The number of calories in 10 grams of sugar is an example of an intensive property. So the correct answer is 1.
Intensive properties are properties that do not depend on the amount or size of the sample being measured. In this case, the number of calories is a characteristic of sugar that remains constant regardless of the amount of sugar being measured. Other examples of intensive properties include density, boiling point, melting point, and color. On the other hand, extensive properties are properties that do depend on the amount or size of the sample being measured, such as mass, volume, and energy. Unique and chemical are not related to the concept of intensive or extensive properties. Correct Option 1.
To know more about Intensive properties, here
brainly.com/question/13733851
#SPJ4
--The complete Question is, Fill in the blanks.
The number of calories in 10 grams of sugar is an example of a(n) ___________________.
intensive propertyextensive propertyunique propertychemical property --Will award you points!
Read the chemical equation. N2 + 3H2 – 2NH3 Using the volume ratio, determine how many liters of NH3 is produced if 3. 6 liters of H2 reacts with an excess of N2, if all measurements are taken at the same temperature and pressure? 5. 4 liters 2. 4 liters 1. 8 liters 1. 2 liters
To solve this problem, we need to use the volume ratio from the balanced chemical equation. The ratio tells us that for every 3 liters of [tex]H_2[/tex] that reacts, 2 liters of [tex]NH_3[/tex] are produced.
In this case, we have 3.6 liters of [tex]H_2[/tex] reacting, so we can set up a proportion:
3 L [tex]H_2[/tex] : 2 L [tex]NH_3[/tex] = 3.6 L [tex]H_2[/tex] : x L [tex]NH_3[/tex]
To solve for x (the amount of NH3 produced), we can cross-multiply:
3 L [tex]H_2[/tex] * x L [tex]NH_3[/tex] = 2 L [tex]NH_3[/tex] * 3.6 L [tex]H_2[/tex]
Simplifying, we get:
x = (2 L [tex]NH_3[/tex] * 3.6 L [tex]H_2[/tex] ) / 3 L [tex]H_2[/tex]
x = 2.4 L [tex]NH_3[/tex]
Therefore, the answer is 2.4 liters of [tex]NH_3[/tex] produced if 3.6 liters of [tex]H_2[/tex] reacts with an excess of [tex]N_2[/tex].
To know more about balanced chemical equation:
https://brainly.com/question/11904811
#SPJ11
Wave gizmo
the wave’s amplitude is equal to half of this height. what is the amplitude?
The amplitude of the wave is 1.5 meters.
The amplitude of a wave is defined as the maximum displacement of a particle from its equilibrium position as a wave passes through it. In this case, the given information tells us that the height of the wave is 3 meters. Since the amplitude is half of the height, we can calculate it by dividing 3 meters by 2, which gives us an amplitude of 1.5 meters.
It is important to note that the amplitude of a wave affects its energy and intensity. Waves with higher amplitudes have greater energy and produce louder sounds or brighter light, while waves with lower amplitudes have less energy and produce softer sounds or dimmer light. The amplitude of a wave can also be affected by factors such as the distance traveled, the medium through which the wave is traveling, and the frequency of the wave.
To learn more about amplitude here
https://brainly.com/question/9525052
#SPJ4
The wave’s amplitude is equal to half of this height. The amplitude is 10.
What is amplitude?Amplitude is a measure of the magnitude of a waveform or the strength of a signal. It is usually expressed as the peak value of a waveform or signal. It is also commonly referred to as the height of the waveform or signal. Amplitude is measured in decibels (dB) which is a logarithmic unit of measure. Amplitude is an important factor when determining the intensity of a signal or waveform. Higher amplitude signals usually result in louder sounds or higher voltages in electronic circuits. Lower amplitude signals usually result in quieter sounds or lower voltages in electronic circuits.
To learn more about amplitude
https://brainly.com/question/31014522
#SPJ4
1. Hydrogen + oxygen yields water
Label what type of reaction (synthesis, decomposition, single replacement, double replacement or combustion)
Write the balanced chemical equation
How much water could you get if you started with 250. 0 grams of hydrogen?
How much water could you get if you started with 250. 0 grams of oxygen?
Which is the limiting reactant?
Labeling the type of reaction:
This is a synthesis reaction because two elements (hydrogen and oxygen) are combining to form a compound (water).
Writing the balanced chemical equation:
2H2 + O2 → 2H2O
Determining how much water can be produced from 250.0 grams of hydrogen:
We need to use stoichiometry to calculate the amount of water produced from a given amount of hydrogen. The balanced chemical equation tells us that 2 moles of hydrogen reacts with 1 mole of oxygen to produce 2 moles of water.
