The concentration of iodide ions in a saturated solution of lead (II) iodide is 3.03 x 10⁻³ M. The solubility product constant of PbI₂ is 1.4 x 10-8.
The solubility product constant, which is denoted by Ksp is defined as the equilibrium constant for a solid substance which dissolves in an aqueous solution.
when PbI₂ dissolves, it dissociates as follows
PbI₂ --> Pb²⁺ + 2I⁻
Molar solubility is the number of moles of salt that can be dissolved in 1 L of solution
If molar solubility of PbI₂ is x , then molar solubility of Pb²⁺ is x and I⁻ is 2x
ksp is solubility product constant.
ksp = [Pb²⁺][I⁻]²
ksp = [x][2x]²
ksp = 4x³
4x³ = 1.4 x 10⁻⁸
x³ = 0.35 x 10⁻⁸
x = 1.51 x 10⁻³ M
since molar solubility of I⁻ is 2x ,
then molar solubility of I⁻ or concentration of iodide ions is 3.03 x 10⁻³ M
To know more about solubility product here
https://brainly.com/question/17081992
#SPJ1
What is photosynthesis? Answer in 2-4 sentences, including the words below:
Chemical Reaction
Energy
Photosynthesis is a chemical reaction in which energy from sunlight is used to convert carbon dioxide and water into glucose and oxygen. This process occurs in the chloroplasts of plant cells and is essential for the survival of plants, as well as for many other organisms that depend on plants for food.
Please help me with questions 7 and 8 :(
The needed quantity of heat is also 11,627.2 cal.
Water is the sample that would take more heat to raise the temperature by 10.0°C.
How to calculate heat?7. To calculate the amount of heat required to increase the temperature of the iron block from 25°C to 1535°C, use the formula:
q = m x c x ΔT
where q is the amount of heat, m is the mass of the iron block, c is the specific heat of iron, and ΔT is the change in temperature.
Substituting the values given:
q = (75.0 g) x (0.449 J/g°C) x (1535°C - 25°C)
= 48,571.8 J
Therefore, the amount of heat required to increase the temperature of the iron block is 48,571.8 J.
To convert this to calories, we can use the conversion factor 1 cal = 4.184 J:
q = 48,571.8 J x (1 cal / 4.184 J)
= 11,627.2 cal
Therefore, the amount of heat required is also 11,627.2 cal.
8. To determine which sample would require more heat to raise the temperature by 10.0°C, use the formula:
q = m x c x ΔT
where q is the amount of heat, m is the mass of the sample, c is the specific heat of the sample, and ΔT is the change in temperature.
Substituting the values for water:
q(water) = (10.0 g) x (4.184 J/g°C) x (10.0°C)
= 418.4 J
Substituting the values for ethanol:
q(ethanol) = (10.0 g) x (2.44 J/g°C) x (10.0°C)
= 244.0 J
Therefore, the sample that would require more heat to raise the temperature by 10.0°C is water, since it has a higher specific heat than ethanol. Water can absorb more heat per unit mass than ethanol, which makes it more effective at storing and releasing heat.
Find out more on heat here: https://brainly.com/question/934320
#SPJ1
A steel bar and a copper bar have the same length of 1.500 m at -12.00 ∘C.
What is the difference in the lengths of the two bars at 41.0 ∘C ?
Drag each phrase to show weather it causes water pollution or is an effect of water pollution. (2 points)
Choices:
Algal blooms
Overgrazing
Use of chemical fertilizers to enhance production
High concentration of nitrogen in water
Algal blooms and high concentrations of nitrogen in water are effects of water pollution. Overgrazing and the use of chemical fertilizers cause water pollution.
Water pollutionAlgal blooms are an effect of water pollution. They occur when there is an excessive amount of nutrients, particularly nitrogen and phosphorus, in the water due to pollution. The overgrowth of algae depletes the oxygen levels in the water, which can harm fish and other aquatic animals.
Overgrazing can cause water pollution by increasing the sedimentation rate of waterways. This sedimentation can carry nutrients, bacteria, and other pollutants into the water, which can degrade water quality and cause harm to aquatic life.
The use of chemical fertilizers to enhance production is a cause of water pollution. When fertilizer is overused, it can leach into waterways and cause nutrient pollution, which can lead to algal blooms and other forms of water pollution.
High concentrations of nitrogen in water are often an effect of water pollution. This can be caused by the overuse of fertilizers or the discharge of untreated sewage into waterways. High nitrogen levels can cause algal blooms, which can lead to oxygen depletion and harm aquatic life.
