The population of a city can be modeled with a linear equation Y equals -80 X +3450 where X is the number of years after 2000 and why is the cities population by the description of the cities population based on equation

Answers

Answer 1

Answer:

retype that im not understanding .

Step-by-step explanation:


Related Questions

A city council consists of eight Democrats and eight Republicans. If a committee of six people is selected, find the probability of selecting two Democrats and four Republicans.

(Type answer a fraction Simplify your answer.)

Answers

Answer:

The  probability is  [tex]P[ D n R] = 0.196[/tex]

Step-by-step explanation:

  From the question we are told that

     The number of Democrats is  [tex]D = 8[/tex]

       The number of republicans is  [tex]R = 8[/tex]

The  number of ways of selecting selecting two Democrats and four Republicans.

         [tex]N = \left {D} \atop {}} \right. C_2 * \left {R} \atop {}} \right. C_1[/tex]

Where C represents combination

substituting values

           [tex]N = \left {8} \atop {}} \right. C_2 * \left {8} \atop {}} \right. C_1[/tex]

           [tex]N = \left {8} \atop {}} \right. C_2 * \left {8} \atop {}} \right. C_1 = \frac{8!}{(8-2)! 2!} * \frac{8! }{(8-4)! 1 !}[/tex]

=>        [tex]N = \left {8} \atop {}} \right. C_2 * \left {8} \atop {}} \right. C_1 = \frac{8!}{(6)! 2!} * \frac{8! }{(6)! 1 !}[/tex]

=>        [tex]N = \left {8} \atop {}} \right. C_2 * \left {8} \atop {}} \right. C_1 = \frac{8 * 7 * 6!}{(6)! 2!} * \frac{8*7 *6! }{(6)! 1 !}[/tex]

=>        [tex]N = \left {8} \atop {}} \right. C_2 * \left {8} \atop {}} \right. C_1 = \frac{8 * 7 }{ 2*1 } * \frac{8*7 }{ 1 *1 }[/tex]

=>      [tex]N = 1568[/tex]

The total number of ways of selecting the committee of six people is  

          [tex]Z = \left {D+R} \atop {}} \right. C_6[/tex]

substituting values

           [tex]Z = \left {8+8} \atop {}} \right. C_6[/tex]

            [tex]Z= \left {16} \atop {}} \right. C_6[/tex]

substituting values

             [tex]Z= \left {16} \atop {}} \right. C_6 = \frac{16! }{(16-6) ! 6!}[/tex]

           [tex]Z= \left {16} \atop {}} \right. C_6 = \frac{16 *15 *14 * 13 * 12 * 11 * 10! }{10 ! 6!}[/tex]

           [tex]Z= \left {16} \atop {}} \right. C_6 = \frac{16 *15 *14 * 13 * 12 * 11 }{6* 5 * 4 * 3 * 2 * 1}[/tex]

           [tex]Z= \left {16} \atop {}} \right. C_6 = 8008[/tex]

The probability of selecting two Democrats and four Republicans  is  mathematically  represented as

           [tex]P[ D n R] = \frac{N}{Z}[/tex]

substituting values

           [tex]P[ D n R] = \frac{1568}{8008}[/tex]

            [tex]P[ D n R] = 0.196[/tex]

   

FIRST ANSWER GETS BRAINLIEST!!!
How do you write 0.00696 in scientific notation?

Answers

Answer:

6.96x10^-3

Step-by-step explanation:

0.00696

We move the decimal point to between 6 and 9

since the number with the decimal point should be between 0 and 9.

Then we count the numbers.

6.96x10^-3.

Hope this helps. ❤❤❤

Answer: 6.96 * 10^(-3)

Step-by-step explanation:

In scientific notation, you multiply a number that has a value in the ones place and no value in the tens place by 10 raised to an exponent.

Hope it helps <3

Please help! Find the perimeter and total area of the composite shape below!

Answers

Answer:

Perimeter = 19.42 in and area = 26.13 in^2.