First, let's convert 250.0 grams of hydrogen to moles:
moles of H2 = mass of H2 / molar mass of H2
= 250.0 g / 2.016 g/mol
= 124.01 mol
Using the mole ratio from the balanced chemical equation, we can calculate the moles of water produced:
moles of H2O = (2 moles of H2 / 2) × (1 mole of H2O / 2 moles of H2) × 124.01 moles of H2
= 62.005 moles of H2O
Finally, we can convert moles of water to grams:
mass of H2O = moles of H2O × molar mass of H2O
= 62.005 mol × 18.015 g/mol
= 1115.9 g
Therefore, 250.0 grams of hydrogen can produce 1115.9 grams of water.
Determining how much water can be produced from 250.0 grams of oxygen:
We need to use stoichiometry again, but this time we'll start with the mass of oxygen.
From the balanced chemical equation, we know that 1 mole of oxygen reacts with 2 moles of hydrogen to produce 2 moles of water.
First, let's convert 250.0 grams of oxygen to moles:
moles of O2 = mass of O2 / molar mass of O2
= 250.0 g / 31.999 g/mol
= 7.813 moles
Using the mole ratio from the balanced chemical equation, we can calculate the moles of water produced:
moles of H2O = (1 mole of O2 / 2) × (2 moles of H2O / 1 mole of O2) × 7.813 moles of O2
= 7.813 moles of H2O
Finally, we can convert moles of water to grams:
mass of H2O = moles of H2O × molar mass of H2O
= 7.813 mol × 18.015 g/mol
= 140.65 g
Therefore, 250.0 grams of oxygen can produce 140.65 grams of water.
Determining the limiting reactant:
To determine the limiting reactant, we need to compare the amount of product that can be produced from each reactant. The reactant that produces the smaller amount of product is the limiting reactant.
From our calculations above, we found that 250.0 grams of hydrogen can produce 1115.9 grams of water, and 250.0 grams of oxygen can produce 140.65 grams of water. Therefore, the limiting reactant is oxygen because it produces less water than hydrogen.
To know more about synthesis refer here
https://brainly.com/question/30514814?#
#SPJ11
Four quantum numbers of the last electron of Ca^2+
The last electron of Ca^2+, the four quantum numbers are Principal quantum number, Azimuthal quantum number, Magnetic quantum number and Spin quantum number.
The quantum numbers are a set of numbers used to describe the properties of an electron, including its energy, angular momentum, and orientation in space.
These numbers help us understand the behavior of electrons in an atom, including how they interact with each other and with external forces.
For the last electron of Ca^2+, the four quantum numbers are:
1. Principal quantum number (n): This number determines the energy level of the electron. For Ca^2+, the last electron is in the n=3 shell.
2. Azimuthal quantum number (l): This number determines the shape of the electron's orbital. For Ca^2+, the last electron is in an s orbital, which has l=0.
3. Magnetic quantum number (m): This number determines the orientation of the orbital in space. For Ca^2+, the last electron's orbital is oriented randomly, so m could be any value between -l and +l.
4. Spin quantum number (s): This number determines the electron's intrinsic angular momentum, or "spin." For Ca^2+, the last electron has a spin of +1/2.
These quantum numbers help us understand the unique properties of the electron in Ca^2+, and can be used to predict its behavior in various chemical and physical processes.
To know more about quantum numbers, visit:
https://brainly.com/question/16746749#
#SPJ11
What mass of methyl butanoate is produced from the reaction of 52.5g of butanoic acid answer
The yield of the reaction may be less than 100%, so the actual mass of methyl butanoate produced may be lower.
The balanced chemical equation for the reaction is needed to determine the molar ratio between butanoic acid and methyl butanoate. However, assuming that the reaction is the esterification of butanoic acid with methanol to produce methyl butanoate and water, the balanced chemical equation is:
CH₃CH₂CH₂COOH + CH₃OH → CH₃CH₂CH₂COOCH₃ + H₂O
From the balanced equation, the stoichiometry is 1:1 between butanoic acid and methyl butanoate. This means that 52.5g of butanoic acid would produce 52.5g of methyl butanoate. However, because the reaction yield may be less than 100%, the actual mass about methyl butanoate produced may be lower.
To know more about the Butanoic acid, here
https://brainly.com/question/31328026
#SPJ4
You have one test tube which contains a white solid that is either agcl (s) or pbcl2 (s). select a reagent that will allow you to differentiate between the two chemical species. if the solid is agcl, what will happen when the reagent is added
To differentiate between AgCl(s) and PbCl₂(s), we can use a reagent that reacts differently with each compound. One such reagent is a solution of ammonia (NH₃).
When ammonia is added to AgCl(s), it will dissolve the solid and form a colorless, soluble complex ion, [Ag(NH₃)2]+. This is because AgCl is soluble in ammonia due to the formation of the complex ion.
