The domain of the function is given. Find the range.
f(x) = 5x - 1
Domain: (-1,0,1,2)
Range:{6, 1, -4,9)
Range: (-6, 1, -4,9)
Range: (-6,-1, 4, 9)
Range:{+6,+1,+4,+9

Answers

Answer 1

Answer:

your third answer

Step-by-step explanation:

its easy just plug in each domain into your function and the result will be the range


Related Questions

assume that when adults with smartphones are randomly selected 15 use them in meetings or classes if 15 adult smartphones are randomly selected, find the probability that at least 4 of them use their smartphones

Answers

Answer:

The probability that at least 4 of them use their smartphones is 0.1773.

Step-by-step explanation:

We are given that when adults with smartphones are randomly selected 15% use them in meetings or classes.

Also, 15 adult smartphones are randomly selected.

Let X = Number of adults who use their smartphones

The above situation can be represented through the binomial distribution;

[tex]P(X = r) = \binom{n}{r}\times p^{r} \times (1-p)^{n-r} ; n = 0,1,2,3,.......[/tex]

where, n = number of trials (samples) taken = 15 adult smartphones

           r = number of success = at least 4

           p = probability of success which in our question is the % of adults

                 who use them in meetings or classes, i.e. 15%.

So, X ~ Binom(n = 15, p = 0.15)

Now, the probability that at least 4 of them use their smartphones is given by = P(X [tex]\geq[/tex] 4)

P(X [tex]\geq[/tex] 4) = 1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3)

= [tex]1- \binom{15}{0}\times 0.15^{0} \times (1-0.15)^{15-0}-\binom{15}{1}\times 0.15^{1} \times (1-0.15)^{15-1}-\binom{15}{2}\times 0.15^{2} \times (1-0.15)^{15-2}-\binom{15}{3}\times 0.15^{3} \times (1-0.15)^{15-3}[/tex]

= [tex]1- (1\times 1\times 0.85^{15})-(15\times 0.15^{1} \times 0.85^{14})-(105 \times 0.15^{2} \times 0.85^{13})-(455 \times 0.15^{3} \times 0.85^{12})[/tex]

= 0.1773

A circle has a center at (4, -7) and a radius of 4 units. Write an equation of this circle.

Answers

Answer:

(x – 4)^2 + (y + 7)^2 = 16

Step-by-step explanation:

The formula of a circle is:

(x – h)^2 + (y – k)^2 = r^2

(h, k) represents the coordinates of the center of the circle

r represents the radius of the circle

If you plug in the given information, you get:

(x – 4)^2 + (y – (-7))^2 = 4^2

which simplifies into:

(x – 4)^2 + (y + 7)^2 = 16

Which, if any, of the following proofs are correct demonstrations of the validity of this argument? A ⊃ (B ⊃ C) B ⊃ (~C ⊃ ~A) Proof 1 (1) A ⊃ (B ⊃ C) /B ⊃ (~C ⊃ ~A) Premise/Conclusion (2) (A • B) ⊃ C 1 Exp (3) (B • A) ⊃ C 2 Com (4) B ⊃ (A ⊃ C) 3 Exp (5) B ⊃ (~C ⊃ ~A) 4 Contra Proof 2 (1) A ⊃ (B ⊃ C) /B ⊃ (~C ⊃ ~A) Premise/Conclusion (2) B Assumption (3) A Assumption (4) B ⊃ C 1, 3 MP (5) C 2, 4 MP (6) A ⊃ C 3–5 CP (7) B ⊃ (A ⊃ C) 2–6 CP (8) B ⊃ (~C ⊃ ~A) 7 Contra

Answers

Answer

Step-by-step explanation:

Answer:

See the argument below

Step-by-step explanation:

I will give the argument in symbolic form, using rules of inference.

First, let's conclude c.

(1)⇒a  by simplification of conjunction

a⇒¬(¬a) by double negation

¬(¬a)∧(2)⇒¬(¬c) by Modus tollens

¬(¬c)⇒c by double negation

Now, the premise (5) is equivalent to ¬d∧¬h which is one of De Morgan's laws. From simplification, we conclude ¬h. We also concluded c before, then by adjunction, we conclude c∧¬h.

An alternative approach to De Morgan's law is the following:

By contradiction proof, assume h is true.

h⇒d∨h by addition

(5)∧(d∨h)⇒¬(d∨h)∧(d∨h), a contradiction. Hence we conclude ¬h.  

The total cost for my brother's bowling party was $140. It cost $50to reserve a bowling lane plus the cost of renting shoes for the 9 people attending.