Step-by-step explanation:

The perimeter = 2 * 5 + length of the semicircle

= 10 * 3.14 * 3

= 19.42 in.

Total area = area of the semicircle + area of the triangle

= 1/2 * 3.14 * 3^2 + 3 * 4

= 26.13 in^2.

A local Internet provider wants to test the claim that the average time a family spends online on a Saturday is at least 7 hours. To test this claim, the Internet provider randomly samples 30 households and finds that these families' mean number of hours spent on the Internet on a Saturday was 6 hours with a standard deviation of 1.5 hours. At a level of significance of 0.05, can the Internet provider's claim be supported?
A) Fail to Reject the Null Hypothesis
B) Reject the Null Hypothesis
C) Reject The Alternative Hypothesis
D) Fail to Reject the Alternative Hypothesis
E) Accept the Null Hypothesis
F) Accept the Alternative Hypothesis

Answers

Answer:

A) Fail to Reject the Null Hypothesis

Step-by-step explanation:

Given that:

A local Internet provider wants to test the claim that the average time a family spends online on a Saturday is at least 7 hours.

sample size = 30

sample mean [tex]\bar x[/tex] = 6

standard deviation [tex]\sigma[/tex] = 1.5

level of significance ∝ = 0.05

The null hypothesis and the alternative hypothesis can be computed as:

[tex]\mathbf{ H_o: \mu \leq 7}[/tex]

[tex]\mathbf{ H_i: \mu \geq 7}[/tex]

The test statistic  can be computed as:

[tex]z = \dfrac{\bar x - \mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

[tex]z = \dfrac{6 -7} {\dfrac{1.5}{\sqrt {30}}}[/tex]

[tex]z = \dfrac{-1} {\dfrac{1.5}{5.477}}}[/tex]

[tex]z = \dfrac{-5.477} {1.5}[/tex]

z = -3.65

Given that ;

level of significance of 0.05;

z = -3.65

degree of freedom = 30 -  1 = 29

The p-value = P([tex]t_{29}[/tex] > - 3.65)

= 0.9998

Decision Rule: Reject [tex]H_o[/tex] if p-value is less than the level of significance

But since the p -value is greater than the level of significance, we conclude that There is no enough evidence to support the  Internet provider  claim, Therefore;

Fail to Reject the Null Hypothesis

a rectangle is three times as long as it is widen. if it perimeter is 56cm, find the width of the rectangle

Answers

Hi there! :)

Answer:

w = 7 cm.

Step-by-step explanation:

Given:

P = 56

Use the formula P = 2l + 2w to solve for the perimeter of the rectangle.

Let w = width, and

   

3w = length

Plug these into the equation:

56 = 2(3w) + 2(w)

56 = 6w + 2w

Combine like terms:

56 = 8w

Divide both sides by 8:

w = 7 cm.

The width of rectangle is 7 cm.

If the 2nd and 5th terms of a
G.P are 6 and 48 respectively,
find the sum of the first four
terms​

Answers

Answer:

45

Step-by-step explanation:

The n th term of a GP is

[tex]a_{n}[/tex] = a[tex]r^{n-1}[/tex]

where a is the first term and r the common ratio

Given a₂ = 6 and a₅ = 48, then

ar = 6 → (1)

a[tex]r^{4}[/tex] = 48 → (2)

Divide (2) by (1)

[tex]\frac{ar^4}{ar}[/tex] = [tex]\frac{48}{6}[/tex] , that is

r³ = 8 ( take the cube root of both sides )

r = [tex]\sqrt[3]{8}[/tex] = 2

Substitute r = 2 into (1)

2a = 6 ( divide both sides by 2 )

a = 3

Thus

3, 6, 12, 24 ← are the first 4 terms

3 + 6 + 12 + 24 = 45 ← sum of first 4 terms

What is the measure of o?