AgCl(s) + 2NH₂(aq) → [Ag(NH₃)2]+(aq) + Cl^-(aq)
On the other hand, when ammonia is added to PbCl₂(s), it will not dissolve the solid, and there will be no observable reaction. This is because PbCl₂ is not soluble in ammonia, and the complex ion does not form.
PbCl₂(s) + 2NH₃(aq) → No observable reaction
Therefore, the addition of ammonia to the test tube containing the white solid will help differentiate between AgCl and PbCl₂.
If the solid is AgCl, it will dissolve in the ammonia solution and form a colorless complex ion, while if the solid is PbCl₂, there will be no observable reaction.
to know more about reagents refer here:
https://brainly.com/question/31228572#
#SPJ11
A 29. 7-gram piece of aluminum is sitting on a hot plate. A student accidentally left the hot plate on. The aluminum now is very hot and has to be cooled. You fill a beaker with 250 grams of water. The aluminum is placed in the water. You are curious so you place a thermometer in the beaker. The water warms from 22. 3 C to 30. 8 C. The C (aluminum) is 0. 900 J/gC, and the C (water) is 4. 18 J/gC Do you have enough information to calculate the amount of energy transferred in this situation? Explain in 2-3 complete sentences
Yes, we have enough information to calculate the amount of energy transferred in this situation. We can use the equation Q = mCΔT.
Q is the amount of energy transferred, m is the mass, C is the specific heat capacity, and ΔT is the change in temperature. We know the mass and specific heat capacity of the aluminum and water, as well as the change in temperature of the water.
Using this information, we can calculate the amount of energy transferred from the aluminum to the water.
To be specific, we can use the equation Q(aluminum) = m(aluminum) x C(aluminum) x ΔT(water) to find the amount of energy transferred from the aluminum to the water.
Since the aluminum starts at a higher temperature than the water, it will lose energy and transfer it to the water until both reach thermal equilibrium.
To know more about specific heat capacity, refer here:
https://brainly.com/question/27991746#
#SPJ11
Which response strategy is the best choice for a heavy wet snow with 1 1/2-inch (3. 75 cm) of accumulation?
First, remove the snow using shovels or snow blowers, and then apply a deicing agent to prevent ice formation and improve traction on surfaces.
To determine the best response strategy for dealing with heavy wet snow with 1 1/2-inch (3.75 cm) of accumulation, consider the following terms:
1. Snow removal: Clearing snow from surfaces like roads, sidewalks, and driveways using shovels, snow blowers, or plows. In this case, snow removal may be necessary to maintain safety and accessibility.
2. Deicing: Applying deicing agents, such as salt or other chemicals, to surfaces to prevent ice formation and improve traction. For a heavy wet snow of 1 1/2-inch, deicing might be beneficial for slippery areas or those prone to refreezing.
3. Anti-icing: Pre-treating surfaces with chemicals before snowfall to prevent ice bonding and facilitate easier removal. Given the snow accumulation, anti-icing may not be the most efficient strategy.
The best response strategy for a heavy wet snow with 1 1/2-inch (3.75 cm) of accumulation would be a combination of snow removal and deicing. First, remove the snow using shovels or snow blowers, and then apply a deicing agent to prevent ice formation and improve traction on surfaces.
To know more about deicing agent refer here: https://brainly.com/question/28341775#
#SPJ11
the DOE’s goal is to reclaim the water before it reaches the river. "" Why do you think the DOE picked that as its goal
The DOE (Department of Energy) likely picked reclaiming the water before it reaches the river as its goal to address environmental concerns and potential health hazards associated with contaminated water.
Water pollution can have significant negative impacts on aquatic life, human health, and the environment as a whole. Reclaiming the water before it reaches the river would prevent the contaminated water from spreading and potentially causing harm to people, animals, and the surrounding ecosystem.
Additionally, the DOE may have a legal responsibility to prevent the release of contaminated water into public waterways under environmental protection laws.
By reclaiming the water, the DOE can fulfill its obligation to protect the environment and public health while also promoting sustainable water use and management practices.
To know more about environmental concerns refer to-
https://brainly.com/question/30008376
#SPJ11
Identify and explain one alternate view to the neoclassical view. What does this view consider that the neoclassical view does
not?
Alternate view to the neoclassical view is the Post-Keynesian view is Post-Keynesians believe that the neoclassical view does not adequately account for the role of uncertainty in economic decision-making, the importance of historical and institutional factors, and the potential for instability in markets.
Post-Keynesians argue that economic agents do not have perfect information and face uncertain future outcomes, which can lead to irrational decision-making and result in market failures. They also stress the importance of historical and institutional factors, such as power relations and social norms, in shaping economic outcomes.