Answers

$140 - $50 for the bowling lane = $90
$90 divide by the 9 people attending = $10 for bowling shoes for each person

Answer:

$10 to rent shoes for 9 people

Step-by-step explanation:

Total amount of the party = $140

A bowling lane = $50

$140 - $50 = $90

$90 divided by 9 = 10

$10 to rent shoes for 9 people

Please HELP best answer will receive a BRAINLIEST. Given the probability density function f ( x ) = 1/3 over the interval [ 4 , 7 ] , find the expected value, the mean, the variance and the standard deviation.

Answers

Answer:

[tex] E(X) =\int_{4}^7 \frac{1}{3} x[/tex]

[tex] E(X) = \frac{1}{6} (7^2 -4^2) = 5.5[/tex]

Now we can find the second moment with this formula:

[tex] E(X^2) =\int_{4}^7 \frac{1}{3} x^2[/tex]

[tex] E(X^2) = \frac{1}{9} (7^3 -4^3) = 31[/tex]

And the variance for this case would be:

[tex] Var(X)= E(X^2) -[E(X)]^2 = 31 -(5.5)^2 = 0.75[/tex]

And the standard deviation is:

[tex] Sd(X)= \sqrt{0.75}= 0.866[/tex]

Step-by-step explanation:

For this case we have the following probability density function

[tex] f(x)= \frac{1}{3}, 4 \leq x \leq 7[/tex]

And for this case we can find the expected value with this formula:

[tex] E(X) =\int_{4}^7 \frac{1}{3} x[/tex]

[tex] E(X) = \frac{1}{6} (7^2 -4^2) = 5.5[/tex]

Now we can find the second moment with this formula:

[tex] E(X^2) =\int_{4}^7 \frac{1}{3} x^2[/tex]

[tex] E(X^2) = \frac{1}{9} (7^3 -4^3) = 31[/tex]

And the variance for this case would be:

[tex] Var(X)= E(X^2) -[E(X)]^2 = 31 -(5.5)^2 = 0.75[/tex]

And the standard deviation is:

[tex] Sd(X)= \sqrt{0.75}= 0.866[/tex]

A research study investigated differences between male and female students. Based on the study results, we can assume the population mean and standard deviation for the GPA of male students are µ = 3.5 and σ = 0.05. Suppose a random sample of 100 male students is selected and the GPA for each student is calculated. What is the probability that the random sample of 100 male students has a mean GPA greater than 3.42?

Answers

Answer: 0.0548

Step-by-step explanation:

Given, A research study investigated differences between male and female students. Based on the study results, we can assume the population mean and standard deviation for the GPA of male students are µ = 3.5 and σ = 0.05.

Let [tex]\overline{X}[/tex] represents the sample mean GPA for each student.

Then, the probability that the random sample of 100 male students has a mean GPA greater than 3.42:

[tex]P(\overline{X}>3.42)=P(\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}>\dfrac{3.42-3.5}{\dfrac{0.5}{\sqrt{100}}})\\\\=P(Z>\dfrac{-0.08}{\dfrac{0.5}{10}})\ \ \ [Z=\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}]\\\\=P(Z>1.6)\\\\=1-P(Z<1.6)\\\\=1-0.9452=0.0548[/tex]

hence, the required probability is 0.0548.

Searches related to Searches related to A motorboat travels 135 kilometers in 3 hours going upstream. It travels 183 kilometers going downstream in the same amount of time. What is the rate of the boat in still water? what is the rate of the current?

Answers

Answer:

[tex]\large \boxed{\sf \text{The rate of the boat is } 53 \ km/h \text{, the rate of the current is }8\ km/h \ \ }[/tex]

Step-by-step explanation:

Hello, let's note v the rate of the boat and r the rate of the current. We can write the following

[tex]\dfrac{135}{v-r}=3=\dfrac{183}{v+r}[/tex]

It means that

[tex]135(v+r)=183(v-r)\\\\135 v + 135r=183v-183r\\\\\text{ *** We regroup the terms in v on the right and the ones in r to the left***}\\\\(135+183)r=(183-135)v\\\\318r=48v\\\\\text{ *** We divide by 48 both sides ***}\\\\\boxed{v = \dfrac{318}{48} \cdot r= \dfrac{159}{24} \cdot r}[/tex]

But we can as well use the second equation:

[tex]3(v+r)=183\\\\v+r=\dfrac{183}{3}=61\\\\\dfrac{159}{24}r+r=61\\\\\dfrac{159+24}{24}r=61\\\\\boxed{r = \dfrac{61*24}{183}=8}[/tex]

and then

[tex]\boxed{v=\dfrac{159*8}{24}=53}[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

please answer this correctly
How far apart are the gift shop and the science lab
Please answer this correctly without making mistakes

Answers

The answer is 86.4 km

Explanation:

The graph shows the gift shop is to the east of the science lab, and, between the gift shop and the science lab it is the art supply. Besides this, the description of the graph provides the distance between the art supply and the science lab, which is 40.0, as well as, the distance between the art supply and the gift shop, which is 46.4 kilometers.

