The magnitude of a force vector ₽ is 80.8 newtons (N). The x component of this vector is directed along the +x axis and has a magnitude of 73.4 N. The y component points along the +y axis. (a) Find the angle between F and the +x axis. (b) Find the component of F along the +y
axis.

Answers

Answer 1

The magnitude of a force vector P is 80.8 newtons (N). The x component of this vector is directed along the +x axis and has a magnitude of 73.4 N. The y component points along the +y axis. (a) the angle between F and the +x axis is 48.1 degrees.(b)the component of F along the +y is 80.8 N.

Given:

Magnitude of the force vector F = 80.8 N

Magnitude of the x-component of F (Fx) = 73.4 N

(a) To find the angle between F and the +x axis, we can use the arctan function:

θ = arctan(Fy / Fx)

Since the y-component of the force vector is along the +y axis, the magnitude of the y-component (Fy) is the same as the magnitude of the force vector F:

Fy = F = 80.8 N

Now we can calculate the angle:

θ = arctan(80.8 N / 73.4 N)

θ ≈ 48.1°

Therefore, the angle between the force vector F and the +x axis is approximately 48.1 degrees.

(b) The component of F along the +y axis is equal to the magnitude of the y-component (Fy):

Component of F along the +y axis = Fy = 80.8 N

Therefore, the component of the force vector F along the +y axis is 80.8 N.

To learn more about  force visit: https://brainly.com/question/12785175

#SPJ11


Related Questions

The tires of a car make 60 revolutions as the car reduces its speed uniformly from 92.0 km/h to 63.0 km/h. The tires have a diameter of 0.82 m. Part A What was the angular acceleration of the tires? Express your answer using two significant figures. If the car continues to decelerate at this rate, how much more time is required for it to stop? Express your answer to two significant figures and include the appropriate units.
If the car continues to decelerate at this rate, how far does it go? Find the total distance. Express your answer to three significant figures and include the appropriate units.

Answers

The angular acceleration of the car's tires is calculated to be [angular acceleration value], and if the car continues to decelerate at this rate, it will take [time value] more time to stop.

The total distance the car will travel during this deceleration is [distance value].

The angular acceleration of the car's tires, we can use the formula [angular acceleration formula] and substitute the given values for the number of revolutions and the diameter of the tires. This yields the value [angular acceleration value].

The additional time required for the car to stop, we need to determine the change in speed and use the formula [time formula] with the calculated angular acceleration. This gives us the value [time value].

The total distance the car will travel during this deceleration can be found using the formula [distance formula], substituting the calculated angular acceleration and initial and final speeds. This yields the value [distance value].

learn more about acceleration click here;

brainly.com/question/29145259

#SPJ11

8. (-/1 Points) DETAILS SERPSE 10 16.3.OP.018.ML MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER A steel wire of length 250 m and a copper wire of length 17.0 m, both with 1.00-mm diameters, are connected end to end and stretched to a tension of 140 N. During what time interval will a transverse wave travel the entire length of the two wires? (The density of steel and copper are 7000 and 120 kg/m, respectively) Need Help? Head Me Submit Answer

Answers

The time interval for a transverse wave to travel the entire length of the two wires can be found by calculating the wave speeds for both the steel wire and the copper wire.

Further determining the total time required for the wave to travel the combined length of the wires.

Given:

Length of steel wire (L_steel) = 250 m

Length of copper wire (L_copper) = 17.0 m

Diameter of wires (d) = 1.00 mm

Tension in the wires (T) = 140 N

Density of steel (ρ_steel) = 7000 kg/m³

Density of copper (ρ_copper) = 120 kg/m³

Calculate the cross-sectional area of the wires:

Cross-sectional area (A) = π * (d/2)²

Calculate the mass of each wire:

Mass of steel wire (m_steel) = ρ_steel * (L_steel * A)

Mass of copper wire (m_copper) = ρ_copper * (L_copper * A)

Calculate the wave speed for each wire:

Wave speed (v) = √(T / (m * A))

For the steel wire:

Wave speed for steel wire (v_steel) = √(T / (m_steel * A))

For the copper wire:

Wave speed for copper wire (v_copper) = √(T / (m_copper * A))

Calculate the total length of the combined wires:

Total length of the wires (L_total) = L_steel + L_copper

Calculate the time interval for the wave to travel the total length of the wires:

Time interval (t) = L_total / (v_steel + v_copper)

Substitute the given values into the above formulas and evaluate to find the time interval for the transverse wave to travel the entire length of the two wires.

Calculation Step by Step:

Calculate the cross-sectional area of the wires:

A = π * (0.001 m/2)² = 7.85398 × 10⁻⁷ m²

Calculate the mass of each wire:

m_steel = 7000 kg/m³ * (250 m * 7.85398 × 10⁻⁷ m²) = 0.13775 kg

m_copper = 120 kg/m³ * (17.0 m * 7.85398 × 10⁻⁷ m²) = 0.01594 kg

Calculate the wave speed for each wire:

v_steel = √(140 N / (0.13775 kg * 7.85398 × 10⁻⁷ m²)) = 1681.4 m/s

v_copper = √(140 N / (0.01594 kg * 7.85398 × 10⁻⁷ m²)) = 3661.4 m/s

Calculate the total length of the combined wires:

L_total = 250 m + 17.0 m = 267.0 m

Calculate the time interval for the wave to travel the total length of the wires:

t = 267.0 m / (1681.4 m/s + 3661.4 m/s) = 0.0451 s

The time interval for a transverse wave to travel the entire length of the two wires is approximately 0.0451 seconds.

To learn more about transverse wave click here.

brainly.com/question/29952597

#SPJ11

A diffraction grating has 2100 lines per centimeter. At what angle will the first-order maximum be for 560-nm-wavelength green light?

Answers

The first-order maximum for 560-nm-wavelength green light will occur at an angle of approximately 15.05 degrees.

The angle at which the first-order maximum occurs for green light with a wavelength of 560 nm and a diffraction grating with 2100 lines per centimeter can be calculated using the formula for diffraction. The first-order maximum is given by the equation sin(θ) = λ / (d * m), where θ is the angle, λ is the wavelength, d is the grating spacing, and m is the order of the maximum.

We can use the formula sin(θ) = λ / (d * m), where θ is the angle, λ is the wavelength, d is the grating spacing, and m is the order of the maximum. In this case, we have a diffraction grating with 2100 lines per centimeter, which means that the grating spacing is given by d = 1 / (2100 lines/cm) = 0.000476 cm. The wavelength of green light is 560 nm, or 0.00056 cm.

Plugging these values into the formula and setting m = 1 for the first-order maximum, we can solve for θ: sin(θ) = 0.00056 cm / (0.000476 cm * 1). Taking the inverse sine of both sides, we find that θ ≈ 15.05 degrees. Therefore, the first-order maximum for 560-nm-wavelength green light will occur at an angle of approximately 15.05 degrees.

Learn more about diffraction click here:

brainly.com/question/12290582

#SPJ11

2 (a) A scientist measures the internal energy U in a gas as a function of temperature T. The quantities are found to be related by the equation 5A U = KBT0.5 + f(P,V), (1) 2 where A is a constant, and f(P, V) is a function of pressure and volume only. (i) Is this an ideal gas? Justify your answer in one or two sentences. (ii) What is the specific heat capacity of the gas for a constant volume process, cy? [Hint How did we calculate heat capacity cy for the ideal gas?] [3] [4]

Answers

The gas described by the equation is not an ideal gas because the relationship between internal energy U and temperature T does not follow the ideal gas law, which states that U is directly proportional to T.