Additionally, Post-Keynesians believe that markets are not inherently stable and can experience periods of instability and crisis, contrary to the neoclassical view that markets naturally tend toward equilibrium. The Post-Keynesian view emphasizes the role of uncertainty, history, and institutional factors in shaping economic outcomes, as well as the potential for instability in markets, which are not fully accounted for in the neoclassical view.
To know more about the Neoclassical, here
https://brainly.com/question/28351416
#SPJ4
The Keynesian view is an alternate view to the neoclassical view. It considers that there is a role for government in managing the economy through fiscal and monetary policy.
What is neoclassical?Neoclassical is an art and design style that emerged in the mid-18th century and is based on the classical styles of ancient Greece and Rome. Neoclassical art and design sought to revive the aesthetic principles of antiquity and emphasized the use of symmetry, order, and balance in its works. This style was seen in art, architecture, and furniture, and often included motifs from classical mythology.
It assumes that markets are not always efficient and that people may not always act rationally. This view considers that the economy may not always be in equilibrium and that there may be periods of recession or depression. It also considers that individuals and companies may not always respond to economic changes in the same way, and that government intervention may be necessary to ensure economic stability. This view does not assume that the market is self-regulating and that it will always reach equilibrium.
To learn more about neoclassical
https://brainly.com/question/28350870
#SPJ4
What would happen to future island chains if volcanic eruptions stopped occurring on the seafloor?
If volcanic eruptions were to stop occurring on the seafloor, future island chains would no longer be formed.
This is because most island chains are formed by a geological process called plate tectonics, which involves the movement of tectonic plates and the formation of new crust at mid-ocean ridges through volcanic activity.
At mid-ocean ridges, magma rises from the mantle and solidifies to form new crust, pushing the existing crust away from the ridge.
Over time, this process can create a chain of volcanic islands as the tectonic plate moves across the hotspot, with the oldest islands being farthest from the hotspot and the youngest islands being closest.
Without volcanic eruptions on the seafloor, there would be no new crust formation and no movement of tectonic plates to create island chains.
Over time, the existing islands would be eroded and weathered by natural processes such as wind and water, and their size and shape would change.
However, it's worth noting that volcanic eruptions are not the only way that islands can form. For example, islands can also be formed through the uplift of existing land due to geological processes such as tectonic uplift or the rebound of land following the retreat of a glacier.
However, these processes typically occur over much longer time scales than volcanic island formation at mid-ocean ridges.
To know more about eruptions refer here
https://brainly.com/question/9175156#
#SPJ11
A 31. 0 mL sample of 0. 624M perchloric acid is titrated with a 0. 258M sodium hydroxide solution.
What is the (H+) molarity after the addition of 15. 0 mL of KOH?
A 31. 0 mL sample of 0. 624M perchloric acid is titrated with a 0. 258M sodium hydroxide solution. The molarity of H⁺ after the addition of 15.0 mL of NaOH is 0.204 M.
To find the molarity of (H⁺) after the addition of 15.0 mL of NaOH, we first need to calculate the number of moles of NaOH added:
moles of NaOH = Molarity of NaOH x Volume of NaOH
moles of NaOH = 0.258 M x 0.0150 L
moles of NaOH = 0.00387 mol
Since the balanced chemical equation for the reaction between HClO₄ and NaOH is:
HClO₄(aq) + NaOH(aq) → NaClO₄(aq) + H₂O(l)
We can see that one mole of HClO₄ reacts with one mole of NaOH. Therefore, the number of moles of HClO₄ that reacted with the NaOH is also 0.00387 mol.
To calculate the new molarity of H⁺ after the addition of NaOH, we need to use the volume of HClO₄ that remains after the reaction:
Volume of HClO₄ = 31.0 mL - 15.0 mL
Volume of HClO₄ = 16.0 mL = 0.0160 L
Now we can calculate the new molarity of H⁺:
Molarity of H⁺ = moles of HClO₄ / volume of HClO₄
Molarity of H⁺ = 0.00387 mol / 0.0160 L
Molarity of H⁺ = 0.242 M
Therefore, the molarity of (H⁺) after the addition of 15.0 mL of NaOH is 0.242 M.
To know more about the molarity refer here :
https://brainly.com/question/22997914#
#SPJ11
Review this reaction:
H2SO4+NaOH->?.
What are the products?
SN1 reactions usually proceed with: Group of answer choices complete inversion at the center undergoing substitution. Slightly more inversion than retention at the center undergoing substitution. Equal amounts of inversion and retention at the center undergoing substitution. Slightly more retention than inversion at the center undergoing substitution. Complete retention at the center undergoing substitution
SN1 reactions usually proceed with equal amounts of inversion and retention at the center undergoing substitution.
