinetic energy keeps increasing.
D. Their kinetic energy keeps decreasing.
E. Their electric potential energy keeps increasing.

Answers

Answer:

(A)

Explanation:

We know , electric potential energy between two charge particles of charges "q" and "Q" respectively is given by kqQ/r where r is the distance between them.

Since the two charged particles are moving apart, the distance between them (r) increases and thus electrical potential energy decreases.

At what frequency f, in hertz, would you have to move the comb up and down to produce red light, of wavelength 600 nm

Answers

Answer:

f = 500 x 10^12Hz

Explanation:

E=hc/wavelength

E=hf

hc/wavelength =hf

c/wavelength =f

f = 3 x 10^8 / 600 x 10^-9 = 500 x 10^12Hz

Two protons are released from rest, with only the electrostatic force acting. Which of the following statements must be true about them as they move apart? (There could be more than one correct choice.)a. Their electrical potential energy keeps decreasing.b. Their acceleration keeps decreasing.c. Their kinetic energy keeps increasing.d. Their kinetic energy keeps decreasing.e. Their electric potential energy keeps increasing.

Answers

Answer:

Explanation:

correct options

a ) Their electrical potential energy keeps decreasing

Actually as they move apart , their electrical potential energy decreases due to increase of distance between them and kinetic energy increases

so a ) option is correct

b ) Their acceleration keeps decreasing

As they move apart , their mutual force of repulsion decreases due to increase of distance between them so the acceleration decreases .

c ) c. Their kinetic energy keeps increasing

Their kinetic energy increases because their electrical potential energy decreases . Conservation of energy law will apply .

The moving apart should be true statements:

a. The electrical potential energy should be reduced.

b. The acceleration should be reduced.

c. The kinetic energy should be increased.

True statements related to moving apart:

At the time when the moving part, there is the reduction of the electric potential energy because there is a rise in the distance due to which the increment of the kinetic energy.  The reduction of the mutual force of repulsion because of increment in the distance due to this the acceleration should be reduced. There is the increase in the kinetic energy due to the reduction of the electrical potential energy. here the law of conversation of energy should be applied.

Learn more about energy here: https://brainly.com/question/10658188

In the circuit shown, the galvanometer shows zero current. The value of resistance R is :


 
A)  1 W
B)  2 W
C)  4 W
D)  9 W​

Answers

Answer:

its supposed to be (a) 1W

The tune-up specifications of a car call for the spark plugs to be tightened to a torque of 38N⋅m38N⋅m. You plan to tighten the plugs by pulling on the end of a 25-cm-long wrench. Because of the cramped space under the hood, you'll need to put at an angle of 120∘with respect to the wrench shaft. With what force must you pull?

Answers

Answer:

F= 175.5N

Explanation:

Given:

Torque which can also be called moment is defined as rotational equivalent of linear force. It is the product of the external force and perpendicular distance

torque of 38N⋅m

angle of 120∘

Torque(τ): 38Nm

position r relative to its axis of rotation: 25cm , if we convert to metre for consistency we have 0.25m

Angle: 120°

To find the Force, the torque equation will be required which is expressed below

τ = Frsinθ

We need to solve for F, if we rearrange the equation, we have the expression below

F= τ/rsinθ

Note: the torque is maximum when the angle is 90 degrees

But θ= 180-120=60

F= 38/0.25( sin(60) )

F= 175.5N

A dentist using a dental drill brings it from rest to maximum operating speed of 391,000 rpm in 2.8 s. Assume that the drill accelerates at a constant rate during this time.
(a) What is the angular acceleration of the drill in rev/s2?
rev/s2
(b) Find the number of revolutions the drill bit makes during the 2.8 s time interval.
rev

Answers

Answer:

a

    [tex]\alpha = 2327.7 \ rev/s^2[/tex]

b

   [tex]\theta = 9124.5 \ rev[/tex]

Explanation:

From the question we are told that

    The maximum  angular   speed is  [tex]w_{max} = 391000 \ rpm = \frac{2 \pi * 391000}{60} = 40950.73 \ rad/s[/tex]

     The  time  taken is  [tex]t = 2.8 \ s[/tex]

     The  minimum angular speed is  [tex]w_{min}= 0 \ rad/s[/tex] this is because it started from rest

     

Apply the first equation of motion to solve for acceleration we have that

       [tex]w_{max} = w_{mini} + \alpha * t[/tex]

=>     [tex]\alpha = \frac{ w_{max}}{t}[/tex]

substituting values

       [tex]\alpha = \frac{40950.73}{2.8}[/tex]

