The index of refraction of a sugar solution in water is about 1.5, while the index of refraction of air is about 1. What is the critical angle for the total internal reflection of light traveling in a sugar solution surrounded by air

Answers

Answer 1

Answer:

The critical angle is  [tex]i = 41.84 ^o[/tex]

Explanation:

From the  question we are told that

    The index of refraction of the sugar solution is  [tex]n_s = 1.5[/tex]

   The  index of refraction of air is  [tex]n_a = 1[/tex]

Generally from Snell's  law

      [tex]\frac{sin i }{sin r } = \frac{n_a }{n_s }[/tex]

Note that the angle of incidence in this case is equal to the critical angle

Now for total internal reflection the angle of reflection is [tex]r = 90^o[/tex]

So  

      [tex]\frac{sin i }{sin (90) } = \frac{1 }{1.5 }[/tex]

      [tex]i = sin ^{-1} [\frac{ (sin (90)) * 1 }{1.5} ][/tex]

      [tex]i = 41.84 ^o[/tex]


Related Questions

How much work is required to carry an electron from positive terminal of 12Volt battery to negative terminal?

Answers

Answer:

Explanation:

Work required = q x V

where q is charge on electron and V is potential difference

= 1.6 x 10⁻¹⁹  x 12

= 19.2 x 10⁻¹⁹ J

A 0.400-kg ice puck, moving east with a speed of 5.86 m/s , has a head-on collision with a 0.900-kg puck initially at rest.
A. Assume that the collision is perfectly elastic, what will be the speed of the 0.300 kg object after the collision?
B. What will be the direction of the 0.300 kg object after the collision?
C. What will be the speed of the 0.900 kg object after the collision?

Answers

Answer:

a) The final speed of the 0.400-kg puck after the collision is 2.254 meters per second, b) The negative sign of the solution found in part a) indicates that 0.400-kg puck is moving westwards, c) The speed of the 0.900-kg puck after the collision is 3.606 meters per second eastwards.

Explanation:

a) Since collision is perfectly elastic and there are no external forces exerted on pucks system, the phenomenon must be modelled after the Principles of Momentum and Energy Conservation. Changes in gravitational potential energy can be neglected. That is:

Momentum

[tex]m_{1}\cdot v_{1,o} + m_{2}\cdot v_{2,o} = m_{1}\cdot v_{1,f} + m_{2}\cdot v_{2,f}[/tex]

Energy

[tex]\frac{1}{2}\cdot (m_{1}\cdot v_{1,o}^{2}+ m_{2}\cdot v_{2,o}^{2})=\frac{1}{2}\cdot (m_{1}\cdot v_{1,f}^{2}+ m_{2}\cdot v_{2,f}^{2})[/tex]

[tex]m_{1}\cdot v_{1,o}^{2} + m_{2}\cdot v_{2,o}^{2} = m_{1}\cdot v_{1,f}^{2} + m_{2}\cdot v_{2,f}^{2}[/tex]

Where:

[tex]m_{1}[/tex], [tex]m_{2}[/tex] - Masses of the 0.400-kg and 0.900-kg pucks, measured in kilograms.

[tex]v_{1,o}[/tex], [tex]v_{2,o}[/tex] - Initial speeds of the 0.400-kg and 0.900-kg pucks, measured in meters per second.

[tex]v_{1}[/tex], [tex]v_{2}[/tex] - Final speeds of the 0.400-kg and 0.900-kg pucks, measured in meters per second.

If [tex]m_{1} = 0.400\,kg[/tex], [tex]m_{2} = 0.900\,kg[/tex], [tex]v_{1,o} = +5.86\,\frac{m}{s}[/tex], [tex]v_{2,o} = 0\,\frac{m}{s}[/tex], the system of equation is simplified as follows:

[tex]2.344\,\frac{kg\cdot m}{s} = 0.4\cdot v_{1,f} + 0.9\cdot v_{2,f}[/tex]

[tex]13.736\,J = 0.4\cdot v_{1,f}^{2}+0.9\cdot v_{2,f}^{2}[/tex]

Let is clear [tex]v_{1,f}[/tex] in first equation:

[tex]0.4\cdot v_{1,f} = 2.344 - 0.9\cdot v_{2,f}[/tex]

[tex]v_{1,f} = 5.86-2.25\cdot v_{2,f}[/tex]

Now, the same variable is substituted in second equation and resulting expression is simplified and solved afterwards:

[tex]13.736 = 0.4\cdot (5.86-2.25\cdot v_{2,f})^{2}+0.9\cdot v_{2,f}^{2}[/tex]

[tex]13.736 = 0.4\cdot (34.340-26.37\cdot v_{2,f}+5.063\cdot v_{2,f}^{2})+0.9\cdot v_{2,f}^{2}[/tex]

[tex]13.736 = 13.736-10.548\cdot v_{2,f} +2.925\cdot v_{2,f}^{2}[/tex]

[tex]2.925\cdot v_{2,f}^{2}-10.548\cdot v_{2,f} = 0[/tex]

[tex]2.925\cdot v_{2,f}\cdot (v_{2,f}-3.606) = 0[/tex]

There are two solutions:

[tex]v_{2,f} = 0\,\frac{m}{s}[/tex] or [tex]v_{2,f} = 3.606\,\frac{m}{s}[/tex]

The first root coincides with the conditions before collision and the second one represents a physically reasonable solution.