More on water pollution can be found here: https://brainly.com/question/19920929
#SPJ1
Answer:
Cause:
: : use of chemical fertilizers to enhance production
: : overgrazing
Effect:
: : high concentration of nitrogen in water
: : algal blooms
Hope this helps ;)
Calculate the solubility of MgF2 in water if the Ksp for the compound is 6.4 x 10-9.
The solubility of MgF₂ in water is 0.00635 moles per liter, if Ksp for the compound is 6.4 x 10⁻⁹.
The solubility of a compound in water is determined by its solubility product constant (Ksp), which is a measure of the extent to which the compound dissociates into its constituent ions in water.
For the given compound, magnesium fluoride (MgF₂), the Ksp is 6.4 x 10⁻⁹.
MgF₂ dissociates in water according to the following equation;
MgF₂(s) ↔ Mg²⁺(aq) + 2F⁻(aq)
The Ksp expression for MgF₂ is then;
Ksp = [Mg²⁺] × [F⁻]²
where [Mg²⁺] represents the concentration of Mg²⁺ ions in solution, and [F⁻] represents the concentration of F⁻ ions in solution.
Since MgF₂ dissociates into one Mg²⁺ ion and two F⁻ ions, the stoichiometry of the reaction is 1:2. This means that for every mole of MgF₂ that dissolves, one mole of Mg²⁺ ions and two moles of F⁻ ions are formed.
Let's assume that the solubility of MgF₂ in water is "x" moles per liter. Therefore, the concentration of Mg²⁺ ions and F⁻ ions in solution will also be "x" moles per liter.
Substituting these values into the Ksp expression, we get;
Ksp = [Mg²⁺] × [F⁻]²
6.4 x 10⁻⁹ = x × (2x)²
6.4 x 10⁻⁹ = 4x³
Now, we can solve for "x";
4x³ = 6.4 x 10⁻⁹
x³ = (6.4 x 10⁻⁹ / 4
x³ = 1.6 x 10⁻⁹
x = (1.6 x 10⁻⁹(1/3)
x ≈ 0.00635
Therefore, the solubility of MgF₂ in water is approximately 0.00635 moles per liter.
To know more about solubility here
https://brainly.com/question/22185953
#SPJ1
For the complete redox reaction given, write the half-reactions and identify the oxidizing and reducing agents. H(2)+Cl(2)->2HCl
Part 1 of 4
What is the oxidation half reaction?
Part 2 of 4
What is the reduction half reaction?
Part 3 of 4
What is the oxidizing agent?
Part 4 of 4
What is the reducing agent?
The half-reaction is; H₂ → 2H⁺ + 2e⁻, the oxidizing agent is chlorine , and the reducing agent is hydrogen. The oxidation half-reaction is where a species loses electrons, the reduction half-reaction is where a species gains electrons, the oxidizing agent is the species that causes another species to be oxidized by accepting electrons itself, and the reducing agent is the species that causes another species to be reduced by donating electrons itself.
The oxidation half-reaction is the half-reaction where a species loses electrons. In this reaction, hydrogen (H₂) is oxidized to form hydrogen ions (H⁺). The half-reaction can be written as;
H₂ → 2H⁺ + 2e⁻
The reduction half-reaction is the half-reaction where a species gains electrons. In this reaction, chlorine (Cl₂) is reduced to form chloride ions (Cl⁻). The half-reaction can be written as follows;
Cl₂ + 2e⁻ → 2Cl⁻
The oxidizing agent is the species that causes another species to be oxidized by accepting electrons itself. In this reaction, chlorine (Cl₂) is the oxidizing agent because it accepts electrons from hydrogen (H₂), causing it to be oxidized.
The reducing agent is the species that causes another species to be reduced by donating electrons itself. In this reaction, hydrogen (H₂) is the reducing agent because it donates electrons to chlorine (Cl₂), causing it to be reduced.
Therefore, chlorine is the oxidizing agent, and hydrogen is the reducing agent.
To know more about oxidation half-reaction here
https://brainly.com/question/9770435
#SPJ1
The enthalpy change for the reaction between two molecules of carbon oxysulfide (COS) to form one molecule of CO2 and one molecule of CS2, as shown below, is –3.2 × 10–24 kJ per molecule of COS. The bond energy for the C=S bond in CS2 has been determined to be 552 kJ/mol
What is the apparent bond energy of a carbon–sulfur bond in COS? Use the bond energies below
____ kJ
C=S 552 Kj/mole
C=O 799 KJ/mole
To calculate the apparent bond energy of a carbon-sulfur bond in COS, we need to use the bond energies of the individual bonds that make up the molecule. The apparent bond energy of a carbon-sulfur bond in COS is approximately 1092 kJ/mol.