In this context, it is possible to calculate the distance from the science lab to the gift shop by adding the partial distances, considering the art supply as a middle point in the map. This means the distance from the lab to the gift shop = 40.0 km (distance from the lab to the art supply) + 46.4 km (distance from the art supply to the gift shop) = 86.4 km.

A catering service offers 11 appetizers, 12 main courses, and 8 desserts. A customer is to select 9 appetizers, 2 main courses, and 3 desserts for a banquet. In how many ways can this be done?

Answers

Answer:  203,280

Step-by-step explanation:

Given: A catering service offers 11 appetizers, 12 main courses, and 8 desserts.

Number of combinations of choosing r things out of n = [tex]^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]

A customer is to select 9 appetizers, 2 main courses, and 3 desserts for a banquet.

Total number of ways to do this: [tex]^{11}C_9\times ^{12}C_2\times^{8}C_3[/tex]

[tex]=\dfrac{11!}{9!2!}\times\dfrac{12!}{2!10!}\times\dfrac{8!}{3!5!}\\\\=\dfrac{11\times10}{2}\times\dfrac{12\times11}{2}\times\dfrac{8\times7\times6}{3\times2}\\\\= 203280[/tex]

hence , this can be done in 203,280 ways.

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) x4 18x2 4 x5 30x3 20x dx

Answers

Your integrand is missing some symbols. My best interpretation is the following integral:

[tex]I=\displaystyle\int\frac{x^4+18x^2+4}{x^5+30x^3+20x}\,\mathrm dx[/tex]

Decompose into partial fractions; we're looking for an expansion of the form

[tex]\dfrac{x^4+18x^2+4}{x^5+30x^3+20x}=\dfrac ax+\dfrac{bx^3+cx^2+dx+e}{x^4+30x^2+20}[/tex]

Now:

[tex]x^4+18x^2+4=a(x^4+30x^2+20)+(bx^3+cx^2+dx+e)x[/tex]

[tex]=(a+b)x^4+cx^3+(30a+d)x^2+ex+20a[/tex]

Matching up coefficients tells us that

[tex]\begin{cases}a+b=1\\c=0\\30a+d=18\\e=0\\20a=4\end{cases}\implies a=\dfrac15,b=\dfrac45,d=12[/tex]

so that

[tex]I=\displaystyle\frac15\int\frac{\mathrm dx}x+\frac45\int\frac{x^3+15x}{x^4+30x^2+20}\,\mathrm dx[/tex]

The integral is trivial:

[tex]\displaystyle\frac15\int\frac{\mathrm dx}x=\frac15\ln|x|+C[/tex]

For the second integral, notice that

[tex]\mathrm d(x^4+30x^2+20)=(4x^3+60x)\,\mathrm dx[/tex]

Distribute the 4 over the numerator, then substitute [tex]u=x^4+30x^2+20[/tex] and [tex]\mathrm du=(4x^3+60x)\,\mathrm dx[/tex]:

[tex]\displaystyle\frac15\int\frac{4x^3+60x}{x^4+30x^2+20}\,\mathrm dx=\frac15\int\frac{\mathrm du}u=\frac15\ln|u|+C=\frac15\ln(x^4+30x^2+20)+C[/tex]

So we have

[tex]I=\dfrac15\ln|x|+\dfrac15\ln(x^4+30x^2+20)+C[/tex]

and with some simplification,

[tex]I=\boxed{\ln\sqrt[5]{|x^5+30x^3+20x|}+C}[/tex]

INTEGERS YES OR NO 74 3.49 - 4/7 (the - is suupose to be inbetween both numbers, not just the 4 is negative) -148.29 - 8/1

Answers

Answer:

The integers are the numbers such that:

- The distance between consecutive integers is always of 1 unit and the integer numbers only have zeros after the decimal point, such that the set is: Z = {..., 0, 1, 2, 3, 4, ......}

74) No digits after the decimal point, so this is an integer.

3.49) we have digits after the decimal point, so this is not an integer.

4/7) 4 is smaller than 7, so 4/7 is smaller than one and larger than zero,

one and zero are consecutive integer numbers, so 4/7 can not be an integer number.