Now, the final speed of the 0.400-kg puck is: ([tex]v_{2,f} = 3.606\,\frac{m}{s}[/tex])

[tex]v_{1,f} = 5.86-2.25\cdot (3.606)[/tex]

[tex]v_{1,f} = -2.254\,\frac{m}{s}[/tex]

The final speed of the 0.400-kg puck after the collision is 2.254 meters per second.

b) The negative sign of the solution found in part a) indicates that 0.400-kg puck is moving westwards.

c) The speed of the 0.900-kg puck after the collision is 3.606 meters per second eastwards.

Two small plastic spheres are given positive electrical charges. When they are 20.0 cm apart, the repulsive force between them has magnitude 0.200 N.


1. What is the charge on each sphere if the two charges are equal? (C)


2. What is the charge on each sphere if one sphere has four times the charge of the other? (C)

Answers

Answer:

A. 2.97x 10^-6C

B. 1.48x10^ -6 C

Explanation:

Pls see attached file

Answer:

1) +9.4 x 10^-7 C

2) +4.72 x 10^-7 C  and  +1.9 x 10^-6 C

Explanation:

The two positive charges will repel each other

Repulsive force on charges = 0.200 N

distance apart = 20.0 cm = 0.2 m

charge on each sphere = ?

Electrical force on charged spheres at a distance is given as

F = [tex]\frac{kQq}{r^{2} }[/tex]

where F is the force on the spheres

k is the Coulomb's constant = 8.98 x 10^9 kg⋅m³⋅s⁻²⋅C⁻²

Q is the charge on of the spheres

q is the charge on the other sphere

r is their distance apart

since the charges are equal, i.e Q = q, the equation becomes

F = [tex]\frac{kQ^{2} }{r^{2} }[/tex]

making Q the subject of the formula

==> Q = [tex]\sqrt{\frac{Fr^{2} }{k} }[/tex]

imputing values into the equation, we have

Q = [tex]\sqrt{\frac{0.2*0.2^{2} }{8.98*10^{9} } }[/tex] = +9.4 x 10^-7 C

If one charge has four times the charge on the other, then

charge on one sphere = q

charge on the other sphere = 4q

product of both charges = [tex]4q^{2}[/tex]

we then have

F = [tex]\frac{4kq^{2} }{r^{2} }[/tex]

making q the subject of the formula

==> q =  [tex]\sqrt{\frac{Fr^{2} }{4k} }[/tex]

imputing values into the equation, we have

q = [tex]\sqrt{\frac{0.2*0.2^{2} }{4*8.98*10^{9} } }[/tex] = +4.72 x 10^-7 C

charge on other sphere = 4q = 4 x 4.72 x 10^-7 = +1.9 x 10^-6 C

The angle of incidence of a light beam in air onto a reflecting surface is continuously variable. The reflected ray is found to be completely polarized when the angle of incidence is 64.2° .What is the index of refraction of the reflecting material?

Answers

Answer:

  n = 2.0686

Explanation:

When an unpolarized ray of light is reflected on a surface, the reflected ray is partially polarized, complete polarization occurs when it is true that between the transmitted and reflected ray one has 90, the relationship is

        n = so tea

 let's calculate

        n = tan 64.2

        n = 2.0686

A charged particle is moving with speed v perpendicular to a uniform magnetic field. A second identical charged particle is moving with speed 2v perpendicular to the same magnetic field. If the frequency of revolution of the first particle is f, the frequency of revolution of the second particle is

Answers

Answer:

the frequency of revolution of the second particle is f

Explanation:

centripetal force is balanced by the magnetic force for object under magnetic field is given as

Mv²/r= qvB

But v= omega x r

Omega= 2pi x f

f= qB/2pi x M

So since frequency does not depend on the velocity.therefore the frequency of revolution of the second particle remains the same and its equal to f

You should have observed that there are some frequencies where the output is stronger than the input. Discuss how that is even possible from a conservation of energy standpoint. Also, can you relate this behavior to the transient (natural) response of the circuit that you observed in the previous lab

Answers

Answer:

w = √ 1 / CL

This does not violate energy conservation because the voltage of the power source is equal to the voltage drop in the resistence

Explanation:

This problem refers to electrical circuits, the circuits where this phenomenon occurs are series RLC circuits, where the resistor, the capacitor and the inductance are placed in series.

In these circuits the impedance is

             X = √ (R² +  ([tex]X_{C}[/tex] -[tex]X_{L}[/tex])² )

where Xc and XL is the capacitive and inductive impedance, respectively

            X_{C} = 1 / wC

           X_{L} = wL

From this expression we can see that for the resonance frequency

           X_{C} = X_{L}

the impedance of the circuit is minimal, therefore the current and voltage are maximum and an increase in signal intensity is observed.

This does not violate energy conservation because the voltage of the power source is equal to the voltage drop in the resistence

               V = IR

Since the contribution of the two other components is canceled, this occurs for

                X_{C} = X_{L}

                1 / wC = w L

                w = √ 1 / CL

A mass M = 4 kg attached to a string of length L = 2.0 m swings in a horizontal circle with a speed V. The string maintains a constant angle \theta\:=\:θ = 35.4 degrees with the vertical line through the pivot point as it swings. What is the speed V required to make this motion possible?