In SN1 (Substitution Nucleophilic Unimolecular) reactions, the stereochemistry of the reaction is not generally characterized by equal amounts of inversion and retention at the center undergoing substitution. Instead, SN1 reactions typically lead to racemization or a mixture of stereoisomers.
In an SN1 reaction, the reaction proceeds in two steps. First, the leaving group departs from the substrate, generating a carbocation intermediate. Then, the nucleophile attacks the carbocation, resulting in the formation of the substitution product.
The key factor determining the stereochemistry of SN1 reactions is the nature of the carbocation intermediate. Carbocations are planar and lack stereochemistry.
As a result, the nucleophile can approach the carbocation from either side, leading to the formation of a mixture of stereoisomers or racemization.
Therefore, SN1 reactions typically result in the formation of both inverted and retained products, along with the possibility of racemization. The specific distribution of stereoisomers will depend on factors such as the nature of the nucleophile, the leaving group, and the reaction conditions.
To learn more about retention, refer below:
https://brainly.com/question/29709076
#SPJ11
The surface of a pool table has a perimeter of 26 feet and an area of 40 square feet. What are the dimensions of the pool table?
The dimensions of the pool table with a perimeter of 26 feet and an area of 40 square feet are either 5 feet by 8 feet or 8 feet by 5 feet.
To solve this problem, we need to use some basic geometry formulas. Let's start by using the formula for the perimeter of a rectangle, which is P = 2l + 2w, where l is the length and w is the width.
We know that the perimeter of the pool table is 26 feet, so we can write the equation:
26 = 2l + 2w
Simplifying this equation, we get:
13 = l + w
Next, we can use the formula for the area of a rectangle, which is A = lw, where A is the area.
We know that the area of the pool table is 40 square feet, so we can write the equation:
40 = lw
Now we can use substitution to solve for one of the variables. We can rearrange the perimeter equation to solve for one variable in terms of the other:
l = 13 - w
Then we can substitute this expression for l into the area equation:
40 = (13 - w)w
Expanding this equation, we get:
40 = 13w - w^2
Rearranging and simplifying, we get a quadratic equation:
w^2 - 13w + 40 = 0
We can solve this equation by factoring or using the quadratic formula, which gives us:
w = 5 or w = 8
If w is 5, then l is 8 (using the perimeter equation), and if w is 8, then l is 5. So the dimensions of the pool table are either 5 feet by 8 feet or 8 feet by 5 feet.
In summary, the dimensions of the pool table with a perimeter of 26 feet and an area of 40 square feet are either 5 feet by 8 feet or 8 feet by 5 feet.
To know more about perimeter, visit:
https://brainly.com/question/6465134#
#SPJ11
A sample of lithium sulfate, Li2SO4, has 2. 94 x 1023 atoms
of lithium. How many moles of lithium sulfate is the sample?
The molar mass of lithium sulfate (Li2SO4) is:
Li2SO4 = 2 x Li + 1 x S + 4 x O = 2(6.94 g/mol) + 32.06 g/mol + 4(16.00 g/mol) = 109.94 g/mol
To find the number of moles of lithium sulfate, we need to first find the number of moles of lithium in the sample:
2.94 x 10^23 atoms of Li x (1 mole of Li/6.022 x 10^23 atoms of Li) = 0.488 moles of Li
Since there are two moles of lithium for every one mole of lithium sulfate, the number of moles of lithium sulfate in the sample is:
0.488 moles of Li x (1 mole of Li2SO4/2 moles of Li) = 0.244 moles of Li2SO4
Therefore, the sample contains 0.244 moles of lithium sulfate.
To know more about lithium refer here
https://brainly.com/question/1439744#
#SPJ11
At a constant pressure, a sample of gas occupies 420ml at 210k. what volume does the gas occupy at 250k
At a constant pressure, the gas occupies a volume of 500 ml when the temperature is increased to 250k.
At a constant pressure, the volume of a gas is directly proportional to its temperature. This relationship is known as Charles' Law. According to the problem, the sample of gas occupies 420 ml at a temperature of 210k. We need to find out the volume of the gas when the temperature is increased to 250k.
To solve this problem, we can use the formula V1/T1 = V2/T2, where V1 is the initial volume, T1 is the initial temperature, V2 is the final volume, and T2 is the final temperature. Plugging in the given values, we get:
420 ml/210k = V2/250k
Simplifying this equation, we get:
V2 = (420 ml/210k) x 250k
V2 = 500 ml
Therefore, at a constant pressure, the gas occupies a volume of 500 ml when the temperature is increased to 250k.
To know more about constant pressure, visit:
https://brainly.com/question/30769205#
#SPJ11
A student in the lab accidentally poured 26 ml of water into a graduated cylinder containing 16 ml of 4.0 m hcl. what is the concentration of the new solution? (don't forget to calculate the new volume!)