You also can solve the division and find that the quotient has digits after the decimal point.

148.29) This number has digits after the decimal point, so this is not an integer number.

8/1) here we have 8 divided by one, we know that:

8/1 = 8

8 has no digits after the decimal point, so this is an integer.

(3/4) URGENT!! PLEASE HELP! -50 POINTS- WILL MARK BRAINLEST ASAP AND 5 STARS IF CORRECT!!! please no wrong answers for the points.

Answers

Answer:

D

Step-by-step explanation:

The graph above is your graph.

As x increase, y decreases

As x decrease, y increases.

However, there is a small portion of the graph where both x and y were positive.

But I'm guessing it should be D.

Answer:

D

Step-by-step explanation:

[tex]f(x)=-x^3+2x^2-x+3[/tex]

As the highest power is 3, it is odd, as [tex]x[/tex] approaches to [tex]-\infty[/tex] [tex]y[/tex] approaches to [tex]\infty[/tex]

First, we have [tex]x \rightarrow-\infty[/tex], [tex]y \rightarrow \infty[/tex]

Plotting the graph, you can easily conclude the answer to the question.

And as [tex]x \rightarrow \infty[/tex], [tex]y \rightarrow -\infty[/tex]

The sum of three consecutive even integers is 90. Find the Integers.

Answers

Answer:

  28, 30, 32

Step-by-step explanation:

Their average will be 90/3 = 30. That is the middle integer.

The three integers are 28, 30, 32.

_____

Comment on the working

It often works well to use the average value when working consecutive integer problems. The average of an odd number of consecutive integers is the middle one. The average of an even number of consecutive integers is halfway between the middle two.

Someone please explain this!!!!

Answers

Answer:

23) x ≥ -140.

24) k > -9.

25) v ≥ 9.

26) m > 16.

Step-by-step explanation:

23) -14 ≤ [tex]\frac{x}{10}[/tex]

[tex]\frac{x}{10}[/tex] ≥ -14

x ≥ -140

Since it is a ≥ sign, you will put a shaded circle at -140, and the line will stretch infinitely to the right of the circle.

24) -20 < k - 11

k - 11 > -20

k > -9

Since it is a > sign, you will put a non-shaded circle at -9, and the line will stretch infinitely to the right of the circle.

25) -6v ≤ 54

6v ≥ 54

v ≥ 9

Since it is a ≥ sign, you will put a shaded circle at 9, and the line will stretch infinitely to the right of the circle.

26) 8 < [tex]\frac{m}{2}[/tex]

[tex]\frac{m}{2}[/tex] > 8

m > 16

Since it is a > sign, you will put a non-shaded circle at 16, and the line will stretch infinitely to the right of the circle.

Hope this helps!

There are 42 students in an elementary statistics class. On the basis of years of experience, the instructor knows that the time needed to grade a randomly chosen first examination paper is a random variable with an expected value of 5 min and a standard deviation of 6 min. (Give answers accurate to 3 decimal places.)
(a) If grading times are independent and the instructor begins grading at 6:50 P.M. and grades continuously, what is the (approximate) probability that he is through grading before the 11:00 P.M. TV news begins?
1
(b) If the sports report begins at 11:10, what is the probability that he misses part of the report if he waits until grading is done before turning on the TV?
2

Answers

Answer:

A) 0.99413

B) 0.00022

Step-by-step explanation:

A) First of all let's find the total grading time from 6:50 P.M to 11:00 P.M.:

Total grading time; X = 11:00 - 6:50 = 4hours 10minutes = 250 minutes

Now since we are given an expected value of 5 minutes, the mean grading time for the whole population would be:

μ = n*μ_s ample = 42 × 5 = 210 minutes

While the standard deviation for the population would be:

σ = √nσ_sample = √(42 × 6) = 15.8745 minutes

To find the z-score, we will use the formula;

z = (x - μ)/σ

Thus;

z = (250 - 210)/15.8745

z = 2.52

From the z-distribution table attached, we have;

P(Z < 2.52) ≈ 0.99413

B) solving this is almost the same as in A above, the only difference is an additional 10 minutes to the time.

Thus, total time is now 250 + 10 = 260 minutes

Similar to the z-formula in A above, we have;

z = (260 - 210)/15.8745

z = 3.15

P(Z > 3.15) = 0.00022

The Box-and-Whisker plot shows the average temperatures in, atlanta, georgia, in march. which statement about the temperatures in atlanta must be true? A. about half the days in march had average temperatures above 60 degrees. B. about half the days in march had average temperatures either below 60 or above 73 degrees C. the coldest day in march was 51 D. the hottest day in march was 84

Answers

Answer:

"B. about half the days in march had average temperatures either below 60 or above 73 degrees"

Step-by-step explanation:

To answer this question, note that a box plot is usually divided into quartiles, each representing approximately 25% each.