       [tex]\alpha = 14625 .3 \ rad/s^2[/tex]

converting to [tex]rev/s^2[/tex]

  We have

           [tex]\alpha = 14625 .3 * 0.159155 \ rev/s^2[/tex]

           [tex]\alpha = 2327.7 \ rev/s^2[/tex]

According to the first equation of motion the angular displacement is  mathematically represented as

       [tex]\theta = w_{min} * t + \frac{1}{2} * \alpha * t^2[/tex]

substituting values

      [tex]\theta = 0 * 2.8 + 0.5 * 14625.3 * 2.8^2[/tex]

      [tex]\theta = 57331.2 \ radian[/tex]

converting to revolutions  

        [tex]revolution = 57331.2 * 0.159155[/tex]

        [tex]\theta = 9124.5 \ rev[/tex]

A turntable A is built into a stage for use in a theatrical production. It is observed during a rehearsal that a trunk B starts to slide on the turntable 15 s after the turntable begins to rotate. Knowing that the trunk undergoes a constant tangential acceleration of 0.3 m/s^2 , determine the coefficient of static friction between the trunk and the turntable

Answers

Answer:

μ = 0.03

Explanation:

In order for the trunk not to slide the frictional force between the turntable and the trunk must be equal to the unbalanced force applied on the trunk by the motion of the turntable. Therefore,

Unbalanced Force = Frictional Force

but,

Unbalanced Force = ma (Newton's second law of motion)

Frictional Force = μN = μW = μmg

Therefore,

ma = μmg

a = μg

μ = a/g

where,

μ = coefficient of static friction between the trunk and the turntable = ?

a = tangential acceleration of trunk = 0.3 m/s²

g = 9.8 m/s²

Therefore,

μ = (0.3 m/s²)/(9.8 m/s²)

μ = 0.03

if the current in the circuit decreases, what does that mean about the rate at which the charge(and voltage) change in a capacitor?
2. the exponent of the exponential function contains RC for the given circuit. who's is a constant. use units R and C to find units of RC. write ohms in terms of volts and amps and write farads in terms of volts and coulombs. Simplify
units of RC are__________

Answers

Answer:

`1. charge Q, on the capacitor increases, while the current will decrease

2. τ = t = secs

Explanation:

1. consider RC  of a circuit to be am external source

voltage across the circuit is given as

v =v₀(1 - [tex]e^{\frac{t}{τ} }[/tex])

where v = voltage

v₀ = peak voltage

t = time taken

τ= time constant

as the charge across the capacitor increases, current decreases

the charge across the circuit is given as

Q= Q₀(1 - [tex]e^{\frac{t}{τ} }[/tex])

charge Q is inversely proportional to the current I

hence the charge across the circuit increases

2. τ = RC

unit of time constant, τ,

= Ω × F

=[tex]\frac{V}{I}[/tex] ˣ [tex]\frac{C}{V}[/tex]

=[tex]\frac{C}{A}[/tex]

=[tex]\frac{C}{C/t}[/tex]

τ = t = secs

Two 15-Ω and three 25-Ω light bulbs and a 24 V battery are connected in a series circuit. What is the current that passes through each bulb?

Answers

Answer:

0.229A

Explanation:

Before we determine the amount of current in each bulb, we must first know that the same current flows in a series connected resistors. Since the Two 15-Ω and three 25-Ω light bulbs are connected in series, same current will flow in all of them.

According to Ohm's law, E = IRt where;

E is the supply voltage = 24V

I is the total current flowing in the circuit

Rt is the total equivalent resistance.

First, we need to calculate Rt.

Rt = 15Ω+15Ω+25Ω+25Ω+25Ω (Two 15-Ω and three 25-Ω light bulb in series)

Rt = 105Ω

From ohms law formula, I = E/Rt

I = 24/105

I = 0.229Amp

Since the total current in the circuit is 0.229A, therefore the amount of current that passes through each bulb is the same as the total current i.e  0.229A

The current that passes via each bulb is 0.229A

Ohm law:

According to the above law,

E = IRt

Here

E should be the supply voltage = 24V

I should be the total current flowing in the circuit

Rt should be the total equivalent resistance.

Now Rt should be

Rt = 15Ω+15Ω+25Ω+25Ω+25Ω

Rt = 105Ω

Now the current is

I = E/Rt

I = 24/105

I = 0.229Amp

Therefore, The current that passes via each bulb is 0.229A.