The apparent bond energy is the difference between the energy required to break the bonds in the reactants and the energy released when new bonds form in the products.
The enthalpy change of two (2) moles of COS is:
ΔH = –3.2 × 10⁻²⁴ × 2 × 6.02 × 10²³ = -3.85 kJ / mol
ΔH = ∑bond energy of reactants - ∑bond energy of products
2×C=O + 2 × C=S -[2 × C=O] + [2×C=S)
-3.85 = 2 × C=S -(2 × 552)
2 × C=S = 1104 - 3.85 = 1100.15
C=S = 1100.15 /2 = 550.08 kJ / mol
So apparent energy is 550.08 kJ / mol.
To know more about apparent energy, visit;
https://brainly.com/question/21670527
#SPJ1
- Composition is ______ in each sample (made up of the same type & number
of atoms)
- Examples: Water (H₂O), Carbon dioxide (CO₂), Sugar (C,H,O)
The composition is three number of atoms in each sample.
How to determine the composition of atoms in a sample?The number of samples that was given include the following:
Water (H2O) : This sample is made up of three number of atoms but contains only two elements of oxygen and hydrogen in a ratio of 1:2 respectively.
Carbondioxide (CO2) : This sample is made up of three number of atoms but contains only two elements of carbon and oxygen in a ratio of 1:2.
Sugar (CHO) : This sample is made up of three number of atoms but contains three elements of carbon, oxygen and hydrogen in a ratio of 1:1:1.
Learn more about atoms here:
https://brainly.com/question/30459794
#SPJ1
8. Identify the limiting reactant (LR), excess reactant (ER), and calculate the theoretical yield (TY), in
grams, of CasP, that can be produced from 17 Liters of Ca and 2.93 x10 atoms of P.
(amount)
Calculate the percent yield for the reaction described in question #8 if 3.44 Liters of Ca,P, were
produced in the lab(actual).
Déterminer le réactif limitant (LR) en comparant les quantités de Ca et de P données :
17 litres de Ca = 17 000 mL de Ca (1 litre = 1000 mL), donc 17 000 mL / 40 g/mL = 425 g de Ca
2,93 x 10 atomes de P / 6,02 x 10^23 atomes/mol = 4,87 x 10^-24 mol de P
Masse molaire de Ca3P2 = 182,2 g/mol
Pour calculer le LR, nous devons convertir les quantités de Ca et de P en moles, en utilisant les coefficients stœchiométriques de l'équation :
Moles de Ca = 425 g / 40 g/mol = 10,6 mol
Moles de P = 4,87 x 10^-24 mol
Pour déterminer la quantité de CasP théorique qui peut être produite, nous devons d'abord calculer la quantité de Ca qui réagit avec le P :
Moles de P nécessaires = 2/3 x 10,6 mol = 7,1 mol
Moles de Ca nécessaires = 3/2 x 7,1 mol = 10,6 mol (car le rapport stœchiométrique est de 3 Ca pour 2 P)
Masse de Ca3P2 produite = 10,6 mol x 182,2 g/mol = 1932 g
Le rendement théorique (TY) de la réaction est de 1932 g de Ca3P2.
Pour calculer le rendement en pourcentage de la réaction réelle, il faut connaître la quantité réelle de Ca3P2 produite.
Si 3,44 litres de Ca3P2 ont été produits, cela équivaut à 3,44 x 10^6 mL x 1,82 g/mL = 6,26 kg.
Le rendement réel (RY) est donc :
RY = (masse réelle de Ca3P2 produite / masse théorique de Ca3P2 produite) x 100%
RY = (6,26 kg / 1,932 kg) x 100% = 323,7%
Le rendement réel est supérieur à 100%, ce qui indique que des erreurs ont été commises lors de la mesure de la quantité de produit ou de réactif, ou qu'il y a eu des pertes pendant la manipulation ou le processus de purification.
. What is that substance that yields hydrogen ion [H] when added with water?
If you can’t measure the length, width or height of an object, you must use what 
Answer:
If you can't measure the length, breadth, or height of an item, you can utilise displacement or guesswork instead.
For example, you may calculate the volume of an item by measuring the displacement of water while it is submerged in it. You may then estimate its dimensions by assuming a certain form or by considering additional metrics such as weight or density.