Answers

Answer:

The velocity is  [tex]v = 2.84 1 \ m/s[/tex]

Explanation:

The  diagram showing this set up is shown on the first uploaded image (reference Physics website )

From the question we are told that

    The mass is  m =  4 kg

    The  length of the string is [tex]L = 2.0 \ m[/tex]

    The constant angle is  [tex]\theta = 35.4 ^o[/tex]

     

Generally the vertical forces acting on the mass to keep it at equilibrium vertically is mathematically represented as

           [tex]Tcos (\theta ) - mg = 0[/tex]

=>        [tex]mg = Tcos (\theta )[/tex]

Now let the force acting on mass horizontally be k  so from SOHCAHTOA rule

         [tex]sin (\theta ) = \frac{k }{T}[/tex]

=>      [tex]k = T sin \theta[/tex]

Now this k is also equivalent to the centripetal force acting on the mass which is mathematically represented as

          [tex]F_v = \frac{m v^2}{r}[/tex]

So

          [tex]k = F_v[/tex]

Which

=>       [tex]T sin \theta= \frac{ m v^2}{ r }[/tex]

     

So

        [tex]\frac{Tsin (\theta )}{Tcos (\theta )} = \frac{mg}{ \frac{mv^2}{r} }[/tex]

=>      [tex]Tan (\theta ) = \frac{v^2}{ r * g }[/tex]

=>      [tex]v = \sqrt{r * g * tan (\theta )}[/tex]

Now the radius is evaluated using SOHCAHTOA rule as

       [tex]sin (\theta) = \frac{ r}{L}[/tex]

=>    [tex]r = L sin (\theta)[/tex]

substituting values

       [tex]r = 2 sin ( 35.4 )[/tex]

       [tex]r = 1.1586 \ m[/tex]

So

       [tex]v = \sqrt{1.1586* 9.8 * tan (35.4 )}[/tex]

       [tex]v = 2.84 1 \ m/s[/tex]

A container with volume 1.83 L is initially evacuated. Then it is filled with 0.246 g of N2. Assume that the pressure of the gas is low enough for the gas to obey the ideal-gas law to a high degree of accuracy. If the root-mean-square speed of the gas molecules is 192 m/s, what is the pressure of the gas?

Answers

Answer:

The  pressure is  [tex]P = 1652 \ Pa[/tex]

Explanation:

From the question we are told that

    The  volume of the container is  [tex]V = 1.83 \ L = 1.83 *10^{-3 } \ m^3[/tex]

     The mass of  [tex]N_2[/tex] is  [tex]m_n = 0.246 \ g = 0.246 *10^{-3} \ kg[/tex]

     The root-mean-square velocity is  [tex]v = 192 \ m/s[/tex]

The  root -mean square velocity is mathematically represented as

      [tex]v = \sqrt{ \frac{3 RT}{M_n } }[/tex]

Now the ideal gas law is mathematically represented as

      [tex]PV = nRT[/tex]

=>   [tex]RT = \frac{PV}{n }[/tex]

Where n is the number of moles which is mathematically represented as

         [tex]n = \frac{ m_n }{M }[/tex]

Where  M  is the molar mass of  [tex]N_2[/tex]

So  

        [tex]RT = \frac{PVM_n }{m _n }[/tex]

=>    [tex]v = \sqrt{ \frac{3 \frac{P* V * M_n }{m_n } }{M_n } }[/tex]

=>    [tex]v = \sqrt{ \frac{ 3 * P* V }{m_n } } }[/tex]

=>   [tex]P = \frac{v^2 * m_n}{3 * V }[/tex]

substituting values

    =>    [tex]P = \frac{( 192)^2 * 0.246 *10^{-3}}{3 * 1.83 *10^{-3} }[/tex]

=>         [tex]P = 1652 \ Pa[/tex]

       

     

If a 950 kg merry-go-round platform of radius 4.5 meters is driven by a mechanism located 2.0 meters from its center of rotation, how much force must the mechanism provide to get the platform moving at 5.5 revolutions per minute after 12 seconds if it were initially at rest

Answers

Answer:

F = 213.75 N

Explanation:

First we need to calculate the angular acceleration of merry-go-round. For that purpose we use 1st equation of motion in angular form.

ωf = ωi + αt

where,

ωf=final angular velocity=(5.5 rev/min)(2π rad/1 rev)(1 min/60 s)=0.58 rad/s

ωi =initial angular velocity = 0 rad/s

t = time = 12 s

α = angular acceleration = ?

Therefore,

0.58 rad/s = 0 rad/s + α(12 s)

α = (0.58 rad/s)/(12 s)

α = 0.05 rad/s²

Now, we shall find the linear acceleration of the merry-go-round:

a = rα

where,

a = linear acceleration = ?

r = radius = 4.5 m

Therefore,

a = (4.5 m)(0.05 rad/s²)

a = 0.225 m/s²

Now, the force is given by Newton;s 2nd Law:

F = ma

where,

F = Force = ?

m = mass pf merry-go-round = 950 kg

Therefore,

F = (950 kg)(0.225 m/s²)

F = 213.75 N

Consider a long rod of mass, m, and length, l, which is thin enough that its width can be ignored compared to its length. The rod is connected at its end to frictionless pivot.
a) Find the angular frequency of small oscillations, w, for this physical pendulum.
b) Suppose at t=0 it pointing down (0 = 0) and has an angular velocity of 120 (that is '(t = 0) = 20) Note that 20 and w both have dimensions of time-1. Find an expression for maximum angular displacement for the pendulum during its oscillation (i.e. the amplitude of the oscillation) in terms of 20 and w assuming that the angular displacement is small.

Answers

Answer:

Explanation:

The rod will act as pendulum for small oscillation .

Time period of oscillation

[tex]T=2\pi\sqrt{\frac{l}{g} }[/tex]

angular frequency ω = 2π / T

= [tex]\omega=\sqrt{\frac{g}{l} }[/tex]

b )

ω = 20( given )

velocity = ω r = ω l

Let the maximum angular displacement in terms of degree be θ .

1/2 m v ² = mgl ( 1 - cosθ ) ,

[ l-lcosθ is loss of height . we have applied law of conservation of mechanical energy .]