Learn more about current here: https://brainly.com/question/21075693

If the current flowing through a circuit of constant resistance is doubled, the power dissipated by that circuit will

Answers

Assuming that the voltage is constant, and the resistance was doubled, since I=V/R, the current through the circuit will be halved. As P=IV, with the same voltage and halved current, the power dissipated by the circuit will be halved

g Question 11 pts Consider two masses connected by a string hanging over a pulley. The pulley is a uniform cylinder of mass 3.0 kg. Initially m1 is on the ground and m2 rests 2.9 m above the ground. After the system is released, what is the speed of m2 just before it hits the ground? m1= 30 kg and m2= 35 kg Group of answer choices 2.1 m/s 1.4 m/s 9.8 m/s 4.3 m/s 1.9 m/s

Answers

Answer:

The speed of m2 just before it hits the ground is 2.1 m/s

Explanation:

mass on the ground m1 = 30 kg

mass oat rest at the above the ground m2 = 35 kg

height of m2 above the ground =2.9 m

Let the tension on the string be taken as T

for the mass m2 to reach the ground, its force equation is given as

[tex]m_{2} g - T = m_{2}a[/tex]    ....equ 1

where g is acceleration due to gravity = 9.81 m/s^2

and a is the acceleration with which it moves down

For mass m1 to move up, its force equation is

[tex]T - m_{1} g = m_{1} a[/tex]

[tex]T = m_{1}a + m_{1}g[/tex]

[tex]T = m_{1}(a + g)[/tex]    ....equ 2

substituting T in equ 1, we have

[tex]m_{2} g - m_{1}(a+g) = m_{2}a[/tex]

imputing values, we have

 [tex](35*9.81) - 30(a+9.81) = 35a[/tex]

 [tex]343.35 - 30a-294.3 = 35a[/tex]

[tex]343.35 -294.3 = 35a+ 30a[/tex]

[tex]49.05 = 65a[/tex]

a = 49.05/65 = 0.755 m/s^2

The initial velocity of mass m2 = u = 0

acceleration of mass m2 = a = 0.755 m/s^2

distance to the ground = d = 2.9 m

final velocity = v = ?

using Newton's equation of motion

[tex]v^{2}= u^{2} + 2ad[/tex]

substituting values, we have

[tex]v^{2}= 0^{2} + 2*0.755*2.9[/tex]

[tex]v^{2}= 2*0.755*2.9 = 4.379\\v = \sqrt{4.379}[/tex]

v = 2.1 m/s

A valuable statuette from a Greek shipwreck lies at the bottom of the Mediterranean Sea. The statuette has a mass of 10,566 g and a volume of 4,064 cm3. The density of seawater is 1.03 g/mL.

a. What is the weight of the statuette?
b. What is the mass of displaced water?
c. What is the weight of displaced water?
d. What is the buoyant force on the statuette?
e. What is the net force on the statuette?
f. How much force would be required to lift the statuette?

Answers

Answer:

A) W = 103.55 N

B) mass of displaced water = 4186 g

C) W_displaced water = 41.06 N

D) Buoyant force = 41.06 N.

E) ZERO

F) 62.54 N

Explanation:

We are given;

mass of statuette;m = 10,566 g = 10.566 kg

volume = 4,064 cm³

Density of seawater;ρ = 1.03 g/mL = 1.03 g/cm³

A) The dry weight of the statuette can be calculated as;

W = mg

So;

W = 10.556 × 9.81

W = 103.55 N

B) Mass of displaced water is calculated from;

Density = mass/volume

So, mass = Density × Volume

m = 1.03 × 4,064 = 4186 g

C) Weight of displaced water is given by;

W_displaced water = (m_displaced water) × g

W_displaced water = 4.186 kg × 9.81 m/s^2 = 41.06 N

D) The buoyant force is the same as the weight of the displaced water.

Thus, Buoyant force = 41.06 N.

E) The apparent weight of the statuette is calculated from;

Apparent weight = Dry weight - Weight of displaced water

Apparent weight = 103.6 N - 41.06 N = 62.54 N. It is sitting on the bottom of the sea, so the sea floor is providing an opposite force that is equal but opposite the weight so that the net force on the statuette is zero. Since It has zero acceleration, in any direction, hence the net force on it is zero.

F. From E above, The Force required to lift the statuette = 62.54 N

The headlights of a car are 1.4 m apart. What is the maximum distance (in km) at which the eye can resolve these two headlights? Take the pupil diameter to be 0.30 cm. (Assume the average wavelength of visible light is 555 nm.)