A student in the lab accidentally poured 26 ml of water into a graduated cylinder containing 16 ml of 4.0 m hcl. The concentration of the new solution is 1.52 M.
To calculate the new concentration, we need to first calculate the new volume of the solution after the addition of water.
The initial volume of HCl is 16 mL, and the volume of water added is 26 mL. Therefore, the total volume of the solution is:
16 mL + 26 mL = 42 mL
To calculate the new concentration, we can use the formula:
C1V1 = C2V2
where C1 is the initial concentration, V1 is the initial volume, C2 is the new concentration, and V2 is the new volume.
Plugging in the values we have:
C1 = 4.0 M
V1 = 16 mL
V2 = 42 mL
C2 = (C1V1) / V2
C2 = (4.0 M * 16 mL) / 42 mL
C2 = 1.52 M
Therefore, the new concentration of the solution is 1.52 M.
To know more about the concentration refer here :
https://brainly.com/question/10725862#
#SPJ11
What is the partial pressure of so2 in equilibrium with air and solid cao if po2 in air is 0. 21 atm?.
The partial pressure of SO₂ in equilibrium with the air and solid CaO if PO₂ in the air is 0.21 atm is 1.41 atm.
To determine the partial pressure of SO₂ in equilibrium with the air and solid CaO, we need to use the equation:
CaO(s) + SO₂(g) ⇌ CaSO₃(s)
This equation represents the equilibrium reaction between solid CaO, gaseous SO₂, and solid CaSO₃. At equilibrium, the partial pressures of SO₂ and O₂ in the air will determine the equilibrium constant of the reaction.
Assuming that the pressure of O₂ in the air is 0.21 atm, we can use the ideal gas law to calculate the partial pressure of SO₂:
PV = nRT
where P is the partial pressure of SO₂, V is the volume of the system, n is the number of moles of SO₂, R is the ideal gas constant, and T is the temperature.
At equilibrium, the reaction quotient Qc is equal to the equilibrium constant Kc:
Qc = [CaSO₃]/[CaO][SO₂]
Kc = [CaSO₃]/[CaO][SO₂]
Since CaO is solid, its concentration is constant, so we can write:
Kc = [CaSO₃]/[SO₂]
At equilibrium, Qc = Kc, so we can use this equation to solve for the partial pressure of SO₂:
Kc = [CaSO₃]/[SO₂]
Kc = 0.71 (at 1000 K)
[CaSO₃] = 1 (assuming that the CaO is fully reacted)
[SO₂] = [CaSO₃]/Kc = 1/0.71 = 1.41 atm
Learn more about partial pressure at https://brainly.com/question/19813237
#SPJ11
1. Suppose a gas compresses by 185 mL against a pressure of. 0. 400 atm. How much work is done on the system due to its compression? Show your work and report your answer in Joules
The amount of work done on the system is 34 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.
Thermodynamic work is called the transfer of energy between the system and the environment by methods that do not depend on the difference in temperatures between the two. When a system is compressed or expanded, a thermodynamic work is produced which is called pressure-volume work (p - v).
The pressure-volume work done by a system that compresses or expands at constant pressure is given by the expression:
W system= -p∆V
W system: Work exchanged by the system with the environment. Its unit of measure in the International System is the joule (J)
p: Pressure. Its unit of measurement in the International System is the pascal (Pa)
∆V: Volume variation (∆V = Vf - Vi). Its unit of measurement in the International System is cubic meter (m³)
In this case:
p= 0.400 atm
ΔV=(185-100)ml = 85 ml
W system= 0.400 atm× 85 ml =34 J
The amount of work done on the system is 34 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.
To know more about work done here
https://brainly.com/question/24278738
#SPJ4
An element has similar chemical properties as oxygen and selenium. it has an atomic number greater than oxygen but less than argon. use the periodic table to identify the element and explain how you determined the element using these clues. (write the element name in all lower case. spelling counts.)
The element you are looking for is sulfur (s).
To determine the element, we first identify the position of oxygen and selenium in the periodic table. Oxygen is in Group 16 (also known as the chalcogens), and so is selenium.
Elements in the same group typically have similar chemical properties due to having the same number of valence electrons. Next, we examine the atomic numbers. Oxygen has an atomic number of 8, and argon has an atomic number of 18.
The element in question must have an atomic number between 9 and 17. Since it shares similar chemical properties with oxygen and selenium, it must also be in Group 16. The only element in Group 16 with an atomic number between 9 and 17 is sulfur, with an atomic number of 16.