.5 (  ω l )² = gl( 1 - cos θ )

.5 ω² l = g ( 1 - cosθ )

1 - cosθ  = .5 ω² l /g

cosθ = 1 - .5 ω² l /g

θ can be calculated , if value of l is given .

Estimate the radiation pressure due to a bulb that emits 25 W of EM radiation at a distance of 6.5 cm from the center of the bulb. Assume that light is completely absorbed.

Answers

..........................................................

The radiation pressure due to a bulb that emits 25 W of EM radiation at a distance of 6.5 cm from the center of the bulb and the light is completely absorbed is 1.5707x10⁻⁶ N/m².

What is the Radiation pressure?

Radiation pressure was defined as the mechanical pressure exerted upon any surface due to the exchange of momentum between the object and the electromagnetic field.

Radiation pressure always includes the Momentum of light or electromagnetic radiation of any wavelength that can be absorbed, reflected, or otherwise emitted by matter on any scale.

E.g: Black-body radiation

Given the values are,

Wattage of bulb = W = 25 W

distance = d = 6.5 cm = 0.065 m

To know the Radiation Pressure,

It can be given by

P = I/c

Where, c = 299792458 m/s is the speed of light,

I is the intensity of radiation and given by

I = W/4πd²

Where W is the Wattage of bulb and d is the distance

I = 25/4π*0.065²

I = 470.872 w/m²

so, the radiation pressure becomes

P = 470.872/299792458

P = 1.5707x10⁻⁶ N/m²

Therefore, the radiation pressure due to a 25 W bulb at a distance of 6.5 cm is 1.5707x10⁻⁶ N/m²

To know more about the radiation pressure,

https://brainly.com/question/23972862

#SPJ5

wo parallel-plate capacitors C1 and C2 are connected in parallel to a 12.0 V battery. Both capacitors have the same plate area of 5.30 cm2 and plate separation of 2.65 mm. However, the first capacitor C1 is filled with air, while the second capacitor C2 is filled with a dielectric that has a dielectric constant of 2.10. (a) What is the charge stored on each capacitor

Answers

Complete Question

Two parallel-plate capacitors C1 and C2 are connected in parallel to a 12.0 V battery. Both capacitors have the same plate area of 5.30 cm2 and plate separation of 2.65 mm. However, the first capacitor C1 is filled with air, while the second capacitor C2 is filled with a dielectric that has a dielectric constant of 2.10.

(a) What is the charge stored on each capacitor

 (b)  What is the total charge stored in the parallel combination?

Answer:

a

   i    [tex]Q_1 = 2.124 *10^{-11} \ C[/tex]

   ii    [tex]Q_2 = 4.4604 *10^{-11} \ C[/tex]

b

  [tex]Q_{eq} = 6.5844 *10^{-11} \ C[/tex]

Explanation:

From the question we are told that

   The  voltage of the battery is  [tex]V = 12.0 \ V[/tex]

    The  plate area of each capacitor is  [tex]A = 5.30 \ cm^2 = 5.30 *10^{-4} \ m^2[/tex]

    The  separation between the plates is  [tex]d = 2.65 \ mm = 2.65 *10^{-3} \ m[/tex]

     The permittivity of free space  has a value  [tex]\epsilon_o = 8.85 *10^{-12} \ F/m[/tex]

     The  dielectric constant of the other material is  [tex]z = 2.10[/tex]

The  capacitance of the  first capacitor is mathematically represented as

       [tex]C_1 = \frac{\epsilon * A }{d }[/tex]

substituting values

        [tex]C_1 = \frac{8.85 *10^{-12 } * 5.30 *10^{-4} }{2.65 *10^{-3} }[/tex]

       [tex]C_1 = 1.77 *10^{-12} \ F[/tex]

The  charge stored in the first capacitor is  

       [tex]Q_1 = C_1 * V[/tex]

substituting values

        [tex]Q_1 = 1.77 *10^{-12} * 12[/tex]

       [tex]Q_1 = 2.124 *10^{-11} \ C[/tex]

The capacitance of the second  capacitor is mathematically represented as

       [tex]C_2 = \frac{ z * \epsilon * A }{d }[/tex]

substituting values

       [tex]C_1 = \frac{ 2.10 *8.85 *10^{-12 } * 5.30 *10^{-4} }{2.65 *10^{-3} }[/tex]

       [tex]C_1 = 3.717 *10^{-12} \ F[/tex]

The  charge stored in the second capacitor is  

      [tex]Q_2 = C_2 * V[/tex]

substituting values

     [tex]Q_2 = 3.717*10^{-12} * 12[/tex]

     [tex]Q_2 = 4.4604 *10^{-11} \ C[/tex]

Now  the total charge stored in the parallel combination is mathematically represented as

     [tex]Q_{eq} = Q_1 + Q_2[/tex]

substituting values

    [tex]Q_{eq} = 4.4604 *10^{-11} + 2.124*10^{-11}[/tex]

     [tex]Q_{eq} = 6.5844 *10^{-11} \ C[/tex]

A 34.8 kg runner has a kinetic energy of 1.09 x 10³ J. What is the speed of the runner?

Answers

Answer:

7.91 m/s

Explanation:

Speed: This can be defined as the ratio of this to time. Speed can also be the magnitude of a velocity or speed is velocity without direction.

The S.I unit of speed is m/s.

From the question,

K.E = 1/2(mv²)................ Equation 1

Where K.E = Kinetic Energy, m = mass of the runner, v = velocity of the runner.

make  v the subject of the equation

v = √(2K.E/m).................Equation 2

Given: K.E = 1.09×10³ J, m = 34.8 kg.