In the box plot above,

*about 25% (Q1) represents days with temperature of 60° and below. This is about ¼ of the days in March.

*About 25% (Q2) represents days with temperature between 61° and 68°. That's about ¼ of the days in March

*About 25% (Q3) represents days with temperature between 70° and 73°. That's about ¼ of the days in March

*About 25% (Q4) represents days with temperature between 74° and 82°. That's about ¼ of the days in March

*Coldest day in March has a temperature of 54°

*Hottest day in March is 82°

From the options given, the only statement that is true is "B. about half the days in march had average temperatures either below 60 or above 73 degrees"

¼ of the Days in March has temperatures below 60° (Q1), while ¼ of the days in March has temperatures above 73° (Q4). Therefore, ¼+¼ = ½ of the days in March having average temperatures either below 60 or above 73 degrees.

Answer:

b

Step-by-step explanation:

About half of the days in March had average temperatures either below 60 or above 73 degrees.

Yesterday at 1:00 P.M., Maria’s train was 42 miles north of Gull’s Beach, traveling north at an average speed of 90 mph. At the same time on the adjacent track, Elena’s train was 6 miles north of Gull’s Beach, traveling north at an average speed of 101 mph. To the nearest hundredth of an hour, after how much time will the trains meet up? 0.23 hours 0.31 hours 3.27 hours 4.36 hours

Answers

Answer:b

Step-by-step explanation:

Answer:

3.27 hours

Step-by-step explanation:

Calculate the difference in speed and distance between the trains.

The relative speed:

101 - 90 = 11 mph

Difference in distance:

42 - 6 = 36 miles

[tex]time=\frac{distance}{speed}[/tex]

[tex]t=\frac{36}{11}[/tex]

[tex]t = 3.27[/tex]

A car was sold at a 12% discount, which amounts to $1800. How much would the car sell for after the discount?

Answers

Answer:

1584$

Step-by-step explanation:

Original price is 1800$ (100%)

Discount percent: 12%

=> The price after discount is 100 - 12 = 88% of original price

=> The price after discount is 1800 x 88% = 1800 x 88/100 = 1584$

Answer:

13200

Step-by-step explanation:

12% - 1800

100% - x

X = (1800x100)/12 = 15000 - original price

15000-1800 = original price - discount = 13200 price after discount

What is the five number summary for this data set?
3, 8, 14, 19, 22, 29, 33, 37, 43, 49
Assume the numbers in each answer choice are listed in this order: min, Q1,
median, Q3, max

Answers

Answer:

see explanation

Step-by-step explanation:

The median is the middle value of the data set in ascending order. If there is no exact middle then the median is the average of the values either side of the middle.

Given

3   8   14   19   22   29   33   37   43   49

                            ↑ middle is between 22 and 29

median = [tex]\frac{22+29}{2}[/tex] = [tex]\frac{51}{2}[/tex] = 25.5

The upper quartile [tex]Q_{3}[/tex] is the middle value of the data to the right of the median.

29   33   37   43   49

               ↑

[tex]Q_{3}[/tex] = 37

The lower quartile [tex]Q_{1}[/tex] is the middle value of the data to the left of the median.

3   8   14   19   22

           ↑

[tex]Q_{1}[/tex] = 14

The min is the smallest value in the data set, that is 3

The max is the largest value in the data set, that is 49

The 5 number summary is

3,  14,  25.5,  37,  49

Find the directional derivative of the function at the given point in the direction of the vector v. f(x, y, z) = xey + yez + zex, (0, 0, 0), v = 4, 3, −1

Answers

Answer: 6 / √26

Step-by-step explanation:

Given that f(x, y, z) = xe^y + ye^z + ze^x

so first we compute the gradient vector at (0, 0, 0)

Δf ( x, y, z ) = [ e^y + ze^x,  xe^y + e^z,  ye^z + e^x ]

Δf ( 0, 0, 0 ) = [ e⁰ + 0(e)⁰, 0(e)⁰ + e⁰, 0(e)⁰ + e⁰ ] = [ 1+0 , 0+1, 0+1 ] = [ 1, 1, 1 ]

Now we were also given that  V = < 4, 3, -1 >

so ║v║ = √ ( 4² + 3² + (-1)² )