Answers

Answer:

5.4x10^4km

Explanation:

See attached file

Four 50-g point masses are at the corners of a square with 20-cm sides. What is the moment of inertia of this system about an axis perpendicular to the plane of the square and passing through its center

Answers

Answer:

moment of inertia I ≈ 4.0 x 10⁻³ kg.m²

Explanation:

given

point masses = 50g = 0.050kg

note: m₁=m₂=m₃=m₄=50g = 0.050kg

distance, r, from masses to eachother = 20cm = 0.20m

the distance, d, of each mass point from the centre of the mass, using pythagoras theorem is given by

= (20√2)/ 2 = 10√2 cm =14.12 x 10⁻² m  

moment of inertia is a proportion of the opposition of a body to angular acceleration about a given pivot that is equivalent to the entirety of the products of every component of mass in the body and the square of the component's distance from the center

mathematically,

I = ∑m×d²

remember, a square will have 4 equal points

I = ∑m×d² = 4(m×d²)

I = 4 × 0.050 × (14.12 x 10⁻² m)²

I = 0.20 × 1.96 × 10⁻²

I =  3.92 x 10⁻³ kg.m²

I ≈ 4.0 x 10⁻³ kg.m²

attached is the diagram of the equation

Four equal masses m are located at the corners of a square of side L, connected by essentially massless rods. Find the rotational inertia of this system about an axis (a) that coincides with one side and (b) that bisects two opposite sides.

Answers

Answer:

Explanation:

a )

Moment of inertial of four masses about axis that coincides with one side :

Out of four masses . location of two masses will lie on the axis so their moment of inertia will be zero .

Moment of inertia of the two remaining masses

= m L² + m L²

= 2 mL²

b )

Axis that bisects two opposite sides

Each of the four masses will lie at a distance of L / 2 from this axis so moment of inertia of the four masses

= 4 x m x ( L/2 )²

= 4 x  mL² / 4

= m L² .

Calculate the wavelengths of the first five members of the Lyman series of spectral lines, providing the result in units Angstrom with precision one digit after the decimal point.

Answers

Answer:

Explanation:

The formula for hydrogen atomic  spectrum is as follows

energy of photon due to transition from higher orbit n₂ to n₁

[tex]E=13.6 (\frac{1}{n_1^2 } - \frac{1}{n_2^2})eV[/tex]

For layman series n₁ = 1 and n₂ = 2 , 3 , 4 ,   ...   etc

energy of first line

[tex]E_1=13.6 (\frac{1}{1^2 } - \frac{1}{2 ^2})[/tex]

10.2 eV

wavelength of photon = 12375 / 10.2 = 1213.2 A

energy of 2 nd line

[tex]E_2=13.6 (\frac{1}{1^2 } - \frac{1}{3 ^2})[/tex]

= 12.08 eV

wavelength of photon = 12375 / 12.08 = 1024.4 A

energy of third line

[tex]E_3=13.6 (\frac{1}{1^2 } - \frac{1}{4 ^2})[/tex]

12.75 e V

wavelength of photon = 12375 / 12.75 = 970.6 A

energy of fourth line

[tex]E_4=13.6 (\frac{1}{1^2 } - \frac{1}{5 ^2})[/tex]

= 13.056 eV

wavelength of photon = 12375 / 13.05 = 948.3 A

energy of fifth line

[tex]E_5=13.6 (\frac{1}{1^2 } - \frac{1}{6 ^2})[/tex]

13.22 eV

wavelength of photon = 12375 / 13.22 = 936.1 A

A ​46-ton monolith is transported on a causeway that is 3500 feet long and has a slope of about 3.7. How much force parallel to the incline would be required to hold the monolith on this​ causeway?

Answers

Answer:

2.9tons

Explanation:

Note that On an incline of angle a from horizontal, the parallel and perpendicular components of a downward force F are:

parallel ("tangential"): F_t = F sin a

perpendicular ("normal"): F_n = F cos a

At a=3.7 degrees, sin a is about 0.064 and with F = 46tons:

F sin a ~~ (46 tons)*0.064 ~~ 2.9tons

Also see attached file

The required force parallel to the incline to hold the monolith on this​ causeway will be "2.9 tons".

Angle and Force

According to the question,

Angle, a = 3.7 degrees or,

Sin a = 0.064

Force, F = 46 tons

We know the relation,

Parallel (tangential), [tex]F_t[/tex] = F Sin a

By substituting the values,

                                       = 46 × 0.064

                                       = 2.9 tons

Thus the response above is appropriate answer.

Find out more information about Force here:

https://brainly.com/question/25239010

A light ray in air strikes water at an angle of incidence equal to 40°. If the index of refraction for water is 1.33, what is the angle of refraction?

Answers

Answer:

The angle of refraction is 28.68°

Explanation:

Given data

angle of incidence, i=40°

angle of refraction,r = ?

index of refraction u=  1.33

applying the formula

[tex]u=\frac{ sin i}{ sin r}[/tex]

According to Snell's law, the incident, normal and refracted rays all act on the same point.