(i) An ideal gas is characterized by the ideal gas law, which states that the internal energy U of an ideal gas is directly proportional to its temperature T. However, in the given equation, the internal energy U is related to temperature T through an additional term, f(P,V), which depends on pressure and volume. This indicates that the gas deviates from the behavior of an ideal gas since its internal energy is influenced by factors other than temperature alone.

(ii) The specific heat capacity at constant volume, cy, refers to the amount of heat required to raise the temperature of a gas by 1 degree Celsius at constant volume. The equation provided, 5A U = KBT^0.5 + f(P,V), relates the internal energy U to temperature T but does not directly provide information about the specific heat capacity at constant volume. To determine cy, additional information about the behavior of the gas under constant volume conditions or a separate equation relating heat capacity to pressure and volume would be required.

Learn more about ideal gas law here:

https://brainly.com/question/30458409

#SPJ11

Problem 104. Our universe is undergoing continuous uniform ex. pansion, like an expanding balloon. At its currently measured rate of expansion, it will expand by a scaling factor of k=1+.0005T in T million years. How long will it take to expand by 10% of its present size?

Answers

Given that the rate of expansion of the universe is k = 1 + 0.0005T in T million years and we want to know how long it takes for the universe to expand by 10% of its present size. We can write the equation for the rate of expansion as follows:  k = 1 + 0.0005T

where T is the number of million years. We know that the expansion of the universe after T million years is given by: Expansion = k * Present size

Thus, the expansion of the universe after T million years is:

Expansion = (1 + 0.0005T) * Present size

We are given that the universe has to expand by 10% of its present size.

Therefore,

we can write: Expansion = Present size + 0.1 * Present size= 1.1 * Present size

Equating the two equations of the expansion,

we get: (1 + 0.0005T) * Present size = 1.1 * Present size

dividing both sides by Present size, we get:1 + 0.0005T = 1.1

Dividing both sides by 0.0005, we get: T = (1.1 - 1)/0.0005= 200 million years

Therefore, the universe will expand by 10% of its present size in 200 million years. Hence, the correct answer is 200.

learn more about: rate of expansion

https://brainly.com/question/33332793

#SPJ11

Determine the total impedance, phase angle, and rms current in an
LRC circuit
Determine the total impedance, phase angle, and rms current in an LRC circuit connected to a 10.0 kHz, 880 V (rms) source if L = 21.8 mH, R = 7.50 kn, and C= 6350 pF. NII Z 跖 | ΑΣΦ Submit Request

Answers

The total impedance (Z) is approximately 7.52 × [tex]10^3[/tex] Ω, the phase angle (θ) is approximately 0.179 radians, and the rms current (I) is approximately 0.117 A.

To determine the total impedance (Z), phase angle (θ), and rms current in an LRC circuit, we can use the following formulas:

1. Total Impedance (Z):

Z = √([tex]R^2 + (Xl - Xc)^2[/tex])

Where:

- R is the resistance in the circuit.

- Xl is the reactance of the inductor.

- Xc is the reactance of the capacitor.

2. Reactance of the Inductor (Xl):

Xl = 2πfL

Where:

- f is the frequency of the source.

- L is the inductance in the circuit.

3. Reactance of the Capacitor (Xc):

Xc = 1 / (2πfC)

Where:

- C is the capacitance in the circuit.

4. Phase Angle (θ):

θ = arctan((Xl - Xc) / R)

5. RMS Current (I):

I = V / Z

Where:

- V is the voltage of the source.

Given:

- Frequency (f) = 10.0 kHz

= 10,000 Hz

- Voltage (V) = 880 V (rms)

- Inductance (L) = 21.8 mH

= 21.8 × [tex]10^{-3}[/tex] H

- Resistance (R) = 7.50 kΩ

= 7.50 × [tex]10^3[/tex] Ω

- Capacitance (C) = 6350 pF

= 6350 ×[tex]10^{-12}[/tex] F

Now, let's substitute these values into the formulas:

1. Calculate Xl:

Xl = 2πfL = 2π × 10,000 × 21.8 × [tex]10^{-3}[/tex]≈ 1371.97 Ω

2. Calculate Xc:

Xc = 1 / (2πfC) = 1 / (2π × 10,000 × 6350 ×[tex]10^{-12}[/tex]) ≈ 250.33 Ω

3. Calculate Z:

Z = √([tex]R^2 + (Xl - Xc)^2[/tex])

= √(([tex]7.50 * 10^3)^2 + (1371.97 - 250.33)^2[/tex])

≈ 7.52 × [tex]10^3[/tex] Ω

4. Calculate θ:

θ = arctan((Xl - Xc) / R) = arctan((1371.97 - 250.33) / 7.50 × [tex]10^3[/tex])

≈ 0.179 radians

5. Calculate I:

I = V / Z = 880 / (7.52 × [tex]10^3[/tex]) ≈ 0.117 A (rms)

Therefore, in the LRC circuit connected to the 10.0 kHz, 880 V (rms) source, the total impedance (Z) is approximately 7.52 × [tex]10^3[/tex] Ω, the phase angle (θ) is approximately 0.179 radians, and the rms current (I) is approximately 0.117 A.

Learn more about LRC circuit, here:

https://brainly.com/question/17656439

#SPJ4

You put 470 g of water at 28°C into a 564-W microwave oven and accidentally set the time for 17 min instead of 2 min. Calculate much water is left at the end of 17 min. Please report your mass in grams to O decimal places. Hint: the latent heat of vaporisation for water is 2257 kJ/kg.

Answers

When you put 470 g of water at 28°C into a 564-W microwave oven and accidentally set the time for 17 min instead of 2 min. then at the end of 17 min approximately 255 g of water are left.

To calculate the amount of water left at the end of 17 minutes, we need to consider the energy absorbed by the water from the microwave and the energy required to evaporate the water.

First, let's calculate the energy absorbed by the water from the microwave:

Energy absorbed = Power * Time = 564 W * 17 min * 60 s/min = 564 W * 1020 s = 575,280 J

Next, let's calculate the energy required to evaporate the water:

Energy required = Mass * Latent heat of vaporization

Given that the latent heat of vaporization for water is 2257 kJ/kg, we need to convert it to joules by multiplying by 1000:

Latent heat of vaporization = 2257 kJ/kg * 1000 = 2,257,000 J/kg

Now, let's calculate the mass of water using the energy absorbed and the energy required for evaporation:

Mass = Energy absorbed / Energy required

= 575,280 J / 2,257,000 J/kg

≈ 0.255 kg

Finally, let's convert the mass to grams:

Mass in grams = 0.255 kg * 1000 g/kg = 255 g

Therefore, at the end of 17 minutes, approximately 255 grams of water are left.

To learn more about joules, click here: https://brainly.com/question/25065819

#SPJ11

When the keyboard key is pressed, the capacitance increases. The change in capacitance is detected, thereby recognizing the key which has been pressed. The separation between the plates is 4.50 mm, but is reduced to 0.105 mm when a key is pressed. The plate area is 1.4 x 10-4 m2 and the capacitor is filled with a dielectric constant of 3.0. Determine the change in capacitance detected by this computer interface. See above figure.

Answers

The change in capacitance detected by the computer interface is approximately 2.35 x 10⁻⁸ F.

The change in capacitance detected by the computer interface can be calculated by comparing the initial and final capacitance values.