Another technique is to estimate the object's dimensions using a known object of comparable size or visual cues such as a ruler or grid in an image. These procedures, however, may be less accurate and more prone to mistake.
Calculate the heat change (ΔΗ°rxn) for the slow reaction of zinc with water
Zn(s)+2H2O(l) ---> Zn^2+ (aq) +H2(g)
ΔΗ°rxn = kJ
The heat change or enthalpy change, ΔH°rxn, for the slow reaction of zinc with water is +417.7 kJ/mol.
The heat change or enthalpy change, ΔH°rxn, for the reaction of zinc (Zn) with water (H₂O) can be calculated using the standard enthalpies of formation for each species involved in the reaction.
Balanced chemical equation for the reaction is;
Zn(s) + 2H₂O(l) → Zn²⁺(aq) + H₂(g)
The standard enthalpy change for the reaction, ΔH°rxn, can be calculated as the sum of the standard enthalpies of formation of the products minus the sum of the standard enthalpies of formation of the reactants, each multiplied by their respective stoichiometric coefficients;
ΔH°rxn = Σ(nΔH°f, products) - Σ(mΔH°f, reactants)
where n and m are the stoichiometric coefficients of the products and reactants, respectively, and ΔH°f is the standard enthalpy of formation.
Assuming standard conditions (25°C and 1 atm), the standard enthalpies of formation for Zn²⁺(aq) and H₂(g) are typically tabulated values. Let's assume their values to be ΔH°f(Zn²⁺(aq)) = -153.9 kJ/mol and ΔH°f(H₂(g)) = 0 kJ/mol, respectively.
The standard enthalpy of formation of water (H₂O) is -285.8 kJ/mol.
Put the values into the equation, we get;
ΔH°rxn = [ΔH°f(Zn²⁺(aq)) + ΔH°f(H₂(g)] - [ΔH°f(Zn(s)) + 2ΔH°f(H₂O(l))]
ΔH°rxn = [-153.9 + 0] - [0 + 2(-285.8)]
ΔH°rxn = -153.9 + 571.6
ΔH°rxn = 417.7 kJ/mol
To know more about heat change here
https://brainly.com/question/18912282
#SPJ1
What is the best conclusion that Tara should make about the commercial?
The best inference Tara can draw about the commercial is the fact that it is making pseudoscientific claims based on opinions rather than scientific evidence, according to the message at the bottom of the screen.
The claims claimed in the commercial are not supported by scientific data and may be exaggerated or inaccurate because the pill has not been examined by physicians and has not been put through rigorous testing. Therefore, before making any judgements regarding the use of the product, it is crucial to exercise caution and skepticism towards the assertions made in such advertising and to look for trustworthy sources of information.
Therefore, the correct option is D.
Learn more about commercial, here:
https://brainly.com/question/20913121
#SPJ1
Your question is incomplete, most probably the complete question is:
Tara sees a commercial for a brand of pills that promise to boost energy and help people perform better in work and school. As people in the commercial talk about how much better they feel when taking the pill, Tara notices a message on the bottom of the screen that reads, "This pill is not approved by doctors and has not been tested in controlled experiments." What is the best conclusion that Tara should make about the commercial?
It is making scientific claims based on subjective observations. It is making scientific claims based on opinions instead of pseudoscientific facts. It is making pseudoscientific claims based on objective observations. It is making pseudoscientific claims based on opinions instead of scientific facts.Part E Why does the car stop? Where did the energy go?
When the moving car brakes to the stop the kinetic energy of car will be converted to the heat energy.
The mechanical brake will be applies to the friction force and it convert the kinetic energy of the car into the thermal energy that which then dissipates on atmosphere. The process of the braking will follow the principle of the conservation of the energy.
The conservation of the energy is the principle, that is expressed in its the most general form, and it is the first law of the thermodynamics. The first law of thermodynamics explains that "the energy of the universe remains the same."
To learn more about thermodynamics here
https://brainly.com/question/31303013
#SPJ1
This question is incomplete, the complete question is :
A car in motion has kinetic energy. A moving car is suddenly stopped. Why does the car stop? Where did the energy go?
Formula Writing Lab for Ionic Compounds Data Table
The table that can depict the compound is given below
Sodium +1 Na+ Chloride -1 Cl-
Potassium +1 K+ Oxide -2 O2-
Calcium +2 Ca2+ Nitride -3 N3-
Magnesium +2 Mg2+ Sulfide -2 S2-
What are ionic compound?Ionic compounds are the compounds made up of ions that form charged particles when an atom gains or loses electrons. A cation is an ion charged positively; an anion is an ion charged negatively.