Substituting and solving for r we have.

[tex]1.33= \frac{sin (40)}{sin (r)} \\\\sin(40)= 1.33* sin(r)\\\0.642= 1.33* sin(r)[/tex]

divide both sides by 1.33 we have

[tex]sin(r)= \frac{0.642}{1.33} \\\sin(r)= 0.48\\\r= sin^-^10.48\\\r= 28.68[/tex]

r= 28.68°

The metal bar on the conducting rails is moving to the left. The magnitude of the uniform magnetic field is 0.80 Tesla. The magnetic field is directed out of the page. The length L is 0.95 m. The resistance R of the circuit is 3.60 Ω. (a) If the induced current needs to be 0.54 A, what should be the induced emf

Answers

Answer:

Explanation:

induced emf = ?

induced emf = induced current x resistance of the circuit

= .54 x 3.6

= 1.944 V

induced emf required = 1.944 V .

The core of an optical fiber has an index of refraction of 1.35 , while the index of refraction of the cladding surrounding the core is 1.21 . What is the critical angle θc for total internal reflection at the core‑cladding interface?

Answers

Answer:

The  critical angle is  [tex]\theta_c = \ 63.68^o[/tex]

Explanation:

From the question we are told that

   The refractive index of the core is  [tex]n_c = 1.35[/tex]

   The refractive index of the cladding  is [tex]n_s = 1.21[/tex]

Generally according to Snell's law

      [tex]\frac{sin i }{sin r } = \frac{n_s}{n_c }[/tex]

Here for total internal reflection the refractive angle is  [tex]r = 90^o[/tex] and  the critical angle is equal to the critical angle so  [tex]i = \theta_c[/tex]

      [tex]\frac{sin \theta_c }{sin (90) } = \frac{n_s}{n_c }[/tex]

substituting values

       [tex]\frac{sin \theta_c }{sin (90) } = \frac{1.21}{1.35 }[/tex]

       [tex]\theta_c = sin^{-1} [\frac{1.21}{1.35} ][/tex]

      [tex]\theta_c = \ 63.68^o[/tex]

Two forces act at a point in the plane. The angle between the two forces is given. Find the magnitude of the resultant force. forces of and ​newtons, forming an angle of

Answers

Answer:

F = 44.22 N

Explanation:

Let force 1, [tex]F_1=19\ N[/tex]

Force 2, [tex]F_2=32\ N[/tex]

The angle between forces, [tex]\theta=118^{\circ}[/tex]

We need to find the magnitude of the resultant force. It is based on the law of cosines. The formula is given by :

[tex]F^2=F_1^2+F_2^2-2AB\cos\theta\\\\F^2=(19)^2+(32)^2-2\times 19\times 32\times \cos(118)\\\\F=\sqrt{(19)^{2}+(32)^{2}-2\times19\times32\times\cos(118)}\\\\F=44.22\ N[/tex]

So, the magnitude of resultant force is 44.22 N.

Correct question: Two forces act on a point on the plane. The angle between the two forces is given. Find the magnitude of the resultant force. forces of 19 and 32 newtons, forming an angle of 118 degrees.

the magnitude of the resultant force is 28.53 N.

The resultant of the two vectors can be calculated using parallelogram theorem.

parallelogram theorem states that if two vectors are represented by the adjacent side of a parallelogram, the resultant of the vectors is the diagonal of the parallelogram drawn from the point of intersection of the vectors.

This can be expressed mathematically as

R² = P²+Q²-2PQcos(180-∅).............. Equation 1

Where R = resultant of the vectors, P and Q = the two vectors respectively, ∅ = angle between the vectors.

From the question,

Given: P = 19 N, Q = 32 N, ∅ = 118°

Substitute these values into equation 2

R² = 19²+32²-2×19×32cos(180-118)

R² = 361+1024-1216cos62°

R² = 1385-1216(0.4695)

R² = 1385-570.878

R² = 814.122

R = √(814.122)

R = 28.53 N

Hence, the magnitude of the resultant force is 28.53 N

Learn more about resultant force   here:https://brainly.com/question/21852571

A 5 kg block is sliding on a horizontal surface while being pulled by a child using a rope attached to the center of the block. The rope exerts a constant force of 28.2 N at an angle of \theta=θ = 30 degrees above the horizontal on the block. Friction exists between the block and supporting surface (with \mu_s=\:μ s = 0.25 and \mu_k=\:μ k = 0.12 ). What is the horizontal acceleration of the block?