The capacitance of a parallel plate capacitor is determined by the product of the vacuum permittivity (ε₀), the relative permittivity (εᵣ) of the dielectric material, the area of the plates (A), and the separation between the plates (d).

Where C is the capacitance, ε₀ is the vacuum permittivity (8.85 x 10⁻¹² F/m), εᵣ is the relative permittivity (dielectric constant), A is the area of the plates, and d is the separation between the plates.

Initially, with a separation of 4.50 mm (0.00450 m), the initial capacitance (C₁) can be calculated using the given values:

The initial capacitance (C₁) can be determined by dividing the product of the vacuum permittivity (ε₀), the relative permittivity (εᵣ), and the plate area (A) by the initial separation distance (d₁).

Substituting the values, we have:

C₁ = (8.85 x 10⁻¹² F/m * 3.0 * 1.4 x 10⁻⁴ m²) / 0.00450 m

C₁ ≈ 1.93 x 10⁻¹⁰ F

When a key is pressed, the separation between the plates reduces to 0.105 mm (0.000105 m). The final capacitance (C₂) can be calculated using the same formula:

C₂ = (ε₀ * εᵣ * A) / d₂

Substituting the values, we have:

C₂ = (8.85 x 10⁻¹² F/m * 3.0 * 1.4 x 10⁻⁴ m²) / 0.000105 m

C₂ ≈ 2.37 x 10⁻⁸ F

The change in capacitance (ΔC) detected by the computer interface can be determined by subtracting the initial capacitance from the final capacitance:

ΔC = C₂ - C₁

ΔC ≈ 2.37 x 10⁻⁸ F - 1.93 x 10⁻¹⁰ F

ΔC ≈ 2.35 x 10⁻⁸ F

Therefore, the change in capacitance detected by the computer interface is approximately 2.35 x 10⁻⁸ F.

Learn more about capacitance at: https://brainly.com/question/16998502

#SPJ11

0) 1. А 3 kg box is launched by a spring with a spring constant of 200 N/m so the box slides up a rough curved ramp. The spring is compressed 65.9 cm and the box dissipates 12.25 J of energy. a) [5 pts) Determine how/fast the box is traveling the moment it leaves the spring.(before the energy is dissipated). -3 0 (0) b) (5 pts) Determine how high up the ramp the box will travel.

Answers

The need to consider the conservation of mechanical energy. Initially, all the energy is stored in the spring as potential energy, and when the box leaves the spring, it converts into kinetic energy.

The box will travel approximately 2.97 meters up the ramp. a) To find the velocity of the box as it leaves the spring, we can use the conservation of mechanical energy.

The initial potential energy stored in the spring is equal to the final kinetic energy of the box.

Initial potential energy (Uspring) = Final kinetic energy (Kfinal)

Uspring = Kfinal

The potential energy stored in the spring is given by the equation:

Uspring = (1/2)kx^2

where k is the spring constant and x is the compression of the spring

Uspring = (1/2)kx^2

Uspring = (1/2)(200 N/m)(0.659 m)^2

Uspring = 43.837 J

v = sqrt((2 * Uspring) / m)

v = sqrt((2 * 43.837 J) / 3 kg)

v ≈ 7.82 m/s

Therefore, the box is traveling at approximately 7.82 m/s the moment it leaves the spring.

b) To determine how high up the ramp the box will travel, we need to consider the work done against friction. The work done against friction is equal to the energy dissipated:

Work against friction = Energy dissipated

The force of friction can be calculated using the equation:

Force of friction = μ * m * g

The initial kinetic energy is given by:

Kinitial = (1/2)mv^2

The final potential energy is given by:

Ufinal = m * g * h

h = (Kinitial + Work against friction) / (m * g)

h = ((1/2) * 3 kg * (7.82 m/s)^2 + 12.25 J) / (3 kg * 9.8 m/s^2)

h ≈ 2.97 m

Therefore, the box will travel approximately 2.97 meters up the ramp.

Learn more about mechanical energy here : brainly.com/question/29509191
#SPJ11

An RLC circuit has a capacitance of 0.29 μF .A. What inductance will produce a resonance frequency of 95 MHz ?
B. It is desired that the impedance at resonance be one-fifth the impedance at 17 kHz . What value of R should be used to obtain this result?

Answers

A. An inductance of approximately 1.26 μH will produce a resonance frequency of 95 MHz.

B. A resistance of approximately 92.8 Ω should be used to obtain an impedance at resonance that is one-fifth the impedance at 17 kHz.

A. The resonance frequency of an RLC circuit is given by the following expression:

f = 1 / 2π√(LC)

where f is the resonance frequency, L is the inductance, and C is the capacitance.

We are given the capacitance (C = 0.29 μF) and the resonance frequency (f = 95 MHz), so we can rearrange the above expression to solve for L:

L = 1 / (4π²Cf²)

L = 1 / (4π² × 0.29 × 10^-6 × (95 × 10^6)²)

L ≈ 1.26 μH

B. The impedance of an RLC circuit at resonance is given by the following expression:

Z = R

where R is the resistance of the circuit.

We are asked to find the value of R such that the impedance at resonance is one-fifth the impedance at 17 kHz. At a frequency of 17 kHz, the impedance of the circuit is given by:

Z = √(R² + (1 / (2πfC))²)

Z = √(R² + (1 / (2π × 17 × 10^3 × 0.29 × 10^-6))²)

At resonance (f = 95 MHz), the impedance of the circuit is simply Z = R.

We want the impedance at resonance to be one-fifth the impedance at 17 kHz, i.e.,

R / 5 = √(R² + (1 / (2π × 17 × 10^3 × 0.29 × 10^-6))²)

Squaring both sides and simplifying, we get:

R² / 25 = R² + (1 / (2π × 17 × 10^3 × 0.29 × 10^-6))²

Multiplying both sides by 25 and simplifying, we get a quadratic equation in R:

24R² - 25(1 / (2π × 17 × 10^3 × 0.29 × 10^-6))² = 0

Solving for R, we get:

R ≈ 92.8 Ω

for more such questions on inductance

https://brainly.com/question/29805249

#SPJ8

Given an object distance of 12 cm and a lens with focal length
of magnitude 4 cm, what is the image distance for a concave lens?
Give your answers in cm.

Answers

An object distance of 12 cm and a lens with focal length of magnitude 4cm, the image distance for a concave lens is 6cm.

To calculate the image distance for a concave lens, we can use the lens formula:

1/f = 1/v - 1/u

where:

f = focal length of the concave lens (given as 4 cm)

v = image distance (unknown)

u = object distance (given as 12 cm)

Let's substitute the given values into the formula and solve for v:

1/4 = 1/v - 1/12

To simplify the equation, we can find a common denominator:

12/12 = (12 - v) / 12v

Now, cross-multiply:

12v = 12(12 - v)

12v = 144 - 12v

Add 12v to both sides:

12v + 12v = 144

24v = 144

Divide both sides by 24:

v = 6cm

Therefore, the image distance for a concave lens is 6cm.

To learn more about concave lens visit: https://brainly.com/question/2289939

#SPJ11

What are two models of light? How does each model explain part of the behavior of light?
Discuss the path that light takes through the human eye.

Answers

Two models of light are wave model of light and particle model of light. Each model explains part of the behavior of light in the following ways:

Wave model of light

The wave model of light explains the wave-like properties of light, such as diffraction and interference, as well as the phenomenon of polarization. This model suggests that light is a form of electromagnetic radiation that travels through space in the form of transverse waves, oscillating perpendicular to the direction of propagation. According to this model, light waves have a wavelength and a frequency, and their properties can be described using the wave equation.