Answers

Answer:

2π radians

Step-by-step explanation:

The test statistic of zequalsnegative 3.43 is obtained when testing the claim that pless than0.39. a. Using a significance level of alphaequals0.05​, find the critical​ value(s). b. Should we reject Upper H 0 or should we fail to reject Upper H 0​?

Answers

Answer:

a

  [tex]z_t = -1.645[/tex]

b

 We should reject the Upper  [tex]H_o[/tex]

Step-by-step explanation:

From the question we are told that

   The test statistics is     [tex]t_s = -3.43[/tex]

     The probability is   [tex]p < 0.39[/tex]

      The level of significance is [tex]\alpha = 0.05[/tex]

Now looking at the probability we can deduce that this is a left tailed test

The  second step to take is to obtain the critical value of [tex]\alpha[/tex] from the critical value table  

    The value  is  

               [tex]t_ {\alpha } = 1.645[/tex]

Now  since this  test is  a  left tailed test  the critical value will be

               [tex]z_t = -1.645[/tex]

This because we are considering the left tail of the normal distribution curve

 Now  since the test statistics falls within the  critical values the Null hypothesis is been rejected

A lottery game has balls numbered 1 through 21. What is the probability of selecting an even numbered ball or an 8? Round to nearest thousandth

Answers

Answer: 0.476

Step-by-step explanation:

Let A = Event of choosing an even number ball.

B = Event of choosing an 8 .

Given, A lottery game has balls numbered 1 through 21.

Sample space: S= {1,2,3,4,5,6,7,8,...., 21}

n(S) = 21

Then, A= {2,4,6,8, 10,...(20)}

i.e. n(A)= 10

B= {8}

n(B) = 1

A∪B = {2,4,6,8, 10,...(20)} = A

n(A∪B)=10

Now, the probability of selecting an even numbered ball or an 8 is

[tex]P(A\cup B)=\dfrac{n(A\cup B)}{n(S)}[/tex]

[tex]=\dfrac{10}{21}\approx0.476[/tex]

Hence, the required probability =0.476

helppppppppppppp pleaseeeeeeeeeeeeee

Answers

Answer:

work is shown and pictured

Shawn has 25 coins, all nickels and dimes. The total value is $2.00. How many of each coin does he have ?

Answers

Answer:

[tex]\boxed{15 \ dime \ and \ 10 \ nickel \ coins}[/tex]

Step-by-step explanation:

1 dime = 10 cents

1 nickel = 5 cents

So,

If there are 15 dimes

=> 15 dimes = 15*10 cents

=> 15 dimes = 150 cents

=> 15 dimes = $1.5

Rest is $0.5

So, for $0.5 we have 10 nickels coins

=> 10 nickels = 10*5

=> 10 nickels = 50 cents

=> 10 nickel coins = $0.5

Together it makes $2.00

please help all i need is the slope in case the points are hard to see here they are problem 1. (-2,2) (3,-3) problem 2. (-5,1) (4,-2) problem 3. (-1,5) (2,-4)

Answers

Answer: 1. [tex]-\dfrac{5}{6}[/tex]  2. [tex]-\dfrac{1}{3}[/tex] . 3. [tex]-3[/tex]

Step-by-step explanation:

Formula: Slope[tex]=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

1. (-2,2) (3,-3)

Slope [tex]=\dfrac{-3-2}{3-(-2)}[/tex]

[tex]=\dfrac{-5}{3+2}\\\\=\dfrac{-5}{6}[/tex]

Hence, slope of line passing through  (-2,2) (3,-3) is [tex]-\dfrac{5}{6}[/tex] .

2. (-5,1) (4,-2)

Slope [tex]=\dfrac{-2-1}{4-(-5)}[/tex]

[tex]=\dfrac{-3}{4+5}\\\\=\dfrac{-3}{9}\\\\=-\dfrac{1}{3}[/tex]

Hence, slope of line passing through  (-2,2) and (3,-3) is [tex]-\dfrac{1}{3}[/tex] .