Answers

Answer:

The horizontal acceleration of the block is 4.05 m/s².

Explanation:

The horizontal acceleration can be found as follows:

[tex] F = m \cdot a [/tex]

[tex] Fcos(\theta) - \mu_{k}N = m\cdot a [/tex]

[tex] Fcos(\theta) - \mu_{k}[mg - Fsen(\theta)] = m\cdot a [/tex]  

[tex] a = \frac{Fcos(\theta) - \mu_{k}[mg - Fsen(\theta)]}{m} [/tex]

Where:

a: is the acceleration

F: is the force exerted by the rope = 28.2 N

θ: is the angle = 30°

[tex]\mu_{k}[/tex]: is the kinetic coefficient = 0.12

m: is the mass = 5 kg

g: is the gravity = 9.81 m/s²

[tex] a = \frac{28.2 N*cos(30) - 0.12[5 kg*9.81 m/s^{2} - 28.2 N*sen(30)]}{5 kg} = 4.05 m/s^{2} [/tex]

Therefore, the horizontal acceleration of the block is 4.05 m/s².

I hope it helps you!

lock of mass m2 is attached to a spring of force constant k and m1 . m2. If the system is released from rest, and the spring is initially not stretched or com- pressed, find an expres- sion for the maximum displacement d of m2

Answers

Answer:

The maximum displacement of the mass m₂ [tex]= \frac{2(m_1-m_2)g}{k}[/tex]

Explanation:

Kinetic Energy (K) = 1/2mv²

Potential Energy (P) = mgh

Law of Conservation of energy states that total energy of the system remains constant.

i.e; Total energy before collision = Total energy after collision

This implies that: the gravitational potential energy lost by m₁ must be equal to sum of gravitational energy gained by m₂ and the elastic potential energy stored in the spring.

[tex]m_1gd = m_2gd+\frac{1}{2}kd^2\\\\m_1g = m_2g+\frac{1}{2}kd\\\\d = \frac{2(m_1-m_2)g}{k}[/tex]

d = maximum displacement of the mass m₂

An air-filled parallel-plate capacitor has plates of area 2.30 cm2 2 separated by 1.50 mm. The capacitor is connected to a 12.0-V battery. Find the value of its capacitance.

Answers

Answer:

[tex]1.357\times 10^{-12}[/tex]

Explanation:

Relevant Data provided

Area which indicates A = 2.3 cm^2 = 2.3 x 10^-4 m^2

Distance which indicates d = 1.50 x 10^-3 m

Voltage which indicates V = 12 V

According to the requirement, the computation of value of its capacitance is shown below:-

[tex]Capacitance, C = \frac{\epsilon oA}{D}[/tex]

[tex]= \frac{= 8.854\times 10^{-12}\times 2.3\times 10^{-4}}{(1.5 \times 10^{-3})}[/tex]

= [tex]1.357\times 10^{-12}[/tex]

Therefore for computing the capacitance we simply applied the above formula.

Consider a block of mass equal to 10kg sliding on an inclined plane of 30°, as shown in the figure below. The coefficient of kinetic friction between the block and the plane surface is c = 0.4 (a) Determine the value of the horizontal and vertical acceleration of the block. (b) If the block starts from rest in t=0s and when it is in the X=0 and Y=5m position, calculate what its horizontal and vertical position will be at the instant t=1s. (C) How long does the LM block take to reach the base of the tilted plane?

Answers

Answer:

(a) aₓ = 1.33 m/s² and aᵧ = -0.770 m/s²

(b) x = 0.665 m and y = 4.62 m

(c) 3.61 s

Explanation:

(a) There are two ways we can solve this.  The first way is to sum the forces in the x and y direction, then use the relation tan 30° = -aᵧ/aₓ, where aᵧ is the acceleration in the +y direction (up) and aₓ is the acceleration in the +x direction (right).

The second way is to sum the forces in the parallel and perpendicular directions to find the acceleration parallel to the incline, a.  Then, use the relations aᵧ = -a sin 30° and aₓ = a cos 30°.