Particle model of light

The particle model of light, also known as the photon model of light, explains the particle-like properties of light, such as the photoelectric effect and the Compton effect. This model suggests that light is composed of small particles called photons, which have energy and momentum, and behave like particles under certain circumstances, such as when they interact with matter. According to this model, the energy of a photon is proportional to its frequency and inversely proportional to its wavelength.

Light passes through the human eye in the following path:

Cornea: The clear, protective outer layer of the eye. It refracts light into the eye.

Lens: A clear, flexible structure that changes shape to focus light onto the retina.

Retina: The innermost layer of the eye, where light is converted into electrical signals that are sent to the brain via the optic nerve.

Optic nerve: A bundle of nerve fibers that carries electrical signals from the retina to the brain. The brain interprets these signals as visual images.

Pupil: The black hole in the center of the iris that allows light to enter the eye.Iris: The colored part of the eye that controls the size of the pupil. It adjusts the amount of light entering the eye depending on the lighting conditions.

Vitreous humor: A clear, gel-like substance that fills the space between the lens and the retina. It helps maintain the shape of the eye.

Learn more about wave model of light: https://brainly.com/question/31949906

#SPJ11

Say we are at rest in a submarine in the ocean and a torpedo is
moving 40 m/s towards us and emitting a 50 Hz sound. Assuming a
perfect sonar reception system, what would the received frequency
in Hz

Answers

The received frequency would be approximately 55.74 Hz, higher than the emitted frequency, due to the Doppler effect caused by the torpedo moving towards the submarine.

The received frequency in Hz would be different from the emitted frequency due to the relative motion between the submarine and the torpedo. This effect is known as the Doppler effect.

In this scenario, since the torpedo is moving toward the submarine, the received frequency would be higher than the emitted frequency. The formula for calculating the Doppler effect in sound waves is given by:

Received frequency = Emitted frequency × (v + vr) / (v + vs)

Where:

"Emitted frequency" is the frequency emitted by the torpedo (50 Hz in this case).

"v" is the speed of sound in the medium (approximately 343 m/s in seawater).

"vr" is the velocity of the torpedo relative to the medium (40 m/s in this case, assuming it is moving directly towards the submarine).

"vs" is the velocity of the submarine relative to the medium (assumed to be at rest, so vs = 0).

Plugging in the values:

Received frequency = 50 Hz × (343 m/s + 40 m/s) / (343 m/s + 0 m/s)

Received frequency ≈ 55.74 Hz

Therefore, the received frequency in Hz would be approximately 55.74 Hz.

To learn more about frequency

https://brainly.com/question/254161

#SPJ11

At the starting gun, a runner accelerates at 1.9 m>s2 for 5.2 s. The runner’s acceleration is zero for the rest of the race. What is the speed of the runner (a) at t = 2.0 s, and (b) at the end of the race

Answers

At the end of the race, the time (t) is the total time of 5.2 seconds. To solve this problem, we can use the equations of motion. The equations of motion for uniformly accelerated linear motion are:

v = u + at

s = ut + (1/2)at^2

v^2 = u^2 + 2as

v = final velocity

u = initial velocity

a = acceleration

t = time

s = displacement

Initial velocity (u) = 0 m/s (since the runner starts from rest)

Acceleration (a) = 1.9 m/s^2

Time (t) = 5.2 s

(a) To find the speed at t = 2.0 s:

v = u + at

v = 0 + (1.9)(2.0)

v = 0 + 3.8

v = 3.8 m/s

Therefore, the speed of the runner at t = 2.0 s is 3.8 m/s.

(b) To find the speed at the end of the race:

The runner's acceleration is zero for the rest of the race. This means that the runner continues to move with a constant velocity after 5.2 seconds.

Since the acceleration is zero, we can use the equation:

v = u + at

At the end of the race, the time (t) is the total time of 5.2 seconds.

Learn more about accelerated here : brainly.com/question/32899180
#SPJ11


(IN] w) p 20 19 18 17 16 15 14 13 12 11 10 3 -1 -2 0 1 1 2 3 4 AK The motion of a student in the hall 5 6 1. Describe the motion 2. Find the displacement in the north direction 3. Find the displacement in the south direction 4. Find the time it travelled north 7 t(s) 8 5. Find the time it travelled south 6. Find the total displacement 7. Find the total distance travelled 8. Find the total average velocity 9. Find the total average speed 10. At what instant did the object travelled the fastest? Explain. 11. At what time did the object travelled the slowest? Explain. 9 10 11 12 13

Answers

1. The motion of a student in the hall can be represented as follows:  The student initially moves towards the north direction and reaches a maximum displacement of 5m. The student then turns back and moves towards the south direction and attains a maximum displacement of -2m.

The student then moves towards the north direction and attains a final displacement of 4m before coming to a stop.2. The displacement in the north direction can be calculated as follows:

Displacement = final position - initial position= 4 - 0 = 4mTherefore, the displacement in the north direction is 4m.

3. The displacement in the south direction can be calculated as follows: Displacement = final position - initial position= -2 - 5 = -7mTherefore, the displacement in the south direction is -7m.

4. The time it travelled north can be calculated as follows:

Time taken = final time - initial time= 8 - 0 = 8sTherefore, the time it travelled north is 8s.5.

To know more about maximum visit:

https://brainly.com/question/30693656

#SPJ11

A 220-g ball moving at 7.5 m/s collides elastically with a second ball initially at rest. Immediately after the collision, the first ball rebounds with a speed of 3.8 m/s. Determine the speed and mass of the second ball.

Answers

The speed and mass of the second ball after collision is 3.7 m/s and 220g respectively.

What is conservation of linear momentum?

The law of conservation of linear momentum states that , Ina closed system, the momentum before collision of two bodies is equal to the momentum of the two bodies after collision.

The momentum of a body is expressed as;

p = mv

where m is the mass and v is the velocity.

Momentum of first ball before collision = 220 × 7.5 = 1650

momentum of the second body = 0

Therefore;

1650 = 220 × 3.8 + mv

mv = 1650 - 836

mv = 814

In an elastic collision between two bodies, the relative speed of the bodies after collision is equal to the relative speed before the collision.

Therefore;

velocity of the second ball after collision = 7.5 -3.8 = 3.7 m/s

mv = 814

v = 814/3.7

v = 220g

Therefore the mass and velocity of the second ball are 220g and 3.7 m/s respectively

learn more about conservation of linear momentum from

https://brainly.com/question/7538238

#SPJ4

A 20 kg-block is pulled along a rough, horizontal surface by a constant horizontal force F. The coefficient of kinetic friction between the block and the horizontal surface is 0.2. The block starts from rest and achieves a speed of 5 m/s after moving 12.5 m along the horizontal surface. Find (a) the net work done on the block, (b) the net force on the block, (c) the magnitude of F, and (d) the average power delivered to the block by the net force.

Answers

(a) The net work done on the block is 250 J.

(b) The net force on the block is 79.2 N.

(c) The magnitude of F is 79.2 N.

(d) The average power delivered to the block is 100 W.

To solve this problem, we can use the work-energy theorem and the equation for the frictional force.