║v║ = √ ( 16 + 9 + 1 )

║v║ = √ 26

It must be noted that "v"  is not a unit vector but since ║v║ = √ 26, the unit vector in the direction of "V" is ⊆ = ( V / ║v║)

so

⊆ =  ( V / ║v║) = [ 4/√26, 3/√26, -1/√26 ]

therefore by equation   D⊆f ( x, y, z ) = Δf ( x, y, z ) × ⊆

D⊆f ( x, y, z ) = Δf ( 0, 0, 0 ) × ⊆ = [ 1, 1, 1 ] × [ 4/√26, 3/√26, -1/√26 ]

= ( 1×4 + 1×3 -1×1 ) / √26

= (4 + 3 - 1) / √26

= 6 / √26

How do I use intercepts to graph 3y= - 5x - 30

Answers

Answer:

y-intercept is (0,-10) and x-intercept is (-6,0).  Connect them by a straight line to graph the given equation.

Step-by-step explanation:

The given equation of line is

[tex]3y=-5x-30[/tex]

For x=0,

[tex]3y=-5(0)-30[/tex]

[tex]3y=-30[/tex]

[tex]y=-10[/tex]

So, y-intercept is at point (0,-10).

For y=0,

[tex]3(0)=-5x-30[/tex]

[tex]0=-5x-30[/tex]

[tex]5x=-30[/tex]

[tex]x=-6[/tex]

So, x-intercept is at point (-6,0).

Now, plot the point (0,-10) and (-6,0) on a coordinate plane and connect them by a straight line to graph the given line as shown below.

3. Write an equation of a line that is perpendicular to the line x – 2y = 8.

Answers

Answer:

y=0.5x+40

Step-by-step explanation:

Copy the  equation.

x-2y=8

Subtract x from both sides.

-2y=-x-8

Divide both sides by -2.

y=0.5x+4

Now we know the slope is 0.5.

Any line with a slope of 0.5 will be perpendiculr to the original line.

One that you can use is y=0.5x+40.

A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of 1 m/s, how fast is the boat approaching the dock when it is 4 m from the dock

Answers

Answer:

-1.031 m/s or  [tex]\frac{-\sqrt{17} }{4}[/tex]

Step-by-step explanation:

We take the length of the rope from the dock to the bow of the boat as y.

We take x be the horizontal  distance from the dock to the boat.

We know that the rate of change of the rope length is [tex]\frac{dy}{dt}[/tex] = -1 m/s

We need to find the rate of change of the horizontal  distance from the dock to the boat =  [tex]\frac{dx}{dt}[/tex] = ?

for x = 4

Applying Pythagorean Theorem we have

[tex]1^{2} +x^{2} =y^{2}[/tex]    .... equ 1

solving, where x = 4, we have

[tex]1^{2} +4^{2} =y^{2}[/tex]

[tex]y^{2} = 17[/tex]

[tex]y = \sqrt{17}[/tex]

Differentiating equ 1 implicitly with respect to t, we have

[tex]2x\frac{dx}{dt} = 2y\frac{dy}{dt}[/tex]

substituting values of

x = 4

y = [tex]\sqrt{17}[/tex]

[tex]\frac{dy}{dt}[/tex] = -1

into the equation, we get

[tex]2(4)\frac{dx}{dt} = 2(\sqrt{17} )(-1)[/tex]

[tex]\frac{dx}{dt} = \frac{-\sqrt{17} }{4}[/tex] = -1.031 m/s


Find the value of n such that 540n is perfect cube.​

Answers

Answer:

1.35

Step-by-step explanation:

next cube above 540 is 729

to get to 729: 729 / 540 = 1.35

n = 1.35

Vector has x and y components of -8.80 cm and 18.0 cm, respectively; vector has x and y components of 12.2 cm and -6.80 cm, respectively. If - + 3 = 0, what are the components of ? x = cm y = cm

Answers

Question:

Vector A has x and y components of −8.80 cm  and 18.0 cm , respectively; vector B has x and  y components of 12.2 cm and −6.80 cm , respectively.  If A − B +3 C = 0, what are the components of C?

Answer:

x = ___ cm

y = ___ cm

Answer:

x = 7.0cm

y = -8.27cm

Step-by-step explanation:

For a vector F, with x and y components of a and b respectively, its unit vector representation is as follows;

F = ai + bj              [Where i and j are unit vectors in the x and y directions respectively]

Using this analogy, let's represent vectors A and B from the question in their unit vector notation.