Let's try the first method.  Sum of forces in the +y direction:

∑F = ma

N cos 30° + Nμ sin 30° − mg = maᵧ

N cos 30° + Nμ sin 30° − mg = -maₓ tan 30°

Sum of forces in the +x direction:

∑F = ma

N sin 30° − Nμ cos 30° = maₓ

Substituting:

N cos 30° + Nμ sin 30° − mg = -(N sin 30° − Nμ cos 30°) tan 30°

N cos 30° + Nμ sin 30° − mg = -N sin 30° tan 30° + Nμ sin 30°

N cos 30° − mg = -N sin 30° tan 30°

N (cos 30° + sin 30° tan 30°) = mg

N = mg / (cos 30° + sin 30° tan 30°)

N = (10 kg) (10 m/s²) / (cos 30° + sin 30° tan 30°)

N = 86.6 N

Now, solving for the accelerations:

N sin 30° − Nμ cos 30° = maₓ

aₓ = N (sin 30° − μ cos 30°) / m

aₓ = (86.6 N) (sin 30° − 0.4 cos 30°) / 10 kg

aₓ = 1.33 m/s²

N cos 30° + Nμ sin 30° − mg = maᵧ

aᵧ = N (cos 30° + μ sin 30°) / m − g

aᵧ = (86.6 N) (cos 30° + 0.4 sin 30°) / 10 kg − 10 m/s²

aᵧ = -0.770 m/s²

Now let's try the second method.

Sum of forces in the perpendicular direction:

∑F = ma

N − mg cos 30° = 0

N = mg cos 30°

Sum of forces in the parallel direction:

∑F = ma

mg sin 30° − Nμ = ma

mg sin 30° − mgμ cos 30° = ma

a = g (sin 30° − μ cos 30°)

a = (10 m/s²) (sin 30° − 0.4 cos 30°)

a = 1.536 m/s²

Solving for the accelerations:

aₓ = a cos 30°

aₓ = 1.33 m/s²

aᵧ = -a sin 30°

aᵧ = -0.770 m/s²

As you can see, the second method is faster and easier, but both methods will give you the same answer.

(b) In the x direction:

Given:

x₀ = 0 m

v₀ = 0 m/s

aₓ = 1.33 m/s²

t = 1 s

Find: x

x = x₀ + v₀ t + ½ at²

x = 0 m + (0 m/s) (1 s) + ½ (1.33 m/s²) (1 s)²

x = 0.665 m

In the y direction:

Given:

y₀ = 5 m

v₀ = 0 m/s

aᵧ = -0.770 m/s²

t = 1 s

Find: y

y = y₀ + v₀ t + ½ at²

y = 5 m + (0 m/s) (1 s) + ½ (-0.770 m/s²) (1 s)²

y = 4.62 m

(c) In the y direction:

Given:

y₀ = 5 m

y = 0 m

v₀ = 0 m/s

aᵧ = -0.770 m/s²

Find: t

y = y₀ + v₀ t + ½ at²

0 m = 5 m + (0 m/s) t + ½ (-0.770 m/s²) t²

t = 3.61 s

A parallel-plate capacitor in air has a plate separation of 1.31 cm and a plate area of 25.0 cm2. The plates are charged to a potential difference of 255 V and disconnected from the source. The capacitor is then immersed in distilled water. Assume the liquid is an insulator.
(a) Determine the charge on the plates before and after immersion.
before pC
after pC
(b) Determine the capacitance and potential difference after immersion.
Cf = F
ΔVf = V
(c) Determine the change in energy of the capacitor.
[ ] nJ

Answers

Answer:

a) before immersion

C = εA/d = (8.85e-12)(25e-4)/(1.31e-2) = 1.68e-12 F

q = CV = (1.68e-12)(255) = 4.28e-10 C

b) after immersion

q = 4.28e-10 C

Because the capacitor was disconnected before it was immersed, the charge remains the same.

c)*at 20° C

C = κεA/d = (80.4*)(8.85e-12)(25e-4)/(1.31e-2) = 5.62e-10 F

V = q/C = 4.28e-10 C/5.62e-10 C = 0.76 V

e)

U(i) = (1/2)CV^2 = (1/2)(1.68e-12)(255)^2 = 5.46e-8 J

U(f) = (1/2)(5.62e-10)(0.76)^2 = 1.62e-10 J

ΔU = 1.62e-10 J - 5.46e-8 J = -3.84e-8 J

An astronaut out on a spacewalk to construct a new section of the International Space Station walks with a constant velocity of 2.30 m/s on a flat sheet of metal placed on a flat, frictionless, horizontal honeycomb surface linking the two parts of the station. The mass of the astronaut is 71.0 kg, and the mass of the sheet of metal is 230 kg. (Assume that the given velocity is relative to the flat sheet.)

Required:
a. What is the velocity of the metal sheet relative to the honeycomb surface?
b. What is the speed of the astronaut relative to the honeycomb surface?