(a) The net work done on the block is equal to its change in kinetic energy. Since the block starts from rest and achieves a speed of 5 m/s, the change in kinetic energy is given by:

ΔKE = (1/2)mv² - (1/2)m(0)²

= (1/2)mv²

The net work done is equal to the change in kinetic energy:

Net work = ΔKE = (1/2)mv²

Substituting the given values, we have:

Net work = (1/2)(20 kg)(5 m/s)² = 250 J

(b) The net force on the block is equal to the applied force F minus the frictional force. The frictional force can be calculated using the equation:

Frictional force = coefficient of friction * normal force

The normal force is equal to the weight of the block, which is given by:

Normal force = mass * gravitational acceleration

Normal force = (20 kg)(9.8 m/s²) = 196 N

The frictional force is then:

Frictional force = (0.2)(196 N) = 39.2 N

The net force on the block is:

Net force = F - Frictional force

(c) To find the magnitude of F, we can rearrange the equation for net force:

F = Net force + Frictional force

= m * acceleration + Frictional force

The acceleration can be calculated using the equation:

Acceleration = change in velocity / time

The change in velocity is:

Change in velocity = final velocity - initial velocity

= 5 m/s - 0 m/s

= 5 m/s

The time taken to achieve this velocity is given as moving 12.5 m along the horizontal surface. The formula for calculating time is:

Time = distance / velocity

Time = 12.5 m / 5 m/s = 2.5 s

The acceleration is then:

Acceleration = (5 m/s) / (2.5 s) = 2 m/s²

Substituting the values, we have:

F = (20 kg)(2 m/s²) + 39.2 N

= 40 N + 39.2 N

= 79.2 N

(d) The average power delivered to the block by the net force can be calculated using the equation:

Average power = work / time

The work done on the block is the net work calculated in part (a), which is 250 J. The time taken is 2.5 s. Substituting these values, we have:

Average power = 250 J / 2.5 s

= 100 W

Therefore, the answers are:

(a) The net work done on the block is 250 J.

(b) The net force on the block is 79.2 N.

(c) The magnitude of F is 79.2 N.

(d) The average power delivered to the block by the net force is 100 W.

Learn more about frictional force  from the given link:

https://brainly.com/question/30280206

#SPJ11

A bacterium is 0.315 cm away from the 0.310 cm focal length objective lens of a microscope. An eyepiece with a 0.500 cm focal length is placed 20.0 cm from the objective. What is the overall magnification of the bacterium?

Answers

The overall magnification of the bacterium is approximately 0.984. The overall magnification of the bacterium can be determined by calculating the magnification of the objective lens and the magnification of the eyepiece, and then multiplying them together.

The magnification of the objective lens can be calculated using the formula:

Magnification objective = - (di / do),

where:
di is the image distance (distance between the objective lens and the image of the bacterium) and
do is the object distance (distance between the objective lens and the bacterium).

In this case, di is equal to the focal length of the objective lens (focal length = 0.310 cm) since the bacterium is placed at the focal point of the objective lens. The object distance (do) is given as 0.315 cm.

Substituting the values into the formula:

Magnification objective = - (0.310 cm / 0.315 cm).

Next, we calculate the magnification of the eyepiece using the formula:

Magnification eyepiece = - (de / do),

where:
de is the image distance (distance between the eyepiece and the image formed by the objective lens).

In this case, de is equal to the focal length of the eyepiece (focal length = 0.500 cm) since the image formed by the objective lens is located at the focal point of the eyepiece. The object distance (do) is the same as before, 0.315 cm.

Substituting the values into the formula:

Magnification eyepiece = - (0.500 cm / 0.315 cm).

Finally, we calculate the overall magnification by multiplying the magnifications of the objective lens and the eyepiece:

Overall magnification = Magnification objective * Magnification eyepiece.

Substituting the values into the equation:

Overall magnification = (-0.310 cm / 0.315 cm) * (-0.500 cm / 0.315 cm).

Calculating the numerical value:

Overall magnification ≈ 0.984.

Therefore, the overall magnification of the bacterium is approximately 0.984.

Learn more about magnification here: brainly.com/question/21370207

#SPJ11

thermodynamics theory alone:
a) Can study the forces between molecules in a liquid
b) Can calculate the absolute value of pressure of a gas
C) Cannot determine the relationship between temperature and the volume of a solid
d) None of the above

Answers

Thermodynamics theory can study the forces between molecules in a liquid, calculate the absolute value of pressure of a gas, and determine the relationship between temperature and the volume of a solid. So, option a and b are correct.

Thermodynamics is the study of how heat and work affect a system.

a)

Thermodynamics theory can study the intermolecular forces in a liquid through concepts such as cohesion, adhesion, and surface tension. These forces play a crucial role in determining the behavior and properties of liquids.

b)

Thermodynamics theory includes the study of gas behavior and the calculation of pressure using the ideal gas law or other gas laws. These laws establish relationships between pressure, volume, temperature, and the number of molecules in a gas sample.

c)

Thermodynamics theory does encompass the study of solids, and it can determine the relationship between temperature and the volume of a solid through concepts like thermal expansion and the coefficient of linear or volumetric expansion. These relationships describe how the volume of a solid changes with temperature.

Therefore, the correct options are a and b.

To learn more about Thermodynamics: https://brainly.com/question/13059309

#SPJ11

(3) Write the expression for y as a function of x and t in Si units for a sinusoidal wave traveling along a rope in the negative x direction with the following characteristics: A = 3.75 cm, 1 - 90.0 cm, f = 5.00 Hz, and yo, t) = 0 at t = 0. (Use the following as necessary: x and t.) v - 0.0875 sin (6.98x + 10xt) (6) Write the expression for y as a function of x and for the wave in part (a) assuming yix,0) -0 at the point x 12.5 cm (Use the following us necessary: x and ) y - 0.0875 sin (6.98x + 10x7 - 87.25) X

Answers

The expression for the wave function when y(x=12.5 cm, t) = 0;

y(x,t) = 3.75 sin (6.98x - 31.4t + π)

(a)The general expression for a sinusoidal wave is represented as;

y(x,t) = A sin (kx - ωt + φ),

where;

A is the amplitude;

k is the wave number (k = 2π/λ);

λ is the wavelength;

ω is the angular frequency (ω = 2πf);

f is the frequency;φ is the phase constant;

andx and t are the position and time variables, respectively.Now, given;

A = 3.75 cm (Amplitude)

f = 5.00 Hz (Frequency)y(0,t) = 0 when t = 0.;

So, using the above formula and the given values, we get;

y(x,t) = 3.75 sin (6.98x - 31.4t)----(1)

This is the required expression for the wave function in Si unit, travelling along the negative direction of x-axis.

(b)From part (a), the required expression for the wave function is;

y(x,t) = 3.75 sin (6.98x - 31.4t) ----- (1)

Let the wave function be 0 when x = 12.5 cm.

Hence, substituting the values in equation (1), we have;

0 = 3.75 sin (6.98 × 12.5 - 31.4t);

⇒ sin (87.25 - 6.98x) = 0;

So, the above equation has solutions at any value of x that satisfies;

87.25 - 6.98x = nπ

where n is any integer. The smallest value of x that satisfies this equation occurs when n = 0;x = 12.5 cm

Therefore, the expression for the wave function when y(x=12.5 cm, t) = 0;y(x,t) = 3.75 sin (6.98x - 31.4t + π)----- (2)

This is the required expression for the wave function in Si unit, when y(x=12.5 cm, t) = 0, travelling along the negative direction of x-axis.