Substitute into equation 2

v = √(2× 1.09×10³/34.8)

v = √(62.64)

v = 7.91 m/s.

Hence the speed of the runner = 7.91 m/s

What is the length of the x-component of the vector shown below?
9
380
х
A. 5.5
B. 30.0
O O
O C. 7.1
O D. 8.6

Answers

Answer:

x-component = 7.1

Explanation:

x-component = 9cos38 = 7.09 =7.1

Answer:

7.1

Explanation:

use cos

A computer has a mass of 3 kg. What is the weight of the computer?
A. 288 N.
B. 77.2 N
C. 3N
D. 29.4 N

Answers

Answer:

29.4 N

Option D is the correct option.

Explanation:

Given,

Mass ( m ) = 3 kg

Acceleration due to gravity ( g ) = 9.8 m/s²

Weight ( w ) = ?

Now, let's find the weight :

[tex]w \: = \: m \times g[/tex]

plug the values

[tex] = 3 \times 9.8[/tex]

Multiply the numbers

[tex] = 29.4 \: [/tex] Newton

Hope this helps!!

best regards!!

A 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 26 m/s when a 60 kg skydiver drops out by releasing his grip on the glider.
What is the glider's speed just after the skydiver lets go?

Answers

Answer:

The glider’s speed after the skydiver lets go is 26 m/s

Explanation:

To calculate the glider’s speed just after the skydiver lets go, we will need to use the conservation of momentum

Mathematically;

mv = mv + mv

so 680 * 26 = (680-60)v + 60 * 26

17680 = 620v + 1560

17680-1560 = 620v

16120 = 620v

v = 16120/620

v = 26 m/s

In a single-slit diffraction experiment, the width of the slit through which light passes is reduced. What happens to the width of the central bright fringe

Answers

Answer:

It becomes wider

Explanation:

Because The bigger the object the wave interacts with, the more spread there is in the interference pattern. Decreasing the size of the opening increases the spread in the pattern.

A coil of area 0.320 m2 is rotating at 100 rev/s with the axis of rotation perpendicular to a 0.430 T magnetic field. If the coil has 700 turns, what is the maximum emf generated in it

Answers

Answer:

The maximum  emf generated in the coil is 60527.49 V

Explanation:

Given;

area of coil, A = 0.320 m²

angular frequency, f = 100 rev/s

magnetic field, B = 0.43 T

number of turns, N = 700 turns

The maximum emf generated in the coil is calculated as,

E = NBAω

where;

ω is the angular speed = 2πf

E = NBA(2πf)

Substitute in the given values and solve for E

E = 700 x 0.43 x 0.32 x 2π x 100

E = 60527.49 V

Therefore, the maximum  emf generated in the coil is 60527.49 V

A tornado passes in front of a building, causing the pressure to drop there by 25% in 1 second. Part A If a door on the side of the building is 8.1 feet tall and 3 feet wide, what is the net force on the closed door.

Answers

Answer:

  F_net = 264, 26 pound

Explanation:

For this exercise we use Newton's second law

               F_net = F_int - F_outside

where the force can be found from the definition of pressure

              P = F / A

              F = P A

we substitute

               F_net = P_inside  A - P_outside A

               F_net = A (P_inside - P_outside)

indicate that the pressure on the outside is 25% less than the pressure on the inside

               P_outside = 0.25 P_inside

The area is

               A = L W

we substitute

              F_net = L W P_inside (1-0.25)

         

let's calculate

suppose the pressure inside is atmospheric pressure

              P_inside= P_atmospheric = 1,013 10⁵ Pa = 14.7 PSI

              F_net = 8.1 3 14.5 0.75

              F_net = 264, 26 pound

A truck accidentally rolls down a driveway for 8.0\,\text m8.0m8, point, 0, start text, m, end text while a person pushes against the truck with a force of 850\,\text N850N850, start text, N, end text to bring it to a stop. What is the change in kinetic energy for the truck?

Answers

Answer:

Explanation:

According to work energy theorem

change in kinetic energy of truck = work done against it

work done against it = force x displacement

= - 850 x 8 = 6800 J

change in kinetic energy of truck = - 6800 J .

energy will be reduced by 6800 J

Answer:-6800

Explanation:

You are at the carnival with you your little brother and you decide to ride the bumper cars for fun. You each get in a different car and before you even get to drive your car, the little brat crashes into you at a speed of 3 m/s.
A. Knowing that the bumper cars each weigh 80 kg, while you and your brother weigh 60 and 30 kg,respectively, write down the equations you need to use to figure out how fast you and your brother are moving after the collision.
B. After the collision, your little brother reverses direction and moves at 0.36 m/s. How fast are you moving after the collision?
C. Assuming the collision lasted 0.05 seconds, what is the average force exerted on you during the collision?
D. Who undergoes the larger acceleration, you or your brother? Explain.