3. (-1,5) (2,-4)

Slope [tex]=\dfrac{-4-5}{2-(-1)}[/tex]

[tex]=\dfrac{-9}{2+1}\\\\=\dfrac{-9}{3}\\\\=-3[/tex]

Hence, slope of line passing through (-1,5) and (2,-4) is -3.

if ade has 23hand bag and he sells one for 409$ and he sells 22 for toby what will be the amount​

Answers

Step-by-step explanation:

Hello there!

Its simple,

Given that, Ade had 23 hand bags.

selling price of each bag=$409

total sold bags= 22.

now, total amount he got was = no.of sold bag×sp of each bag.

so, total amount = 22×$409

=$8998.

Therefore, he has $ 8998 now.

Hope it helps...

Let x and y be real numbers satisfying 2/x=y/3=x/y Determine the value of x^3

Answers

Answer:

64/27

Step-by-step explanation:

If  x and y be real numbers satisfying 2/x=y/3=x/y, then any two of the equation are equated as shown;

2/x = y/3 ... 1 and;

y/3 = x/y... 2

From equation 1, 2y = 3x ... 3

and from equation 2; y² = 3x ... 4

Equating the left hand side of equation 3 and 4 since their right hand sides are equal, we will have;

2y = y²

2 = y

y = 2

Substituting y = 2 into equation 3 to get the value of x;

2y = 3x

2(2) = 3x

4 = 3x

x = 4/3

The value of x³ will be expressed as (4/3)³ = 4*4*4/3*3*3 = 64/27

a.Find the L.C.M of 18, 40, and 75.

Answers

Answer:

1800

Step-by-step explanation:

Hello,

First of all we need to find the prime factorisation of the numbers.

18 = 2 * 3 * 3

40 = 2 * 2 * 2 * 5

75 = 3 * 5 * 5

It means that the LCM should have 5 * 5 , 2 * 2 * 2 and 3 * 3

Then LCM = 3 * 3 * 2 * 2 * 2 * 5 * 5 = 1800

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

Answer:

1800

Step-by-step explanation:

First of all we need to find the prime factorisation of the numbers.

18 = 2 × 3 × 3 or 2 × 3²

40 = 2 × 2 × 2 × 5 or 2³ × 5

75 = 3 × 5 × 5 or 5² × 3

→ Now find the number that appear twice or more and write them down

3 and 3 from 18

2, 2 and 2 from 40

5 and 5 from 75

→ Now multiply all of these numbers together

3 × 3 × 2 × 2 × 2 × 5 × 5 = 3² × 2³ × 5² = 1800

F(n)=6.5n+4.5 find the 5th term of the sequence defined by the given rule

Answers

Answer:

37

Step-by-step explanation:

To find the fifth term , we have to take the value of n as 5

So, F(5)= 6.5 (5) +4.5

= 32.5 + 4.5

= 37

Solve for y: 3(2y + 4) = 4(2y – 1/2).
The solution is y =

Answers

Answer:

Answer y=7

Step-by-step explanation:

The sum of a number and 9 is subtracted from 60. The result is 10. Find the number.

Answers

Answer:

Number : 41

Step-by-step explanation:

Say that this number is x. The sum of this number ( x ) and 9 subtracted from 60 will be 10. Therefore we can create the following equation to solve for x,

60 - (x + 9) = 10,

60 - x - 9 = 10,

51 - x = 10,

- x = 10 - 51 = - 41,

x = 41

This number will be 41

A study reports the mean change in HDL (high-density lipoprotein, or "good" cholesterol) of adults eating raw garlic six days a week for six months. The margin of error for a 95% confidence interval is given as plus or minus 7 milligrams per deciliter of blood (mg/dl). This means tha:_________a) There is a 95% probability that the true population mean is within 7 mg/dl. b) The study used a method that gives a results within 7 mg/dl of the truth about the population in 95% of all samples. c) 95% percent of the population has changed their HDL after eating raw garlic six days a week for six months. d) We can be certain that the study results is within 7 mg/dl of the truth about the population. e) We could be certain that the study result is within 7 mg/dl of the truth about the population if the conditions for inferences were satisfied.