In this table, the first column lists the names of the ions, the second column shows their corresponding charges, and the third column displays their ion formulas.
Learn more about compound on
https://brainly.com/question/2687188
#SPJ1
Which of the following is a main difference in cell structure between an onion cell and a human cheek cell? OA. There is no difference between an onion cell and a human cheek cell. OB. An onion cell has a cell wall. OC. An onion cell contains one nucleus, whereas a human cheek cell contains two nuclei. OD. A human cheek cell contains chloroplasts.
Answer: An onion cell has a cell wall.
Explanation:
One of the main differences in cell structure between an onion cell and a human cheek cell is that an onion cell has a cell wall, while a human cheek cell does not. The cell wall of the onion cell provides it with additional support and protection, which is not required by animal cells, such as the human cheek cell.
please provide explanation!! thank you in advance!!
The correct rate law of the reaction from the experimental data is k[NO]^2 [O2]. Option D
What is the rate of reaction?The rate of reaction is usually expressed in terms of the amount of reactant consumed or product formed per unit time, and is typically measured in units of moles per liter per second (mol/L/s) or similar units.
We have that;
For NO;
3.4 * 10^-5/8.4 * 10^-6 = 2 * 10^-4/ 2 * 10^-4
4 = 2^n
n = 2
For O2;
8.4 * 10^-6/2.8 * 10^-6 = 3 * 10^-4/ 1 * 10^-4
3 = 3^n
n = 1
Thus the rate law of the reaction is;
Rate = k[NO]^2 [O2]
Learn more about rate of reaction:https://brainly.com/question/8592296
#SPJ1
3 Ca + 2 P→ Ca3P₂
Identify the limiting reactant (LR), excess reactant (ER), and theoretical yield (TY), in moles, of Ca³P₂
when 17.0 grams Ca reacts with 18.0 grams P.
To identify the limiting reactant, excess reactant, and theoretical yield, we first need to determine the amount of each reactant in moles.
Using the molar masses of Ca and P:
Number of moles of Ca = 17.0 g / 40.08 g/mol = 0.424 mol
Number of moles of P = 18.0 g / 30.97 g/mol = 0.581 mol
Next, we need to determine the stoichiometric ratio of the reactants. From the balanced chemical equation, we see that the ratio of Ca to P is 3:2.
3 Ca + 2 P → Ca3P2
To use the stoichiometric ratio to determine the limiting reactant, we need to compare the actual ratio of the reactants to the stoichiometric ratio.
Actual ratio of Ca to P = (0.424 mol Ca) / (0.581 mol P) ≈ 0.73
Stoichiometric ratio of Ca to P = 3/2 = 1.5
Since the actual ratio is greater than the stoichiometric ratio, Ca is the excess reactant and P is the limiting reactant.
To find the theoretical yield of Ca3P2, we need to use the stoichiometric ratio to determine how many moles of Ca3P2 can be produced from the limiting reactant (P).
From the balanced chemical equation, we see that 2 moles of P react with 3 moles of Ca to produce 1 mole of Ca3P2.
So, the number of moles of Ca3P2 that can be produced from 0.581 mol of P is:
(0.581 mol P) × (1 mol Ca3P2 / 2 mol P) = 0.2905 mol Ca3P2
Therefore, the theoretical yield of Ca3P2 is 0.2905 mol.
Who can be my tutor for chemistry?
A Tutor is responsible for helping students to learn and understand the new concepts and complete assignments. They prepare lessons by studying lesson plans, reviewing textbooks in detail.
The role of a teacher is to teach a certain subject to the students according to the school syllabus whereas tutors respond to a child's individual needs by filling gaps. It is one who gives private instruction.
A Tutor for chemistry can be a person with good subject knowledge of chemistry. Generally the person who have taken MSC in chemistry or Mphil can be the apt tutor. They should got these degrees from a recognized university.
To know more about Tutor, visit;
https://brainly.com/question/13088995
#SPJ1
13. Which of the following chemical reactions is an oxidation-reduction reaction?
A. C02 + H20 - H2C03
B. Pb(N03)2 + 2HC1- PbCh + 2HN03
C. H2S04 + Ba(OH)2 - BaS04 + 2H20
D. NH3 + HCl - NH4CI
E. Mg + CO2 - MgO + CO
Mg + CO[tex]_2[/tex]→ MgO + CO is an oxidation-reduction reaction. Therefore, the correct option is option E among all the given options.