Answers

Answer:

a) The equation is [tex](m_{b}+m_{c} )u_{b} = (m_{y}+m_{c} )v_{y} + (m_{b}+m_{c} )v_{b}[/tex]

b) Your velocity after collision is 2.64 m/s

c) The force you felt is 7392 N

d) you and your brother undergo an equal amount of acceleration

Explanation:

Your mass [tex]m_{y}[/tex] = 60 kg

your brother's mass [tex]m_{b}[/tex] = 30 kg

mass of the car [tex]m_{c}[/tex] = 80 kg

your initial speed [tex]u_{y}[/tex] = 0 m/s (since you've not started moving yet)

your brother's initial velocity [tex]u_{b}[/tex] = 3 m/s

your final speed [tex]v_{y}[/tex] after collision = ?

your brother's final speed [tex]v_{b}[/tex] after collision = ?

a) equations you need to use to figure out how fast you and your brother are moving after the collision is

[tex](m_{y}+m_{c} )u_{y} + (m_{b}+m_{c} )u_{b} = (m_{y}+m_{c} )v_{y} + (m_{b}+m_{c} )v_{b}[/tex]

but [tex]u_{y}[/tex] = 0 m/s

the equation reduces to

[tex](m_{b}+m_{c} )u_{b} = (m_{y}+m_{c} )v_{y} + (m_{b}+m_{c} )v_{b}[/tex]

b) if your little brother reverses with velocity of 0.36 m/s it means

[tex]v_{b}[/tex] = -0.36 m/s (the reverse means it travels in the opposite direction)

then, imputing values into the equation, we'll have

[tex](m_{b}+m_{c} )u_{b} = (m_{y}+m_{c} )v_{y} + (m_{b}+m_{c} )v_{b}[/tex]

(30 + 80)3 = (60 + 80)[tex]v_{y}[/tex] + (30 + 80)(-0.36)

330 = 140[tex]v_{y}[/tex] - 39.6

369.6 = 140[tex]v_{y}[/tex]

[tex]v_{y}[/tex] = 369.6/140 = 2.64 m/s

This means you will also reverse with a velocity of 2.64 m/s

c) your initial momentum = 0  since you started from rest

your final momentum = (total mass) x (final velocity)

==>  (60 + 80) x 2.64 = 369.6 kg-m/s

If the collision lasted for 0.05 s,

then force exerted on you = (change in momentum) ÷ (time collision lasted)

force on you = ( 369.6 - 0) ÷ 0.05 = 7392 N

d) you changed velocity from 0 m/s to 2.64 m/s in 0.05 s

your acceleration is (2.64 - 0)/0.05 = 52.8 m/s^2

your brother changed velocity from 3 m/s to 0.36 m/s in 0.05 s

his deceleration is (3 - 0.36)/0.05 = 52.8 m/s

you and your brother undergo an equal amount of acceleration. This is because you gained the momentum your brother lost

g Power is _________________the force required to push something the work done by a system the speed of an object the rate that the energy of a system is transformed the energy of a system

Answers

Answer:

the rate that the energy of a system is transformed

Explanation:

We can define energy as the capacity or ability to do work. Power is defined as the rate of doing work or the rate at which energy is transformed. It can also be regarded as the time rate of energy transfer. In older physics literature, power is sometimes referred to as activity.

Power is given by energy/time. Its unit is watt which is defined as joule per second. Another popular unit of power is horsepower. 1 horsepower = 746 watts.

Very large magnitude of power is measured in killowats and megawatts.

7. How many 1.00 µF capacitors must be connected in parallel to store a charge of 1.00 C with a potential of 110 V across the capacitors?

Answers

Answer:

q = C V    charge on 1 capacitor

q = 1 * 10E-6 * 110 = 1.1 *  10E-4  C per capacitor

N = Q / q = 1 / 1.1 * 10E-4  = 9091 capacitors

9.09 × 10³ capacitors must be connected in parallel.

How to calculate the number of capacitors connected in parallel?

Given C = 1.00μF = 1 × 10⁻⁶ F

          q = 1.00 C

          V = 110 V

The equivalent capacitance is given by

Ceq = q/V

where q = total charge on all the capacitors

             V = potential difference

For N number of identical capacitors in parallel,

Ceq = NC

Therefore,

NC = q/V

N = q/VC

Putting on the values in the above formula,

N = 1/ (110)(1 × 10⁻⁶)

   = 1 / 110 × 10⁻⁶

   = 9.09 × 10³

Learn more about the capacitors here:

https://brainly.com/question/15052170

#SPJ2

A sailor strikes the side of his ship just below the surface of the sea. He hears the echo of the wave reflected from the ocean floor directly below 2.5 ss later.
How deep is the ocean at this point? (Note: Use the bulk modulus method to determine the speed of sound in this fluid, rather than using a tabluated value.)
_____ m

Answers

Answer:

1248m

The time that wave moves from the wave source to the ocean floor is half the total travel time: t = 2.5/2 = 1.25s

The speed of sound in seawater is 1560 m/s

Therefore, s = vt = (1560 m/s)(1.25s) =1248 m = 1.2km

An astronomy student, for her PhD, really needs to estimate the age of a cluster of stars. Which of the following would be part of the process she would follow?
A. plot an H-R diagram for the stars in the cluster
B. count the number of M type stars in the cluster
C. measure the Doppler shift of a number of the stars in the cluster
D. search for planets like Jupiter around the stars in the center of the cluster
E. search for x-rays coming from the center of the cluster

Answers

Answer:

A. plot an H-R diagram for the stars in the cluster.

Explanation:

A star cluster can be defined as a constellation of stars, due to gravitational force, which has the same origin.

The astronomy student would have to plot an H-R diagram for the stars in the cluster and determine the age of the cluster by observing the turn-off point. The turn-off is majorly as a result of gradual depletion of the source of energy of the star. Thus, it projects off the constellation.

A spherical balloon is inflated with gas at the rate of 500 cubic centimeters per minute. How fast is the radius of the balloon increasing at the instant the radius is 40 centimeters

Answers

Answer:

0.245cm/min

Explanation:

The volume of the spherical balloon is expressed as V = 4/3πr³ where r is the radius of the spherical balloon. If the spherical balloon is inflated with gas at the rate of 500 cubic centimetres per minute then dV/dt = 500cm³.

Using chain rule to express dV/dt;

dV/dt = dV/dr*dr/dt

dr/dt is the rate at which the radius of the gallon is increasing.