Answers

Answer:

Option B

Step-by-step explanation:

The margin of error describes how many percentage points the results will differ from the real population value, thus 'the margin of error for a 95% confidence interval is given as plus or minus 7 milligrams per deciliter of blood (mg/dl)' can be interpreted as 'The study used a method that gives a results within 7 mg/dl of the truth about the population in 95% of all samples.'

Need help with trig questions

Answers

Answer:

-8 i + 19 j , 105.07°

Step-by-step explanation:

Solution:

- Define two unit vectors ( i and j ) along x-axis and y-axis respectively.

- To draw vectors ( v and w ). We will move along x and y axes corresponding to the magnitudes of unit vectors ( i and j ) relative to the origin.

  Vector: v = 2i + 5j

Mark a dot or cross at the originMove along x-axis by 2 units to the right ( 2i )Move along y-axis by 5 units up ( 5j )Mark the point.Connect the origin with the marked point determined aboveMake an arrow-head at the determined pointLies in first quadrant

     

Vector: w = 4i - 3j

Mark a dot or cross at the originMove along x-axis by 4 units to the right ( 4i )Move along y-axis by 3 units down ( -3j )Mark the point.Connect the origin with the marked point determined aboveMake an arrow-head at the determined pointLies in 4th quadrant

- The algebraic manipulation of complex numbers is done by performing operations on the like unit vectors.

                      [tex]2*v - 3*w = 2* ( 2i + 5j ) - 3*(4i - 3j )\\\\2*v - 3*w = ( 4i + 10j ) + ( -12i + 9j )\\\\2*v - 3*w = ( 4 - 12 ) i + ( 10 + 9 ) j\\\\2*v - 3*w = ( -8 ) i + ( 19 ) j\\[/tex]

- To determine the angle ( θ ) between two vectors ( v and w ). We will use the " dot product" formulation as follows:

                     v . w = | v | * | w | * cos ( θ )

                     v . w = < 2 , 5 > . < 4 , -3 > = 8 - 15 = -7

                     [tex]| v | = \sqrt{2^2 + 5^2} = \sqrt{29} \\\\| w | = \sqrt{4^2 + 3^2} = 5\\\\[/tex]

- Plug the respective values into the dot-product formulation:

                     cos ( θ ) = [tex]\frac{-7}{5\sqrt{29} }[/tex]

                      θ = 105.07°

Luke is organising a camping trip for the youth club. He is looking at the temperature and rainfall charts for Brighton and Newquay. What is the probability of it raining in July in Brighton? Give your answer as a fraction.

Answers

Answer:

The answer is 15.6/31 or 1/2

Step-by-step explanation:

The data in the question is sufficient to find an answer for it.

1. I look at the temperature and rainfall chart for Brighton, United Kingdom.

2. Check for rainy season and dry season.

3. The rainy season lasts approximately 5 months while the dry season (which still has some rainfall) lasts approximately 7 months. All together, 12 months of the calendar year.

4. July happens to fall within the dry season. The temperature and rainfall statistics are observed.

The number of rainfall days is 15.6 and we know there are 31 days in July.

If the approximate number of days it rains in Brighton, in July, is 15.6 then the probability of rainfall in the month is 15.6/31 which is = 0.503 or 0.5

Therefore, there's a 50% chance of having rainfall in Brighton, on any day in the month of July.

In fraction, 0.5 = 1/2

Find the equation of a line parallel to −x+5y=1 that contains the point (−1,2)

Answers

Answer:

y=1/5x+11/5

Step-by-step explanation:

Find the slope of the original line and use the point-slope formula  y-y^1=m(x-x^1) to find line parallel to -x+5y=1

Hope this helps

Answer: y = 1/5x+ 2.2

Step-by-step explanation:

First, change the expression into y-intercept form

-x+5y=1

5y=x+1

y=1/5x+1/5

For a line to be parallel to another line, it must have the same slope.  Thus, the slope must be 1/5x.  Then, to find the y-intercept simply do:

y = 1/5x+b, where x = -1 and y = 2

2=1/5(-1)+b

2 = -1/5+b

b = 2 1/5.