To know more about periodic table click on below link:
https://brainly.com/question/11155928#
#SPJ11
Is Valparaiso warmer, colder, or the same temperature as Sydney? Explain why as completely as you can
Valparaiso and Sydney are both located in different hemispheres and have different climates.
Valparaiso is a coastal city in Chile, located in the southern hemisphere, while Sydney is a coastal city in Australia, located in the southern hemisphere. Valparaiso has a Mediterranean climate, characterized by mild and wet winters, and warm and dry summers. The average temperature in Valparaiso ranges from 11°C to 20°C.
On the other hand, Sydney has a humid subtropical climate, with mild winters and warm summers. The average temperature in Sydney ranges from 9°C to 23°C. Therefore, it can be concluded that Sydney is slightly warmer than Valparaiso throughout the year.
The difference in temperature can be attributed to the geographical location and the climate patterns of these two cities. Sydney is located closer to the equator than Valparaiso, which results in a warmer climate. Additionally, the ocean currents and winds in Sydney also contribute to the warmer temperatures.
In summary, Sydney is warmer than Valparaiso due to its location closer to the equator and its climate patterns. However, both cities have mild climates with comfortable temperatures throughout the year, making them ideal tourist destinations.
To know more about hemispheres, visit:
https://brainly.com/question/13625065#
#SPJ11
2. Some ionic compounds are hydrates—solid compounds to which is bound a specific
percentage of water. Some hydrates melt when heated and release energy when they
solidify. For example, at 32 °C, liquid Glauber's salt-sodium sulfate decahydrate,
Na S04:10 H,00)—solidifies and releases 78. 0 kJ/mol of energy. Calculate the
enthalpy change when 2. 50 kg of Glauber's salt enters the solid state?
The enthalpy change when 2.50 kg of Glauber's salt solidifies is 605.28 kJ.
To calculate the enthalpy change when 2.50 kg of Glauber's salt (sodium sulfate decahydrate, Na2SO4·10H2O) solidifies, you can follow these steps:
1. Convert the mass of Glauber's salt to moles:
2.50 kg = 2500 g
Molar mass of Na2SO4·10H2O = (2×23) + (32) + (4×16) + (10×(2+16)) = 46 + 32 + 64 + 180 = 322 g/mol
Moles of Glauber's salt = 2500 g / 322 g/mol = 7.76 mol
2. Multiply the moles by the energy released per mole:
Energy released = 7.76 mol × 78.0 kJ/mol = 605.28 kJ
The enthalpy change when 2.50 kg of Glauber's salt solidifies is 605.28 kJ.
To learn more about energy, refer below:
https://brainly.com/question/1932868
#SPJ11
A gas occupies 37. 5 mL at 102. 3 kPa. At 27. 5 mL, what will the pressure be?
A gas has an initial volume of 37.5 mL at a pressure of 102.3 kPa. When the volume decreases to 27.5 mL, the pressure increases to 139.8 kPa.
This question can be solved using Boyle's Law, which states that the pressure and volume of a gas are inversely proportional at a constant temperature. Therefore, we can use the equation P1V1 = P2V2, where P1 is the initial pressure, V1 is the initial volume, P2 is the final pressure, and V2 is the final volume.
Substituting the given values into the equation, we get:
P1V1 = P2V2
(102.3 kPa)(37.5 mL) = P2(27.5 mL)
Solving for P2, we get:
P2 = (102.3 kPa)(37.5 mL) / 27.5 mL
P2 = 139.32 kPa
Therefore, the pressure of the gas when its volume is 27.5 mL will be 139.32 kPa.
To know more about the Boyle's Law refer here :
https://brainly.com/question/30367067#
#SPJ11
Deduce the change in entropy of a gas, in kJ, which contains 105 particles after the volume changes to fifty times its original value
The change in entropy (ΔS) of a gas with 10⁵ particles when the volume changes to 50 times its original value is 2.30 kJ.
To calculate the change in entropy, we can use the formula ΔS = Nkln(V2/V1), where N is the number of particles, k is the Boltzmann constant (1.38 x 10⁻² J/K), and V2 and V1 are the final and initial volumes, respectively. In this case, N = 10⁵, V2 = 50V1, and V1 = V1.
Step 1: Substitute the values into the formula:
ΔS = (10⁵)(1.38 x 10⁻²³ J/K)ln(50V1/V1)
Step 2: Simplify the equation by canceling V1 in the ratio:
ΔS = (10⁵)(1.38 x 10⁻²³ J/K)ln(50)
Step 3: Evaluate the natural logarithm of 50:
ΔS = (10⁵)(1.38 x 10⁻²³ J/K)(3.91)
Step 4: Multiply the values together:
ΔS = 5.38 x 10⁻²¹ J
Step 5: Convert joules to kilojoules:
ΔS = 2.30 x 10¹⁸ kJ
Thus, the change in entropy of the gas is 2.30 kJ.