From the formula, dV/dr = 3(4/3πr^3-1))

dV/dr = 4πr²

dV/dt = 4πr² *dr/dt

500 =  4πr² *dr/dt

If radius r = 40;

500 = 4π(40)² *dr/dt

500 = 6400π*dr/dt

dr/dt = 500/6400π

dr/dt = 5/64π

dr/dt  = 0.245cm/min

Hence, the radius of the balloon is increasing at the rate of 0.245cm/min

In the far future, astronauts travel to the planet Saturn and land on Mimas, one of its 62 moons. Mimas is small compared with the Earth's moon, with mass Mm = 3.75 ✕ 1019 kg and radius Rm = 1.98 ✕ 105 m, giving it a free-fall acceleration of g = 0.0636 m/s2. One astronaut, being a baseball fan and having a strong arm, decides to see how high she can throw a ball in this reduced gravity. She throws the ball straight up from the surface of Mimas at a speed of 41 m/s (about 91.7 mph, the speed of a good major league fastball).
(a) Predict the maximum height of the ball assuming g is constant and using energy conservation. Mimas has no atmosphere, so there is no air resistance.
(b) Now calculate the maximum height using universal gravitation.
(c) How far off is your estimate of part (a)? Express your answer as a percent difference and indicate if the estimate is too high or too low.

Answers

Answer:

a) h = 13,205.4 m

b)  r_f = 2.12 106 m

c)        e% = 0.68%

Explanation:

a) This is an exercise we are asked to use energy conservation,

Starting point. On the surface of Mimas

        Em₀ = K = ½ m v²

Final point. Where the ball stops

       [tex]Em_{f}[/tex] = U = m g h

        Em₀ = Em_{f}

        ½ m v² = m g h

         h = ½ v² / g

let's calculate

         h = ½ 41² / 0.0636

         h = 13,205.4 m

b) For this part we are asked to use the law of universal gravitation, write the energy

starting point. Satellite surface

           Em₀ = K + U = ½ m v² - GmM / r_o

final point. Where the ball stops

            [tex]Em_{f}[/tex]= U = - G mM / r_f

          Em₀ = Em_{f}

          ½ m v² - G m M / r_o = - G mM / r_f

In this case all distances are measured from the center of the satellite

         1 / rf = 1 / GM (-½ v² + G M / r_o)

     

let's calculate

         1 / rf = 1 / (6.67 10⁻¹¹ 3.75 10¹⁹) (- ½ 41 2 + 6.67 10⁻¹¹ 3.75 10¹⁹ / 1.98 105)

         1 / r_f = 3,998 10⁻¹¹(-840.5 + 12.63 10³)

          1 / r_f = 4,714 10⁻⁷

          r_f = 1 / 4,715 10⁻⁷

          r_f = 2.12 106 m

to measure this distance from the satellite surface

          r_f ’= r_f - r_o

          r_f ’= 2.12 106 - 1.98 105

         r_f ’= 1,922 106 m

c) the percentage difference is

          e% = 13 205.4 / 1,922 106 100

          e% = 0.68%

The estimate of part a is a little low

At a fixed point, P, the electric and magnetic field vectors in an electromagnetic wave oscillate at angular frequency w . At what angular frequency does the Poynting vector oscillate at that point

Answers

Answer:

Poynting vector oscillate at a frequency of 2omega

Explanation:

This is because The poynting vector is proportional to the cross product of electric and magnetic field vectors. So Because both fields oscillate sinusoidally with frequency w, trigonometric identities show that their product is a sinusoidal function of frequency of 2w.

Three cars (car 1, car 2, and car 3) are moving with the same velocity when the driver suddenly slams on the brakes, locking the wheels. The most massive car is car 1, the least massive is car 3, and all three cars have identical tires. For which car does friction do the largest amount of work in stopping the car

Answers

Answer:

Car 3

Explanation:

At a certain instant the current flowing through a 5.0-H inductor is 3.0 A. If the energy in the inductor at this instant is increasing at a rate of 3.0 J/s, how fast is the current changing

Answers

Answer:

The current is changing at the rate of 0.20 A/s

Explanation:

Given;

inductance of the inductor, L = 5.0-H

current in the inductor, I = 3.0 A

Energy stored in the inductor at the given instant, E = 3.0 J/s

The energy stored in inductor is given as;

E = ¹/₂LI²

E = ¹/₂(5)(3)²

E = 22.5 J/s

This energy is increased by 3.0 J/s

E = 22.5 J/s + 3.0 J/s = 25.5 J/s

Determine the new current at this given energy;

25.5 = ¹/₂LI²

25.5 = ¹/₂(5)(I²)

25.5 = 2.5I²

I² = 25.5 / 2.5

I² = 10.2

I = √10.2

I = 3.194 A/s

The rate at which the current is changing is the difference between the final current and the initial current in the inductor.

= 3.194 A/s - 3.0 A/s

= 0.194 A/s

≅0.20 A/s

Therefore, the current is changing at the rate of 0.20 A/s.