A has an x-component of -8.80cm and y-component of 18.0cm

B has an x-component of 12.2cm and y-component of -6.80cm,

In unit vector notation, these become;

A = -8.80i + 18.0j

B = 12.2 i + (-6.80)j = 12.2i - 6.80j

Also, there is a third vector C. Let the x and y components of C be a and b respectively. Therefore,

C = ai + bj

Now,

A - B + 3C = 0                [substitute the vectors]

=> [-8.80i + 18.0j] - [12.2 i -6.80j] + [3(ai + bj)] =  0        [open brackets]

=> -8.80i + 18.0j - 12.2 i + 6.80j + 3(ai + bj) =  0

=> -8.80i + 18.0j - 12.2 i + 6.80j + 3ai + 3bj =  0

=> -8.80i + 18.0j - 12.2 i + 6.80j + 3ai + 3bj =  0  [collect like terms and solve]

=> -8.80i  - 12.2 i  + 3ai + 6.80j + 18.0j + 3bj =  0

=> -21.0 i  + 3ai + 24.8j + 3bj =  0       [re-arrange]

=> 3ai + 3bj = 21.0i - 24.8j

Comparing both sides shows that;

3a = 21.0  -------------(i)

3b = -24.8    -----------(ii)

From equation (i)

3a = 21.0

a = 21.0 / 3 = 7.0

From equation (ii)

3b = -24.8

b = -24.8 / 3

b = -8.27

Therefore, the x-component and y-component of vector B which are a and b, are 7.0cm and -8.27cm respectively.

Find the coordinate vector [Bold x ]Subscript Upper B of x relative to the given basis BequalsStartSet Bold b 1 comma Bold b 2 comma Bold b 3 EndSet.

Answers

Answer:

3

Step-by-step explanation:

3

Is this equation linear or nonlinear?
y =x/2​

Answers

Answer:

linear

Step-by-step explanation:

3x to the 2nd power +4y to the 2nd power x=2 y=1 z=-3

Answers

Answer:

Step-by-step explanation:

3(2)^2 + 4(1)^2

3(4) + 4

12+4= 16

Answer:

[tex]\huge\boxed{16}[/tex]

Step-by-step explanation:

[tex]3x^2+4y^2\ \text{for}\ x=2;\ y=1.\\\\\text{Substitute:}\\\\3(2)^2+4(1)^2=3(4)+4(1)=12+4=16\\\\\text{Used PEMDAS}[/tex]

differentiate with respect to X
[tex] \sqrt{ \frac{cos2x}{1 +sin2x } } [/tex]

Answers

Power and chain rule (where the power rule kicks in because [tex]\sqrt x=x^{1/2}[/tex]):

[tex]\left(\sqrt{\dfrac{\cos(2x)}{1+\sin(2x)}}\right)'=\dfrac1{2\sqrt{\frac{\cos(2x)}{1+\sin(2x)}}}\left(\dfrac{\cos(2x)}{1+\sin(2x)}\right)'[/tex]

Simplify the leading term as

[tex]\dfrac1{2\sqrt{\frac{\cos(2x)}{1+\sin(2x)}}}=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}[/tex]

Quotient rule:

[tex]\left(\dfrac{\cos(2x)}{1+\sin(2x)}\right)'=\dfrac{(1+\sin(2x))(\cos(2x))'-\cos(2x)(1+\sin(2x))'}{(1+\sin(2x))^2}[/tex]

Chain rule:

[tex](\cos(2x))'=-\sin(2x)(2x)'=-2\sin(2x)[/tex]

[tex](1+\sin(2x))'=\cos(2x)(2x)'=2\cos(2x)[/tex]

Put everything together and simplify:

[tex]\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{(1+\sin(2x))(-2\sin(2x))-\cos(2x)(2\cos(2x))}{(1+\sin(2x))^2}[/tex]

[tex]=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{-2\sin(2x)-2\sin^2(2x)-2\cos^2(2x)}{(1+\sin(2x))^2}[/tex]

[tex]=\dfrac{\sqrt{1+\sin(2x)}}{2\sqrt{\cos(2x)}}\dfrac{-2\sin(2x)-2}{(1+\sin(2x))^2}[/tex]

[tex]=-\dfrac{\sqrt{1+\sin(2x)}}{\sqrt{\cos(2x)}}\dfrac{\sin(2x)+1}{(1+\sin(2x))^2}[/tex]

[tex]=-\dfrac{\sqrt{1+\sin(2x)}}{\sqrt{\cos(2x)}}\dfrac1{1+\sin(2x)}[/tex]

[tex]=-\dfrac1{\sqrt{\cos(2x)}}\dfrac1{\sqrt{1+\sin(2x)}}[/tex]

[tex]=\boxed{-\dfrac1{\sqrt{\cos(2x)(1+\sin(2x))}}}[/tex]

State sales tax S S is directly proportional to retail price p p . An item that sells for 142 142 dollars has a sales tax of 12.32 12.32 dollars. Find a mathematical model that gives the amount of sales tax S S in terms of the retail price p p .