To know more about Boltzmann constant click on below link:
https://brainly.com/question/30639301#
#SPJ11
A soft lump of clay has water run on top of it. Most of the water and clay runs off the table. After a long while, the water is turned off and allowed to dry. There is no clay left; instead, there are small pebbles and other types of components left on the table.
Which natural process is this modeling?
The natural process being modeled is weathering, specifically physical weathering.
Physical weathering is the process by which rocks and minerals are broken down into smaller pieces without changing their chemical composition. Water is one of the most significant agents of physical weathering.
The scenario described in the question illustrates how water can cause physical weathering by soaking into a lump of clay, then drying out, leaving behind small pebbles and other components. The water expands as it freezes, causing the clay to crack, and as it dries, it evaporates, leaving behind the broken pieces.
Over time, this process can break down larger rocks and minerals into smaller particles, creating sediment that can be transported by wind, water, or ice, and deposited elsewhere. The result of physical weathering is often a mix of angular fragments that have the same composition as the original rock or mineral.
To know more about physical weathering, refer here:
https://brainly.com/question/29616084#
#SPJ11
Any atom that has 13 protons is an aluminum atom. Which statement best describes what would happen if a proton were added to an aluminum atom?.
If a proton were added to an aluminum atom, it would result in the formation of a new atom with 14 protons, which is a Silicon atom.
The addition of a proton would increase the atomic number of the aluminum atom by one, changing it to 14, which is the atomic number of silicon. This would result in a change in the electronic configuration of the atom, leading to different chemical properties. The new atom would have one more electron than the original aluminum atom, which would occupy a new orbital. This would result in a change in the valence shell electronic configuration and reactivity of the atom.
To know more about Silicon atoms, here
brainly.com/question/13568870
#SPJ1
What is the pH of a solution whose [H3O+] is
1. 1*10^-9 M?
9
Explanation:
Therefore, [H3O+]=[H+]=1.0×10−9M [ H 3 O + ] = [ H + ] = 1.0 × 10 − 9 M . Thus, the pH of the solution is 9.
if a zero order reaction has a rate constant of 0.0119mhr and an initial concentration of 5.19 m, what will be its concentration after precisely two days? your answer should have three significant figures (round your answer to two decimal places)
The concentration of the reactant after precisely two days is 4.62 M.
For a zero-order reaction, the rate is independent of the concentration and is given by the expression:
rate = k
where k is the rate constant.
The integrated rate law for a zero-order reaction is:
[A] = -kt + [A]₀
where [A] is the concentration of the reactant at time t, [A]₀ is the initial concentration of the reactant, k is the rate constant, and t is time.
Substituting the given values into the equation, we get:
[A] = -kt + [A]₀
[A] = -0.0119 M/hr * (224 hr) + 5.19 M
[A] = -0.5712 M + 5.19 M
[A] = 4.6188 M
Rounding off to three significant figures and two decimal places, we get the final concentration as 4.62 M.
To know more about rate constant, here
brainly.com/question/30787205
#SPJ4
When solutions of lead(II) nitrate and potassium carbonate are mixed, a precipitate of lead(II) carbonate forms. Pb(NO3)2 + K2CO3 --> 2KNO3 + PbCO3 (Note: Give all answer with 3 sigfigs).
What is the molarity of the potassium carbonate solution if 50. 2 mL are required to react with 64. 4 mL of 2. 56 M lead(II) nitrate?
The molarity of the potassium carbonate solution is 3.29 M, rounded to three significant figures.
From the balanced chemical equation, we can see that the reaction between lead(II) nitrate and potassium carbonate has a 1:1 stoichiometry. This means that the number of moles of lead(II) nitrate and potassium carbonate that react must be equal.
First, we need to calculate the number of moles of lead(II) nitrate present in the 64.4 mL of 2.56 M solution:
moles of [tex]Pb(NO3)2[/tex] = Molarity x Volume (in L)
moles of [tex]Pb(NO3)2[/tex] = 2.56 M x 0.0644 L
moles of [tex]Pb(NO3)2[/tex] = 0.165 M
Since the stoichiometry of the reaction is 1:1, the number of moles of potassium carbonate must also be 0.165 moles. We can use this information to calculate the molarity of the potassium carbonate solution:
moles of [tex]K2CO3[/tex] = Molarity x Volume (in L)
0.165 mol = Molarity x 0.0502 L
Molarity = 0.165 mol / 0.0502 L
Molarity = 3.29 M
Therefore, the molarity of the potassium carbonate solution is 3.29 M, rounded to three significant figures.
To know more about molarity refer to-
https://brainly.com/question/8732513
#SPJ11