Redox reactions involve oxidation-reduction chemical processes in which the oxidation states of the reactants change. Redox is a shortened version of reduction-oxidation. Two distinct processes—a reduction process or an oxidation process—can be used to describe all redox reactions.
In redox and oxidation-reduction processes, the oxidation or reduction reactions usually take place concurrently. In a chemical reaction, the material that is being reduced is referred to as the reducing agent, and the substance that is being oxidised is the oxidising agent. Mg + CO[tex]_2[/tex]→ MgO + CO is an oxidation-reduction reaction.
Therefore, the correct option is option E.
To know more about oxidation-reduction reaction, here:
https://brainly.com/question/13559667
#SPJ1
During the titration, a student pulls out the pH electrode from the titration beaker several times (with about 0.25 mL of solution on it each time) and rinses it off with DI water into a waste container. Will this affect the measured equivalent mass? If so, will the equivalent mass come out higher or lower?
The student pulling out the pH electrode from the titration beaker and rinsing it off with DI water into a waste container several times during the titration will not significantly affect the measured equivalent mass.
This is because the equivalent mass of a substance is determined by the stoichiometry of the reaction, which is not influenced by the pH electrode or the rinsing process. However, it is important to note that if the student is rinsing the electrode with a significant amount of water, it could dilute the solution and affect the accuracy of the titration. Therefore, it is recommended to use a minimal amount of water during the rinsing process to minimize any potential dilution effect.
To know more about titration, here
brainly.com/question/31271061
#SPJ1
Neutralization is a type of chemical reaction in which an acid and a base react with each other to form water and a salt.
Calculate the % yield of a reaction that combined 28.0 grams of sodium hydroxide with 125.0 mL of 3.10 M solution of sulfuric acid hat produced 24.5 g of Na2SO4 in the laboratory.
Balanced equation:
2 NaOH + H₂SO4 → Na₂SO4 + 2 H₂O
The percent yield of the reaction is 45.44%
Percentage yield is basically,
[tex]\rm Percent\ yield\ = \frac{actual\ yield}{theoretical\ yield} \times 100[/tex]
2 NaOH + H₂SO₄ → Na₂SO₄ + 2 H₂O
To calculate the theoretical yield, consider the stoichiometry of the reaction.
2 moles of NaOH reacts with 1 mole of H₂SO₄ to give 1 mole of Na₂SO₄ and 2 moles of H₂O. The mole ratio of H₂SO₄ and Na₂SO₄ is 1:1
For this mole ratio to be useful, convert the given concentration of H₂SO₄ into moles.
[tex]\rm Molarity\ =\ \frac{No.\ of\ moles}{Volume\ of\ solution (L)}[/tex]
[tex]\rm 3.10\ =\ \frac{No.\ of\ moles}{0.125}[/tex]
[tex]\rm No.\ of\ moles\ =\ 3.10 \times 0.125\[/tex]
[tex]=\ 0.38[/tex]
Since, mole ratio of H₂SO₄ and Na₂SO₄ is 1:1
Amount of Na₂SO₄ formed would be also 0.38 mol
Convert this amount in moles to amount in grams
[tex]\rm No.\ of\ moles\ =\ \frac{Mass\ formed\ }{Molecular\ mass}[/tex]
[tex]\rm Mass\ formed\ =\ No.\ of\ moles\times molecular\ mass[/tex]
[tex]\rm =\ 0.38\times 142.04[/tex]
[tex]\rm =\ 53.97\ grams[/tex]
Theorical yield of Na₂SO₄ is 53.97 grams
Therefore, [tex]\rm Percent\ yield\ = \frac{actual\ yield}{theoretical\ yield} \times 100[/tex]
[tex]\rm =\ \frac{24.5}{53.97}\times 100[/tex]
= 45.44%
The percent yield of the reaction is 45.44%
To know more on percent yield, click on
https://brainly.com/question/12704041
#SPJ1
A sample of 10.8 liters of an ideal gas at 23.0 °C and 740.5 torr is compressed and heated so that the volume is 7.20 liters and the temperature is 71.0 °C. What is the pressure in the container?
Answer: The pressure in the container is 1949.5 torr when the volume is 7.20 liters and the temperature is 71.0 °C
Explanation: To solve this problem, we can use the combined gas law, which relates the initial and final conditions of pressure (P), volume (V), and temperature (T) for an ideal gas:
(P1 × V1) / T1 = (P2 × V2) / T2
where P1, V1, and T1 are the initial pressure, volume, and temperature, and P2, V2, and T2 are the final pressure, volume, and temperature.