Answers

Answer: [tex]S=0.087p[/tex] .

Step-by-step explanation:

Equation for direct proportion:

y=kx

, where x= independent variable ,

y=dependent variable.

k= proportionality constant

Here, State sales tax S  is directly proportional to retail price p.

Also, dependent variable= S,  independent variable =p

Required equation: S= kp

Put S= 12.32 and x= 142

[tex]S=12.32=k(142)\\\\\Rightarrow\ k=\dfrac{12.32}{142}\approx0.087[/tex]

Hence, the required equation is [tex]S=0.087p[/tex] .

Other Questions
in the circle, mS=33, mRS=120, and RU is a tangent. the diagram is not drawn to scale. what is mU? Please help! Someone plz Help its due now!!! In a histogram, if I have 0-2 does this count everything up to 2, or does this count 2? During her lecture, the professor told the class there would be four major points covered on the test. She counted these points on her fingers for the class to see as she discussed what would be covered. The professor's actions are an example of Which consequence resulted from unresolved international conflictsthroughout the 20th century?O A. Countries were repeatedly drawn into new wars shortly after otherconflicts had ended.O B. European states were able to exercise greater control over theirAfrican and Asian colonies.C. Societies around the world became more socially, culturally, andeconomically linkedO D. World leaders began to openly violate international treatiesprotecting human rights.THE ANSWER IS A How many natural 4-digit numbers exist in which all of the digits are even? 5. An average drunk driver has driven drunk__times before ever being arrested.a. 3b. 14c. 33d. 80 A collection of 108 coins containing only quarters and nickels is worth $21. A table titled Coin Collection showing Number of Coins, Value, and Total. The first row shows Nickels, and has n, 0.05, and 0.05 n. The second row shows, Quarters, and has q, 0.25, and 0.25 q. The third row shows total, and has not entries. Which value could replace q on the chart? 21 108 21 n 108 n Which phrase best describes a quality of Postmodernism?A. Telling a story that ultimately ends in a tragedyB. Adding supernatural elements to a modern settingC. Mixing styles and genres to break from traditionD. Unsettling the reader through spooky descriptions What are some of the court cases that koremastu united states were compared to Question 5 of 15Water turns from a gas to a liquid in a process calledA. evaporationB. sublimationc. transpositionD. condensationSUBMIT Which graph shows the solution to the system of linear inequalities? y 2x + 1 y 2x 2 Assume that the physics instructor would like to have normal visual acuity from 21 cm out to infinity and that his bifocals rest 2.0 cm from his eye. What is the refractive power of the portion of the lense that will correct the instructors nearsightedness Text: these two triangles are similarValues from left to right: 10, 12, 9What is the area of the shaded area There are only six player per teams in a hockey game. A group of 14 friends wants to start a game. What is the most sportsman-like way to set up the game ? Identify the baking staples. Pick one, and discuss in detail. The map below shows the modern political boundaries of the Middle East.The area highlighted in blue is the region in which Mettez les articles dfinis (le, la, l ou les)Instructions:Follow the given example.If there are more than one answer then put a "," (coma) sign and aspacebetween them. Such as; answer01, answer02.Exemple:Nous aimons........................ chocolat.Rponse:Nous aimonslechocolat.1) Elle regarde ..................... tl?unanswered2) Vous comprenez ..................... anglais ?unanswered3) Vous aimez ............................ concerts?unanswered4) Qui aime ....................... opra ?unanswered5) Tu lis ................ journal.unanswered6. ................. salade est bonne pour ................. sant.unanswered7. .................. restaurant est sur ................. montagne.unanswered8. Vous avez ................... adresse de ................universit de Brac? 1. The atomic symbol of aluminum is written as 2713Al. What information do you get from it? Researchers often are particularly interested in the subset of a market that contributes most to sales (for example, heavy beer drinkers or large-volume retailers). What type of sampling might be best to use with such a subset? Why? Determine the area under the standard normal curve that lies to the left of(a) Z = 1.75, (b) Z=0.01, (c) Z= -0.01, and (d)Z = 1.29.Click the icon to view a table of areas under the normal curve.(a) The area to the left of Z= 1.75 is(Round to four decimal places as needed.)