Thus, the equation y = 1/5x+ 2.2

Hope it helps <3

A fisherman uses a spring scale to weigh a tilapia fish. He records the fish weight as a kilograms and notices that the spring stretches b centimeters. Which expression represents the spring constant (1 =9.8 )? A). 980ab B). 9.8ab C). 9.8ab D). 980ab

Answers

Answer:

k = [tex]\frac{980a}{b}[/tex]

Step-by-step explanation:

Fisherman noticed a stretch in the spring = 'b' centimetres

Weight of the fish = a kilograms

If force applied on a spring scale makes a stretch in the spring then Hook's law for the force applied is,

F = kΔx

Where k = spring constant

Δx = stretch in the spring

F = weight applied

F = mg

Here 'm' = mass of the fish

g = gravitational constant

F = a(9.8)

  = 9.8a

Δx = b centimetres = 0.01b meters

Therefore, 9.8a = k(0.01b)

k = [tex]\frac{9.8a}{0.01b}[/tex]

k = [tex]\frac{980a}{b}[/tex]

Therefore, spring constant of the spring will be determined by the expression, k = [tex]\frac{980a}{b}[/tex]

Over the last three evenings, Melissa received a total of 126 phone calls at the call center. The first evening, she received 6 more calls than the third evening. The second evening, she received 4 times as many calls as the third evening. How many phone calls did she receive each evening? Number of phone calls the first evening: Number of phone calls the second evening: Number of phone calls the third evening:

Answers

Answer:

calls first evening = 26

calls second evening  = 80

calls third evening = 20

Step-by-step explanation:

Let x = calls third evening

x+6 = calls first evening

4x = calls second evening

x+6 + 4x + x = total calls = 126

Combine like terms

6x+6 = 126

Subtract 6 from each side

6x =120

Divide by 6

6x/6 =120/6

x = 20

x+6 = calls first evening = 20+6 = 26

4x = calls second evening = 4*20 = 80

Let x = calls third evening = 20

Values for relation g are given in the table. Which ordered pair would be found in the inverse of g? X Y 2 2 3 5 4 9 5 13 A: (4,9) B:(-3.-5) C:(13,5) D:(-2,-2)

Answers

Answer:

D (13,5)

Step-by-step explanation:

X 2 3 4 5

Y 2 5 9 13

So the ordered pairs are (2,2),(3,5), (4,9), (5,13)

and the ordered pairs for the inverse are

(2,2),(5,3), (9,4), (13,5)

from which D (13,5) is found among the options.

Answer:

b

Step-by-step explanation:

Compute the values of dy and Δy for the function y=e^(2x)+6x given x=0 and Δx=dx=0.03.

Answers

Answer:

dy = 8·dxΔy = 0.24

Step-by-step explanation:

The derivative of your function is ...

  y' = dy/dx = 2e^(2x) +6

At x=0, the value is ...

  y'(0) = 2e^0 +6 = 8

  dy = 8·dx

__

  Δy = y'(0)·Δx

  Δy = 8(.03)

  Δy = 0.24

what's the solution for 9ײ/81×⁵​

Answers

Answer:

answer 1 /9x^3

Step-by-step explanation:

9ײ/81×⁵​

change the expression to indices form

3^2 x^2 /3^4 x^5

1 /3^2 x^3

1 /9x^3

A survey of the average amount of cents off that coupons give was done by randomly surveying one coupon per page from the coupon sections of a recent San Jose Mercury News. The following data were collected: 20cents; 70cents; 50cents; 65cents; 30cents; 55cents; 40cents; 40cents; 30cents; 55cents; $1.50; 40cents; 65cents; 40cents. Assume the underlying distribution is approximately normal.
Construct a 95% confidence interval for the population mean worth of coupons .
What is the lower bound? ( Round to 3 decimal places )
What is the upper bound? ( Round to 3 decimal places )
What is the error bound? (Round to 3 decimal places)

Answers

Answer:

The lower bound = 35.443

The upper bound = 71.697

The error bound = 18.127

Step-by-step explanation:

We are given that a survey of the average amount of cents off that coupons gives was done by randomly surveying one coupon per page from the coupon sections of a recent San Jose Mercury News.