The rate at which the current is changing is;

di/dt = 0.2 A/s

We are given;

Inductance; L = 5 H

Current; I = 3 A

Rate of Increase of energy; dE/dt = 3 J/s

Now, the formula for energy stored in inductor is given as;

E = ¹/₂LI²

Since we are looking for rate at which current is changing, then we differentiate both sides of the energy equation to get;

dE/dt = LI (di/dt)

Plugging in the relevant values gives;

3 = (5 × 3)(di/dt)

di/dt = 3/(5 × 3)

di/dt = 0.2 A/s

Read more at; https://brainly.com/question/13112120

Other Questions
8.43 An advertising executive wants to estimate the mean amount of time that consumers spend with digital media daily. From past studies, the standard deviation is estimated as 45 minutes. a. What sample size is needed if the executive wants to be 90% confident of being correct to within {5 minutes Katie Simpson: Do you have time to meet this afternoon? Carl Mendoza: Sure. Whats up? Katie Simpson: We need to finalize the Bakersfield offer. 2:00? Carl Mendoza: 2:00 is perfect. Ill come by your office then. Katie Simpson: Great. Thanks! Does the preceding IM transcript apply professional best practices? Yes No EARTH SCIENCE The order of magnitude of the mass of Earth'satmosphere is 1018 kilograms. The order of magnitude of the mass ofEarth's oceans is 109 times greater. What is the order of magnitude of themass of Earth's oceans? What government agency protects consumers in case a bank fails by insuring thefirst $100,000 in savings a person has with the bank?The Food and Drug Administration (FDA)The Securities Exchange Commission (SEC)The Federal Deposit Insurance Corporation (FDIC)The Federal Trade Commission (FTC) Find the value of x, rounded to the nearest tenth. Explain the significance of agriculture in the rise of Early Complex Societies. Identify if the sequence is arithmetic or geometric. Then find the next number in the sequence? 1.9, 4.9, 7.9, 10.9, 13.9, ... Use the drop-down menus to complete each sentence. When nurses use specific language to describe a medical condition, this is called_______ . If a persons life is disrupted by thoughts, feelings or behaviors, it may be due to a_____ , which can be diagnosed using the resources of the ______. _____ is a pattern of misuse of medications. ANSWERS on edge 2020 are as followed: nursing vocabulary, mental disorder, DSM-5, substance abuse i hope this helps :) Sales of a popular toy were about 20 million in 2000 and growing about 5% each year. At this growth rate, the function f(x) = 20(1.05)^x gives the annual number of toys sold in million in the xth year after 2000. Using this model, in about what year will the annual sales surpass 37 million? Mrs Wong bought a rice cooker for $126 after a discount of 30%.(a) What was the price of the rice cooker before discount? (b) She paid $40 for a toaster. The total discount for the rice cooker and the toaster was $64. What was the percentage discount given for thetoaster? Which of the following decisions is least likely to involve collaboration? Group of answer choices How much of product A should be ordered from vendor B? Should our company acquire company A? What products should we include in the new product line? What type of relationship should the company maintain with company A? John is shooting a portrait of a little girl in the garden. Which practice should he follow? what is the scientific name for the layer of gas that surrounds the earth A. hydrosphere B. biosphere C. atmosphere D. lithosphere what.......? he's an engineer *100 points* I am trying to remember the difference between these 3 people in economics. here is the following info I have gotten and the best summarization gets the brainiest answer :D First Economist: Adam Smith Adam Smith lived from 17231790, was a Scottish philosopher and professor, and authored The Wealth of Nations. In his work, he argued that an economy regulated itself through the interaction of supply and demand and, therefore, was best left alone. He did not think the government should have a large active role in controlling the economy. Because of this, he believed in taxation at the minimum needed to support the operation of government, and thought the amount should be based on a persons ability to pay. He supported free trade between nations, again believing that the market forces of supply and demand would contribute to the production of high quality goods and services at reasonable prices. He believed that individuals as consumers and business owners ought to be the ones answering the basic economic questions of what to produce, how to produce, and for whom to produce. Second Person: Karl Marx Karl Marx was German, lived from 18181883, and authored many works. Probably the most significant for economics students is Das Kapital (Capital, in English). Marx wrote in response to the change from a primarily agrarian economy to an industrial economy. He was concerned that this change created tension between groups of people, most notably factory owners and workers. He believed this tension, made worse by the seeking of profits by company owners, would result in economic collapse. He saw the natural next step as government control of the economy to prevent wide variation in the income of people, as well as to keep the prices of goods and services balanced. He thought of personal property as theft. In his mind, the government should provide the answers to the basic economic questions of what to produce, how to produce, and for whom to produce. Third Person: John Maynard Keynes John Maynard Keynes was British and lived from 18831946. He authored several works but his most significant, especially to economics students, is his General Theory of Employment, Interest, and Money. The way we divide the study of economics into macroeconomics and microeconomics can be traced to him. He believed in capitalismthat individuals should answer the basic economic questions of what to produce, how to produce, and for whom to produce. However, he believed that a capitalist system could be most efficient and protected from the negative consequences of major booms and busts through the government. His influence on society is most notable in the years following the Great Depression. The British and United States governments followed his recommendations of government spending, even putting themselves in debt, in order to stimulate the economy and get it back on track. A recent example of Keynesian economics is President Obamas signing into law a large stimulus package in February 2009. Can help me pleaseee I need help When people suffer from _____, they often feel intense fear that something horrible is about to happen. These feelings last several minutes and include heart palpitations, shortness of breath, and dizziness. Calculate the quantity of energy produced per gram of U-235 (atomic mass = 235.043922 amu) for the neutron-induced fission of U-235 to form Xe-144 (atomic mass = 143.9385 amu) and Sr-90 (atomic mass = 89.907738 amu). Express your answer in joules per gram to three significant figures. La trayectoria de cierto satelitese ajusta ala grafica de la funcionf(x) igual6x al cuadradomenos 12donde x representael tiempo en das y f(x9 el recorrido en kilometroscuantos kilmetros habr recorridoel sateliteal cabo de diez das desde su lanzamiento What is a current trend with regard to theoretical perspectives and treatment of psychological disorders