Answers

Answer:

Explanation:

Let the velocity of astronaut be u and the velocity of flat sheet of metal plate be v . They will move in opposite direction ,  so their relative velocity

= u + v = 2.3 m /s ( given )

We shall apply conservation of momentum law for the movement of astronaut and metal plate

mu  = M v where m is mass of astronaut , M is mass of metal plate

71 u = 230 x v

71 ( 2.3 - v ) = 230 v

163.3 = 301 v

v = .54 m / s

u = 1.76 m / s

honeycomb will be at rest  because honeycomb surface  is frictionless . Plate will slip over it . Over plate astronaut is walking .

a ) velocity of metal sheet relative to honeycomb will be - 1.76 m /s

b ) velocity of astronaut relative to honeycomb will be + .54 m /s

Here + ve direction is assumed to be the direction of astronaut .  

The intensity of sunlight at the Earth's distance from the Sun is 1370 W/m2. (a) Assume the Earth absorbs all the sunlight incident upon it. Find the total force the Sun exerts on the Earth due to radiation pressure. N (b) Explain how this force compares with the Sun's gravitational attraction.

Answers

Answer:

F= 3.56e22N

Explanation:

Using the force of radiation acting on the earth which is

force = radiation pressure x area = (intensity/c)xpi R^2

force = 1370W/m^2 x pi x( 6.37x10^6m)^2/3x10^8m/s

force = 5.82x10^8 N

But the sun's gravitational attraction means the magnitude of the solar gravitational force on earth: If that's the case, the answer is approx 10^22 N:

F=GMm/r^2

G=6.67x10^(-11)=6.67e-11

M=mass sun = 2x10^30kg=2e30

m=mass earth = 6x10^24kg

r=earth sun distance = 1.5x10^11m

F=(6.6e-11)(2e30)(6e24)/(1.5e11)^2 =

F= 3.56e22N

Which has more mass electron or ion?

Answers

an ion has more mass than an electron

As light shines from air to another medium, i = 26.0 º. The light bends toward the normal and refracts at 32.0 º. What is the index of refraction? A. 1.06 B. 0.944 C. 0.827 D. 1.21

Answers

Explanation:

It is given that,

Angle of incidence from air to another medium, i = 26°

The angle of reflection, r = 32°

We need to find the refractive index of the medium. The ratio of sine of angle of incidence to the sine of angle of reflection is called refractive index. It can be given by :

[tex]n=\dfrac{\sin i}{\sin r}\\\\n=\dfrac{\sin (26)}{\sin (32)}\\\\n=0.82[/tex]

So, the index of refraction is 0.82. Hence, the correct option is C.

Other Questions
Read and choose the verb in the correct tense to complete the sentence. Soy Elena. Todos los veranos, _________ a mi padrastro. A. veas B. vea C. ven D. vemos How many milliliters of a 0.250 MNaOHMNaOH solution are needed to completely react with 500. gg of glyceryl tripalmitoleate (tripalmitolein) The following are the weekly amounts of welfare payments made by the federal government to a sample of six families: $139, $136, $130, $136, $147, and $136. What is the range A city's population is currently 50,000. If the population doubles every 70 years, what will the population be 280 years from now? Find the common difference of the arithmetic sequence. 4, 10, 16, 22, . . . find the total number of terms.32,256,2048,16384,......,2 what is the capital of Vietnam? 2 lines connect to form a right angle. A third line extends between the 2 lines to form 2 angles which are labeled 1 and 2. Angles 1 and 2 are complementary and congruent. What is the measure of angle 1? 30 45 50 75 The award received by Richard ebright at age of 22 Explain Hertzspeung-Russell diagram relationship to stars life cycles Suppose that f(x)=4x+5. What is f^-1 (f^-1(9)) ? A ladder leaning against a wall makes a 35 angle with the ground. The foot of the ladder is 5 meters from the wall. What is the length of ladder? i will give brainliest and 50 points pls help ASP What would cause antibodies to attack the cells of the body? In the diagram of RST, which term describes point U? A.CircumcenterB.CentroidC.IncenterD.Orthocenter I need help for this problem! Carol received no points on an exam question but thinks she deserves some points back. Carol initially asked the teacher for all of the points for the question. The teacher refused but gave Carol a few more points. To get more points Carol used the ________ strategy to induce ________. Jonathan is a blind widower whose home is valued at $110,000. He is homesteaded and under 65. His School taxes are 10.23 mils, his county taxes 6.789 mils, and his city taxes are 8.78 mils. What are his annual taxes? The following set of ordered pairs represents a power inverse variation. Find the value of r given that k = 5. James Watson and Francis Crick are credited with discovering the structure of DNA. Which of the following characteristics of DNA did this discovery help explain? A How DNA passes on genetic information. B The amount of DNA in a chromosome. C The number of base pairs in a DNA molecule. D Why DNA exists in all living cells.