The following data were collected (X): 20cents; 70cents; 50cents; 65cents; 30cents; 55cents; 40cents; 40cents; 30cents; 55cents; 150 cents; 40cents; 65cents; 40cents.

Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;

                              P.Q.  =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean worth of coupons = [tex]\frac{\sum X}{n}[/tex] = [tex]\frac{750}{14}[/tex] = 53.57 cents

            s = sample standard deviation = [tex]\sqrt{\frac{\sum (X-\bar X)^{2} }{n-1} }[/tex] = 31.40 cents

            n = sample size = 14

            [tex]\mu[/tex] = population mean worth of coupons

Here for constructing a 95% confidence interval we have used a One-sample t-test statistics as we don't know about population standard deviation.

So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;

P(-2.16 < [tex]t_1_3[/tex] < 2.16) = 0.95  {As the critical value of t at 13 degrees of

                                             freedom are -2.16 & 2.16 with P = 2.5%}  

P(-2.16 < [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.16) = 0.95

P( [tex]-2.16 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}{[/tex] < [tex]2.16 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

P( [tex]\bar X-2.16 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+2.16 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-2.16 \times {\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+2.16 \times {\frac{s}{\sqrt{n} } }[/tex] ]

 = [ [tex]53.57-2.16 \times {\frac{31.40}{\sqrt{14} } }[/tex] , [tex]53.57+2.16 \times {\frac{31.40}{\sqrt{14} } }[/tex] ]

 = [35.443, 71.697]

Therefore, a 95% confidence interval for the population mean worth of coupons is [35.443, 71.697].

Which equations represent the asymptotes of the hyperbola?

Answers

Answer:

  see below

Step-by-step explanation:

The equation of the hyperbola can be written as ...

  ((x -h)/a)² -((y -k)/b)² = 1

This has asymptotes ...

  (x -h)/a ± (y -k)/b = 0

Solving for y, we have ...

  y = ±(b/a)(x -h) +k

Filling in the given values a=6, b=8, h=1, k=2, we have ...

  y = ±8/6(x -1) +2

  [tex]y=\dfrac{\pm4x\mp4+6}{3}\\\\\boxed{y=\dfrac{4x+2}{3}\ \text{and }y=\dfrac{10-4x}{3}}[/tex]

Answer:

A. y = 4x+2/3 and y = 10-4x/3

Step-by-step explanation:

this is the correct answer for the question on edmentum and Plato

At a factory that produces pistons for cars, Machine 1 produced 459 satisfactory pistons and 51 unsatisfactory pistons today. Machine 2 produced 360
satisfactory pistons and 40 unsatisfactory pistons today. Suppose that one piston from Machine 1 and one piston from Machine 2 are chosen at random from
today's batch. What is the probability that the piston chosen from Machine 1 is unsatisfactory and the piston chosen from Machine 2 is satisfactory?​

Answers

Hey there! I'm happy to help!

If we add Machine 1's 459 satisfactory pistons and 51 unsatisfactory pistons, we get 510 total pistons.

If we add Machine 2's 360 satisfactory pistons and 40 unsatisfactory pistons, we get 400 total pistons.

First, we want to find the probability of choosing an unsatisfactory piston from Machine 1.

We see that 51/510 (unsatisfactory pistons out of total pistons) simplifies to equal 1/10, so there is a 1/10 chance of getting an unsatisfactory piston from Machine 1.

For Machine 2, there are 360 satisfactory and 400 total. This gives us 360/400, which simplifies to 9/10.