We can plug in the given values:
P1 = 740.5 torr
V1 = 10.8 L
T1 = 23.0 °C + 273.15 = 296.15 K
V2 = 7.20 L
T2 = 71.0 °C + 273.15 = 344.15 K
(P1 × V1) / T1 = (P2 × V2) / T2
(740.5 torr × 10.8 L) / 296.15 K = (P2 × 7.20 L) / 344.15 K
Solving for P2:
P2 = (740.5 torr × 10.8 L × 344.15 K) / (296.15 K × 7.20 L)
P2 = 1949.5 torr
Therefore, the pressure in the container is 1949.5 torr when the volume is 7.20 liters and the temperature is 71.0 °C.
The atomic mass of the element neon (Ne) is 20.180 amu. Which measurement is correct?
a. 1 mole Ne = 20.180 grams = 1.215 x 10^25 atoms
b. 1 mole Ne = 20.180 moles = 6.022 x 10^23 atoms
c. 1 mole Ne = 20.180 grams = 6.022 x 10^23 atoms
d. 1 mole Ne = 20.180 moles = 1.215 x 10^25 atoms
Can this be solved Chemistry balancing equation GIVEN K
find [N₂O₄] given K = 0.028, [NO₂] = 0.0.042 M N₂O₄ ← →2 NO₂
The concentration of N₂O₄ is 0.514 M.
The equilibrium constant (K) is a ratio of the concentrations of products to reactants at equilibrium. In this problem, the equilibrium constant (K) is given as 0.028 for the reaction N₂O₄ ← → 2NO₂.
To find the concentration of N₂O₄, we can use the expression for K and the initial concentration of NO₂. Since there is no initial concentration of N₂O₄ given, we assume that it is x M.
Using the equilibrium constant (K) and the initial concentration of one of the species.
[N₂O₄] = √(K/[NO₂])
[N₂O₄] = √(0.028/0.042)
[N₂O₄] = 0.514 M
Therefore, the concentration of N₂O₄ is 0.514 M.
To know more about the Equation, here
https://brainly.com/question/2524060
#SPJ1
If you have 220 mL of a 3.6M solution of calcium hydroxide, how many grams of calcium hydroxide would be leftover if all the water was evaporated?
If you have 220 mL of a 3.6M solution of calcium hydroxide, 7.92g is the mass in gram of calcium hydroxide would be leftover if all the water was evaporated.
A body's mass is an inherent quality. Prior to the discoveries of the atom as well as particle physics, it was widely considered to be tied to the amount of matter within a physical body.
It was discovered that, despite having the same quantity of matter in theory, different atoms and elementary particles have varied masses. There are various conceptions of mass in contemporary physics that are theoretically different but physically equivalent.
Molarity = moles/ volume
volume = 220 / 100
= 2.2L
3.6× 2.2 = moles
mass= 7.92g
To know more about mass, here:
https://brainly.com/question/19694949
#SPJ1
Someone help i need an answer quick
Claim 1: Yes, there probably will be a lunar eclipse of the moon of Kepler-47c during a year.
Claim 2: No, there probably won't be a lunar eclipse of the moon of Kepler-47c during a year.
What are the evidence to support this claim?Kepler-47c is a moon orbiting Kepler-47 AB, a binary star system. This implies that the moon's light varies on a regular basis as it circles the two stars. These changes in light might result in a lunar eclipse.
Lunar eclipses occur when the moon passes through the Earth's shadow. While Kepler-47c circles two stars, it is still subject to Earth's gravitational pull and may pass into its shadow.
Lunar eclipses occur on a regular basis, with two to four eclipses occurring on average per year. Given the frequency of lunar eclipses, Kepler-47c is likely to see at least one lunar eclipse every year.
Evidence to support this claim 2:
Lunar eclipses occur when the moon passes through the Earth's shadow. While Kepler-47c is in the Earth's gravitational field, it is not on the same orbital plane as the Earth.
While Kepler-47c circles two stars, its orbit is not known to be stable. Variations in Kepler-47c's orbit may reduce the likelihood of a lunar eclipse.
While lunar eclipses are common, they are not uniformly distributed throughout the year. The locations and motions of the Earth, moon, and sun govern the timing and frequency of lunar eclipses.