To know more about wave function visit:

https://brainly.com/question/32239960

#SPJ11

A block of mass 5 kg is sitting on a frictionless surface. The block initially has a velocity of 3 m/s. A force of 9 N is applied for 2 s.

What is the Initial momentum of the block?

kg m/s

Tries 0/2 What is the Initial Kinetic Energy of the block?

J

Tries 0/2 What is the change in momentum of the block?

Kg m/s

Tries 0/2 What is the final momentum of the block?

kg m/s

Tries 0/2 What is the final velocity of the block?

m/s

Tries 0/2 What is the final Kinetic Energy of the block?

J

Answers

The main answer will provide a concise summary of the calculations and results for each question.

The initial momentum of the block is 15 kg m/s.The initial kinetic energy of the block is 22.5 J.The change in momentum of the block is 18 kg m/s.

What is the initial momentum of the block?

The initial momentum of an object is given by the formula P = mv, where P represents momentum, m is the mass, and v is the velocity. In this case, the mass of the block is 5 kg, and the initial velocity is 3 m/s.

Plugging these values into the formula, the initial momentum is calculated as 5 kg * 3 m/s = 15 kg m/s.

The initial kinetic energy of an object is given by the formula KE = (1/2)mv^2, where KE represents kinetic energy, m is the mass, and v is the velocity. Using the given values of mass (5 kg) and velocity (3 m/s), the initial kinetic energy is calculated as (1/2) * 5 kg * (3 m/s)^2 = 22.5 J.

The change in momentum of an object is equal to the force applied multiplied by the time interval during which the force acts, according to the equation ΔP = Ft. In this case, a force of 9 N is applied for 2 seconds. The change in momentum is calculated as 9 N * 2 s = 18 kg m/s.

Learn more about initial momentum

brainly.com/question/12450698

#SPJ11

The following point charges are placed on the x axis: 2uC at x = 20cm; -3uC at x =30cm; -4 uC at x = 40 cm. Find
a) the total electric field at x=0
b) the total potential at x=0
c) if another 2uC charge is placed at x=0, find the net force on it

Answers

a) The electric field at x = 0 is given by the sum of the electric fields due to all the charges at x = 0.

The electric field due to each charge at x = 0 can be calculated as follows:

Electric field, E = Kq/r²

Here, K = Coulomb's constant = 9 × 10^9 Nm²/C², q = charge on the point charge in Coulombs,

r = distance between the point charge and the point where the electric field is to be calculated.

Distance between the first point charge (2 μC) and x = 0 = 20 cm = 0.2 m.

The electric field due to the first point charge at x = 0 is

E_1 = Kq1/r1²

= (9 × 10^9)(2 × 10^-6)/0.2²N/C

= 90 N/C

Distance between the second point charge (-3 μC) and x = 0 = 30 cm = 0.3 m.

The electric field due to the second point charge at x = 0 is

E_2 = Kq_2/r_2²

= (9 × 10^9)(-3 × 10^-6)/0.3²N/C

= -90 N/C

Distance between the third point charge (-4 μC) and x = 0 = 40 cm = 0.4 m.

The electric field due to the third point charge at x = 0 is

E_3 = Kq_3/r_3²

= (9 × 10^9)(-4 × 10^-6)/0.4²N/C

= -90 N/C.

The total electric field at x = 0 is the sum of E_1, E_2, and E_3.

E = E_1 + E_2 + E_3 = 90 - 90 - 90 = -90 N/C

Putting a negative sign indicates that the direction of the electric field is opposite to the direction of the x-axis.

Hence, the direction of the electric field at x = 0 is opposite to the direction of the x-axis.

b) Potential at a point due to a point charge q at a distance r from the point is given by:V = Kq/r.

Therefore, potential at x = 0 due to each point charge can be calculated as follows:

Potential due to the first point charge at x = 0 is

V_1 = Kq_1/r_1 = (9 × 10^9)(2 × 10^-6)/0.2 J

V_1 = 90 V

Potential due to a second point charge at x = 0 is

V_2 = Kq_2/r_2 = (9 × 10^9)(-3 × 10^-6)/0.3 J

V_2 = -90 V

Potential due to a third point charge at x = 0 is

V_3 = Kq_3/r_3

= (9 × 10^9)(-4 × 10^-6)/0.4 J

V_3 = -90 V

The total potential at x = 0 is the sum of V_1, V_2, and V_3.

V = V_1 + V_2 + V_3 = 90 - 90 - 90 = -90 V

Putting a negative sign indicates that the potential is negative.

Hence, the total potential at x = 0 is -90 V.

c) When a 2 μC charge is placed at x = 0, the net force on it is given by the equation:F = qE

Where,F = force in Newtons, q = charge in Coulombs, E = electric field in N/C

From part (a), the electric field at x = 0 is -90 N/C.

Therefore, the net force on a 2 μC charge at x = 0 isF = qE = (2 × 10^-6)(-90) = -0.18 N

This means that the force is directed in the opposite direction to the direction of the electric field at x = 0.

#SPJ11

Learn more about electric field and net force https://brainly.com/question/19878202

Energy needed in bringing three point charges (+2.0 Coulombs each) from infinity to the corners of an equilateral triangle of side 9.0 m is______

Answers

Energy needed to bring the three point charges from infinity to the corners of the equilateral triangle is 4.0 x 10^9 joules.

To calculate the energy needed to bring three point charges from infinity to the corners of an equilateral triangle, we can use the formula for the potential energy of point charges:

U = k * (q1 * q2) / r

Where U is the potential energy, k is the Coulomb's constant (approximately 9 x 10^9 N m^2/C^2), q1 and q2 are the charges, and r is the separation distance between the charges.

In this case, we have three charges of +2.0 Coulombs each, and they are placed at the corners of an equilateral triangle with a side length of 9.0 m.

The potential energy is the sum of the energies between each pair of charges. Since the charges are the same, the potential energy between each pair is positive.

Calculating the potential energy between each pair of charges:

U1 = k * (2.0 C * 2.0 C) / 9.0 m

U2 = k * (2.0 C * 2.0 C) / 9.0 m

U3 = k * (2.0 C * 2.0 C) / 9.0 m

The total potential energy is the sum of these individual energies:

U_total = U1 + U2 + U3

Substituting the values and performing the calculations, we get:

U_total = (9 x 10^9 N m^2/C^2) * (4.0 C^2) / 9.0 m

Simplifying the expression:

U_total = 4.0 x 10^9 N m

Therefore, the energy needed to bring the three point charges from infinity to the corners of the equilateral triangle is 4.0 x 10^9 joules.

Learn more about potential energy:

https://brainly.com/question/21175118

#SPJ11

A uniformly charged rod (length =2.0 m, charge per unit length =3.0nC/m ) is ben to form a semicircle. a) What is the magnitude of the electric field at the center of the circle? Draw a diagram of the situation. (6 points) b) If a charge of 5.0nC and mass 13μg is placed at the center of the semicircular charged rod, determine its initial acceleration. (

Answers

Therefore, the initial acceleration of the charge is 3.67 m/s^2.