Now, we multiply our two probabilities together to find the probability that they both happen.

1/10×9/10=9/100

Therefore, the probability that a piston chosen from Machine 1 is unsatisfactory and the piston chosen from Machine 2 is satisfactory is 9/100 or 9%.

Have a wonderful day! :D

Other Questions
As he reached his conclusion, Martin said "Feedback is to communication what the thermostat is to the furnace." What type of supporting material is Martin using here Kina is cleaning the tiles inside her pool today. The pool was 4/7 full of water at thestart of the day. She decided to drain half of the water out of the pool before shestarted cleaning the tiles.1) How full was the pool after Kira drained out half of the water?2) If there was 1,000 gallons of water left in the pool, how many gallons didKina drain out of the pool?3) How many total gallons of water can the pool hold? What structure of the endocrine system releases insulin if blood sugar levels get too high?A. ThyroidB. Adrenal GlandC. ThymusD. Pancreas RNA helps turn DNA into proteins by: (select all that apply) Group of answer choices Moving genetic code from the nucleus to a ribosome forming part of the ribosome Carrying amino acids to a ribosome controlling splicing by marking intron and exon sequences g When an object has a net force of zero, then it is said to be in ____________. SHOW ME HOW TO SOLVE THIS PLSS>>> The price of a tennis racquet is inversely proportional to its weight. If a 20 oz. racquet cost $30.00, what would a 25 oz. racquet cost? Luker Corporation uses a process costing system. The company had $177,500 of beginning Finished Goods Inventory on October 1. It transferred in $854,000 of units completed during the period. The ending Finished Goods Inventory balance on October 31 was $175,200. The entry to account for the cost of goods sold in October is:] Data concerning Farm Corporation's single product appear below: Selling price per unit $ 320.00 Variable expense per unit $ 76.80 Fixed expense per month $ 170,240 The break-even in monthly dollar sales is closest to: (Round your intermediate calculations to 2 decimal places.) Can someone give me some help?? (25 points) The range of [tex]y=\frac{1}{x-10}[/tex] is All Real Numbers. TRUE or FALSE, and why? The function A(b) relates the area of a trapezoid with a given height of 10 andone base length of 7 with the length of its other base.It takes as input the other base value, and returns as output the area of thetrapezoid.A(b) = 10.57?Which equation below represents the inverse function B(a), which takes thetrapezoid's area as input and returns as output the length of the other base?O A. B(a) = -7B. B(a) = 9, -5 A circle has a radius of sqrt 45 units and is centered at -2.4, -4.8 write the equation of the circle 15. Theof a sine wave is the time it takes to complete one cycle of the wave.O A. maximum amplitudeO B. minimum amplitudeO C. average valueO D. wavelength WILL MAKE BRAINLIST. - - - If a golden rectangle has a width of 9 cm, what is its length? __________ attribute specifies the height of the image. Explain the relationship between vulnerability, threat, and risk. Discuss how each fits into a risk assessment. Provide examples to illustrate your ideas. Savita was given a set of 250 cherries and Gail was given a setof 350 cherries. Both were also given a set of small plastic bags.Savita had to pack 8 cherries in a bag and Gail had to pack 12cherries in a bag. Explain how you know who will have morebags of cherries at the end. What is difference between a skeletal muscle and a general animal cell Out of 600 people sampled, 66 preferred Candidate A. Based on this, estimate what proportion of the entire voting population (p) prefers Candidate A. Required:Use a 90% confidence level, and give your answers as decimals, to three places. Exercise 8-07 At December 31, 2019, Pharoah Company Company had a credit balance of $18,100 in Allowance for Doubtful Accounts. During 2020, Pharoah Company wrote off accounts totaling $12,900. One of those accounts ($2,100) was later collected. At December 31, 2020, an aging schedule indicated that the balance in Allowance for Doubtful Accounts should be $23,700. Prepare journal entries to record the 2020 transactions of Pharoah Company Company