Find out more on Kepler-47c here: https://brainly.com/question/28741788
#SPJ1
The ionic compound MX(s) is formed from the metal M(s) and the diatomic gas X2(g) at standard conditions. Calculate the lattice energy given the following data( data in picture)
The lattice energy of MX is 459.2 kJ/mol.
The lattice energy (ΔH° lattice) of an ionic compound is the energy released when one mole of the solid is formed from its constituent gaseous ions under standard conditions. The lattice energy is calculated using the Born-Haber cycle, which involves several steps including atomization, ionization, dissociation, and sublimation energies.
The lattice energy is related to the Coulombic attraction between the oppositely charged ions in the solid. To calculate the lattice energy for MX, we can use the following equation:
ΔH° lattice = ΔH° sub + ΔH° ion + ΔH° diss + ΔH° formation
where ΔH° sub is the sublimation energy of M(s), ΔH° ion is the first ionization energy of M(g), ΔH° diss is the dissociation energy of X2(g), and ΔH° formation is the enthalpy of formation of MX(s).
Using the given data, we can calculate each of these values and substitute them into the equation to obtain the lattice energy. The final answer should be in units of kJ/mol.
ΔH° sub (M) = 107.3 kJ/mol
ΔH° ion (M) = 577.5 kJ/mol
ΔH° diss (X2) = 242 kJ/mol
ΔH° formation (MX) = -467.6 kJ/mol
ΔH° lattice = 107.3 + 577.5 + 242 + (-467.6) = 459.2 kJ/mol
As a result, MX has a lattice energy of 459.2 kJ/mol.
To know more about the Ionic compound, here
https://brainly.com/question/1603676
#SPJ1
HELP
Write the products formed in the following acid-base reaction.
NaOH + HCl →
Then, describe the reaction using the terms strong acid, strong base, weak acid, weak base, salt, conjugate acid, conjugate base, and neutralization, as appropriate.
Answer in complete sentences.
The products formed in the acid-base reaction between NaOH and HCl are NaCl (sodium chloride) and H₂O (water).
NaOH + HCl → NaCl + H₂O
In this reaction, NaOH is a strong base, and HCl is a strong acid. A strong base is one that completely dissociates in water to form hydroxide ions (OH⁻) while a strong acid is one that completely dissociates in water to form hydrogen ions (H⁺).
NaOH + H₂O → Na⁺ + OH⁻
HCl + H₂O → H⁺ + Cl⁻
When NaOH is added to HCl, the hydroxide ions (OH⁻) from the NaOH react with the hydrogen ions (H⁺) from the HCl to form water (H2O). The remaining ions, Na⁺ and Cl⁻, combine to form sodium chloride (NaCl), which is a salt.
Na⁺ + Cl⁻ → NaCl
The reactants in this reaction are a strong base (NaOH) and a strong acid (HCl), and the products are a salt (NaCl) and water (H₂O). This reaction is an example of neutralization, which is a reaction between an acid and a base that produces a salt and water. The Na⁺ ion is the conjugate acid of the strong base NaOH, while the Cl⁻ ion is the conjugate base of the strong acid HCl
To know more about the Conjugate base, here
https://brainly.com/question/30357375
#SPJ1
Calculate the acid ionization constant for propanoic acid if a 0.200 M solution is 0.815% ionized. The abbreviated structural formula for butanoic acid is CH3CH2COOH.
The ionization constant of propanoic acid is 0.7181
The ionization constant (Ka) of the monoprotic acid can be calculated using the equation:
Ka = ([H⁺][A⁻])/[HA]
where [H⁺] is the concentration of hydrogen ions, [A⁻] is the concentration of the conjugate base, and [HA] is the initial concentration of the acid.
We know that the acid is 0.815 percent ionized, which means that only 0.815 percent of the initial concentration of the acid has ionized into hydrogen ions and the conjugate base.
Therefore, the concentration of hydrogen ions and the conjugate base can be calculated using the following equations:
[H⁺] = 0.815 x 0.200 M = 0.163 M
[A⁻] = 0.815 x 0.200 M = 0.163 M
The initial concentration of the acid ([HA]) can be calculated by subtracting the concentration of hydrogen ions and the conjugate base from the initial concentration of the solution:
[HA] = 0.200 M - 0.163M= 0.037 M
Substituting these values into the equation for Ka, we get:
Ka = (0.163 M)² / 0.037M = 0.7181
Therefore, the ionization constant (Ka) of propanoic acid is 0.7181
To know more about ionization constant here :
brainly.com/question/28385102
#SPJ1