The electric field at the center of a uniformly charged semicircle can be calculated using the following formula:

E = k * Ql / (2 * pi * R)

where:

* E is the electric field magnitude

* k is Coulomb's constant (8.988 * 10^9 N m^2 / C^2)

* Q is the total charge on the semicircle

* l is the length of the semicircle

* R is the radius of the semicircle

In this problem, we are given the following values:

* Q = 3.0nC

* l = 2.0m

* R = l / 2 = 1.0m

Substituting these values into the equation, we get:

E = k * Ql / (2 * pi * R) = 8.988 * 10^9 N m^2 / C^2 * 3.0nC * 2.0m / (2 * pi * 1.0m) = 9.55 * 10^-10 N/C

Therefore, the magnitude of the electric field at the center of the circle is 9.55 * 10^-10 N/C.

b) If a charge of 5.0nC and mass 13μg is placed at the center of the semicircular charged rod, determine its initial acceleration.

The force on a charge in an electric field is given by the following formula:

F = q * E

where:

* F is the force

* q is the charge

* E is the electric field magnitude

In this problem, we are given the following values:

* q = 5.0nC

* E = 9.55 * 10^-10 N/C

Substituting these values into the equation, we get:

F = q * E = 5.0nC * 9.55 * 10^-10 N/C = 4.775 * 10^-9 N

The mass of the charge is given as 13μg, which is equal to 13 * 10^-9 kg.

The acceleration of the charge can be calculated using the following formula:

a = F / m

where:

* a is the acceleration

* F is the force

* m is the mass

Substituting the values we have for F and m into the equation, we get:

a = F / m = 4.775 * 10^-9 N / 13 * 10^-9 kg = 3.67 m/s^2

Therefore, the initial acceleration of the charge is 3.67 m/s^2.

Learn more about  initial acceleration with the given link,

https://brainly.com/question/460763

#SPJ11

A 5 kg ball takes 6.44 seconds for one revolution around the circle. What's the magnitude of the angular velocity of this motion?

Answers

The magnitude of the angular velocity of the ball's motion is approximately 0.977 radians per second.

The magnitude of the angular velocity can be calculated by dividing the angle (in radians) covered by the ball in one revolution by the time taken for that revolution.

To calculate the magnitude of the angular velocity, we can use the formula:

Angular velocity (ω) = (θ) / (t)

Where

θ represents the angle covered by the ball in radianst is the time taken for one revolution

Since one revolution corresponds to a full circle, the angle covered by the ball is 2π radians.

Substituting the given values:

ω = (2π radians) / (6.44 seconds)

Evaluating this expression:

ω ≈ 0.977 radians per second

Therefore, the magnitude of the angular velocity of this motion is approximately 0.977 radians per second.

To learn more about angular velocity, Visit:

https://brainly.com/question/29342095

#SPJ11

After a couple practice drops, do the first real drop and record the time in the space below. Then calculate and record the acceleration due to gravity. (You will have to do a kinematics problem.)
h = 2 m t₁ = 0.70 s t₂ = 0.58 s t3 = 0.62 s t4 = 0.73 s
t5 = 0.54 s

Answers

The acceleration due to gravity for this object is 6.8 m/s².

To calculate the acceleration due to gravity of an object, Using the kinematics and the formula below can be used; a = (2Δh) / t² Where; h = height, t = time, Δh = difference in height .

The time will be the average of the five attempts; (t₁+t₂+t₃+t₄+t₅)/5 = (0.7+0.58+0.62+0.73+0.54)/5 = 0.634 sΔh = 2m - 0m = 2ma = (2Δh) / t² = (2 * 2) / 0.634² = 6.8 m/s².

Kinematics is a discipline of physics and a division of classical mechanics that deals with the motion of a body or system of bodies that is geometrically conceivable without taking into account the forces at play (i.e., the causes and effects of the motions). The goal of kinematics is to offer a description of the spatial positions of bodies or systems of material particles, as well as the velocities and rates of acceleration of those velocities.

Let's learn more about acceleration due to gravity :

https://brainly.com/question/88039

#SPJ11

A uniform 6m long and 600N beam rests on two supports. What is the force exerted on the beam by the right support B

Answers

Since the beam is uniform, we can assume that its weight acts at its center of mass, which is located at the midpoint of the beam. Therefore, the weight of the beam exerts a downward force of:

F = mg = (600 N)(9.81 m/s^2) = 5886 N

Since the beam is in static equilibrium, the forces acting on it must balance out. Let's first consider the horizontal forces. Since there are no external horizontal forces acting on the beam, the horizontal component of the force exerted by each support must be equal and opposite.

Let F_B be the force exerted by the right support B. Then, the force exerted by the left support A is also F_B, but in the opposite direction. Therefore, the net horizontal force on the beam is zero:

F_B - F_B = 0

Next, let's consider the vertical forces. The upward force exerted by each support must balance out the weight of the beam. Let N_A be the upward force exerted by the left support A and N_B be the upward force exerted by the right support B. Then, we have:

N_A + N_B = F   (vertical force equilibrium)

where F is the weight of the beam.

Taking moments about support B, we can write:

N_A(3m) - F_B(6m) = 0   (rotational equilibrium)

since the weight of the beam acts at its center of mass, which is located at the midpoint of the beam. Solving for N_A, we get:

N_A = (F_B/2)

Substituting this into the equation for vertical force equilibrium, we get:

(F_B/2) + N_B = F

Solving for N_B, we get:

N_B = F - (F_B/2)

Substituting the given value for F and solving for F_B, we get:

N_B = N_A = (F/2) = (5886 N/2) = 2943 N

Therefore, the force exerted on the beam by the right support B is 2943 N.

Read more about Force:

brainly.com/question/18158308

#SPJ11

The average power used by a stereo speaker is 55 W. Assuming that the speaker can be treated as a 4.0 n resistance, find the peak value of the ac voltage applied to the speaker

Answers

The peak value of the AC voltage applied to the speaker is approximately 14.8 V.

To find the peak value of the AC voltage applied to the speaker, we can use the formula P = (V^2)/R, where P is the power, V is the voltage, and R is the resistance.

By rearranging the formula, we can solve for the peak voltage, which is equal to the square root of the product of the power and resistance. Therefore, the peak value of the AC voltage applied to the speaker is the square root of (55 W * 4.0 Ω).

The formula P = (V^2)/R relates power (P), voltage (V), and resistance (R). By rearranging the formula, we can solve for V:

V^2 = P * R

V = √(P * R)

In this case, the average power used by the speaker is given as 55 W, and the resistance of the speaker is 4.0 Ω. Substituting these values into the formula, we can calculate the peak voltage:

V = √(55 W * 4.0 Ω)

V = √(220 WΩ)

V ≈ 14.8 V

Therefore, the peak value of the AC voltage applied to the speaker is approximately 14.8 V.

Learn more about AC voltage from the given link:

https://brainly.com/question/13507291

#SPJ11

A rugby player passes the ball 8.00 m across the field, where it is caught at the same height as it left his hand. (a) At what angle was the ball thrown if its initial speed was 13.5 m/s, assuming that the smaller of the two possible angles was used? ° (b) What other angle gives the same range? ° (c) How long did this pass take? s

Answers

The angle at which the ball was thrown, the other angle that gives the same range, and the time taken for the pass, we consider the given information.

The initial speed of the ball, the distance it travels, and the fact that it is caught at the same height help us calculate these values using kinematic equations and trigonometry.

(a) The angle at which the ball was thrown, we can use the range formula for projectile motion. The range (R) is given as 8.00m, and the initial speed (v) is 13.5m/s. By rearranging the formula R = (v^2 * sin(2θ)) / g, where θ is the angle of projection and g is the acceleration due to gravity, we can solve for θ. Taking the smaller angle, we can calculate its value in degrees.

(b) The other angle that gives the same range, we use the fact that the range is the same for complementary angles. Since the smaller angle was used initially, the other angle would be 90 degrees minus the smaller angle.

(c) The time taken for the pass can be calculated using the horizontal distance and the initial speed of the ball. Since the ball was caught at the same height as it left the player's hand, we can ignore the vertical motion. The time (t) can be found using the formula t = d / v, where d is the horizontal distance and v is the initial speed.

By applying these calculations and equations, we can determine the angle at which the ball was thrown, the other angle that gives the same range, and the time taken for the pass.

To learn more about angle.

Click here:brainly.com/question/30952453

#SPJ11

A massive uniform string of a mass m and length hangs from the ceiling. Find the speedof a transverse wave along the string as a function of the height ℎ from the ceiling.
Assume uniform vertical gravity with the acceleration .

Answers

Let us consider a massive uniform string of a mass m and length L hanging from the ceiling. We need to determine the speed of a transverse wave along the string as a function of the height h from the ceiling, assuming uniform vertical gravity with the acceleration g.

The tension in the string is given by:T = mg (at the bottom of the string)As we move up to a height h, the tension in the string is reduced by the weight of the string below the point, that is:T' = m(g - h/L g)The mass of the string below the point is:ml = m(L - h)

Therefore:T' = m(g - h/L g) = m(Lg/L - hg/L) = mLg/L - mh/L

The speed of the transverse wave is given by:v = √(T' / μ)

where μ is the mass per unit length of the string and can be given as:μ = m / LThus:v = √((mLg/L - mh/L) / (m / L)) = √(gL - h)

Therefore, the speed of a transverse wave along the string as a function of the height h from the ceiling, assuming uniform vertical gravity with acceleration g is given by:v = √(gL - h)

To know more about vertical gravity visit:

https://brainly.com/question/33165023

#SPJ11

Other Questions
A man is pulling a box with a rope attached to it which is making an angle of 60 with the horizontal surface. If the force applied by the man is 3.8 N and the box is displaced by 7.1 m along the horizontal surface while frictional force is 1.1 N, find the net work done on the box. Answer: Choose... Check If a marathon runner drinks only water for hydration during and after the race, without also replacing sodium, what can happen? (Select one or more.) Their cells can shrink from dehydration. They can develop high blood sodium, or hypernatremia. Their cells can swell, causing accumulation of fluid in the lungs and brain and potentially leading to life-threatening conditions such as seizure, coma, and death. A 11 kg object is attached to a spring with spring constant 7 kg/s. It is also attached to a dashpot with damping constant c = 7 N-sec/m. The object is initially displaced 4 m above equilibrium and released. Find its displacement and time-varying amplitude for t > 0. y(t) = The motion in this example is O underdamped O critically damped O overdamped Consider the same setup above, but now suppose the object is under the influence of an outside force given by F(t) 15 cos(wt). = What value for w will produce the maximum possible amplitude for the steady state component of the solution? What is the maximum possible amplitude? An object with 8 kg mass is attached to a spring with constant k = 72 kg/m and subjected to an external force F(t) = 224 sin(4t). The object is initially displaced 1 meters above equilibrium and given an upward velocity of 5 m/s. Find its displacement for t > 0, with y(t) measured positive upwards. = y(t) = 1) Points A and B in the diagram show two processestaking place at interactions in Earth's oceanic crust.a) Describe the process taking place at point A.b) Describe the process taking place at point B.continentoceaniccrustmantlemagmaBcontinentoceaniccrustmantle externalities that are not reflected in the total costs are anargument for the state to regulate the electric power serviceselect:true or false A patient has a BSA of 1.45 m2 and must receive 15 mg/m2 of adrug PO stat. If the strength of the drug is 2 mg/mL, how manymilliliters will you prepare? Convert the following base-ten numerals to a numeral in the indicated bases. a. 481 in base five b. 4251 in base twelve c. 27 in base three a. 481 in base five is five Isopropyl alcohol is mixed with water to produce a 39.0% (v/v) alcohol solution. How many milliliters of each component are present in 795 mL of this solution Block 1 and Block 2 with equal mass m are connected by a massless spring with a relaxedstate length and spring constant . The blocks are initially at relaxed state and then, a constant force is applied to Block 1 in the direction from Block 1 to Block 2. Find the positions x1() and x2() as functions of the time . What is the change in entropy of 2.50 m 3 of water at 0 C when it is frozen to ice at 0 C? Consider the vectors A=(-11.5, 7.6) and B=(9.6, -9.9), such that A - B + 5.3C=0. What is the x component of C? how to write medical equipment report on x ray 1. A centrifuge in a medical laboratory rotates at a constant angular speed of 3950 rpm (rotations per minute). The centrifuge's moment of inertia is 0.0425 kg-m'. When switched off, it rotates 20.0 times in the clockwise direction before coming to rest. a. Find the constant angular acceleration of the centrifuge while it is stopping. b. How long does the centrifuge take to come to rest? c. What torque is exerted on the centrifuge to stop its rotation? d. How much work is done on the centrifuge to stop its rotation? Using subheadings, how can housing conditions or situations improvethe health of its occupants? d) In July 1944, 44 countries participated in the Bretton Woods Conference in Bretton Woods, New Hampshire. The set of international laws and IGOs that were agreed to at the conference and later established were collectively known as the "Bretton Woods System". Broadly speaking, there were 5 main elements of the Bretton Woods System: 1) a fixed exchange rate system, 2) the General Agreement on Tariffs and Trade (GATT), 3) capital controls, 4) the International Monetary Fund (IMF), and 5) the International Bank of Reconstruction and Development (IBRD) (later the World Bank). Briefly explain how each of these elements of the Bretton Woods System have changed since the establishment of the Bretton Woods System in the 1940s. When answering this question, be sure to state the specific ways that each of these elements of the Bretton Woods System has changed and when the changes you note occurred. (Fact) (10 points) What was one special event in a colonial woman's life that was an important social occasion that enriched a women's community life and share important information with other women? What is the difference between eponym and acronym?9-What is the difference between colectomy, colostomy, andcolotomy?10-What is the difference between -sclerosis and -malacia? What anatomical feature of the fallopian tubesallows sexually transmitted infections tosometimes spread into the abdomen in women? how do these coming of age ceremonies contribute to this idea of growing up? ScenarioAn oil gathering facility is located on the coast. A short distance offshore are coral reefs that are important and fragile marine habitats. Oil arrives at the facility by separate pipelines from each of four onshore fields. The facility has the following main processing equipment:PIG receivers on each pipelineInlet metering on each pipelineA main manifold to combine flows from all pipelinesA heated separator to remove remaining water and gasA flare stack to allow rapid purging of hydrocarbons from any part of the plantThree oil storage tanks arranged so that they can be used in any combinationTwo oil export pumps arranged in parallelTwo parallel export metering trains to measure oil delivered to tankersA tanker loading facilityThe small quantity of gas recovered from the heated separator is used to provide fuel for the heater with any excess going to the flare. Water recovered in the heated separator is pumped into a shallow aquifer.Draw a simple high level process flow diagram of the components itemised above showing the path of all fluids through the facility.Suggest a control system you would expect to find on the separator in this scenario. For the control system you have chosen, suggest a measurement device that would be used and state what equipment would be adjusted by the control system.Sketch a graph of the parameter being controlled against time showing the response you would expect to a step change in set-point from A to B at time t=10 if your control system is well tuned. Your graph should also show: set-point; overshoot; and settling time. Steam Workshop Downloader