The comparison between the number of human genes and those of other animal species has led to many conclusions, including that _____.

Answers

Answer 1

Answer:

We have a lot of similar genes to those of animal kin.

Explanation:

Answer 2

The genes of humans and animals show more than 50% similarity and conclude the same ancestral origin.

What are genes?

The gene can be described as the hereditary unit that results in the make-up of proteins for the functioning of the body.

The genes are hereditary and evolution there results in the change in the genotype and thereby phenotype with mutations.

The genes of humans and animals result in the similarity of more than m 50%. This concludes that there has been the presence of the same ancestral origin for the animal and humans.

The genetic similarity between humans and the animal species results in the conclusion of humans belong to the animal kingdom and have the same ancestral origin.

Learn more about genes, here:

https://brainly.com/question/787658


Related Questions

The Mississippi river carries sediments into the Gulf of Mexico. What do you think will happen to the sediments after a few million years?.

Answers

They build up and create an underwater barrier or island until they reach the surface

Answer:

Explanation:

The Mississippi River carries tons of tiny rock fragments called sediments into the Gulf of Mexico. What do you think will happen to these sediments after a few million years? Gizmo Warm-up Over millions of years, rocks are broken down and transformed into other rocks. The Mississippi river carries sediments into the Gulf of Mexico. What do you think will happen to the sediments after. The Mississippi river carries sediments into the Gulf of Mexico. What do you think will happen to the sediments after a few million years?

How is genomics related to genes and DNA?

Answers

Answer:

A gene consists of enough DNA to code for one protein, and a genome is simply the sum total of an organism's DNA.

Genomic DNA, or gDNA, is the chromosomal DNA of an organism, representing the bulk of its genetic material. ... In research, genomic DNA is useful tools in applications such as PCR, library construction, Southern blotting, hybridizations, SNP analysis, and molecular diagnostic assays.

Answer:

DNA

DNA is the molecule that is the hereditary material in all living cells.

Genes are made of DNA, and so is the genome itself. A gene consists of enough DNA to code for one protein, and a genome is simply the sum total of an organism's DNA.

DNA is long and skinny, capable of contorting like a circus performer when it winds into chromosomes. It's skinny as a whip and smart as one too, containing all the information necessary to build a living organism. In a very real sense, DNA is information.

WHAT IS DNA MADE OF?

DNA is a very large molecule, made up of smaller units called nucleotides that are strung together in a row, making a DNA molecule thousands of times longer than it is wide.

Each nucleotide has three parts: a sugar molecule, a phosphate molecule, and a structure called a nitrogenous base. The nitrogenous base is the part of the nucleotide that carries genetic information, so the words "nucleotide" and "base" are often used interchangeably. The bases found in DNA come in four varieties: adenine, cytosine, guanine, and thymine—often abbreviated as A, C, G, and T, the letters of the genetic alphabet.

How did people find out that DNA is the hereditary material?

DNA was largely ignored for decades after a German chemist, Friedrich Miescher, first isolated the white, slightly acidic substance from the nucleus of cells in 1869. No one knew what DNA's function was—in fact, some doubted that it had a function at all—so they pretty much left the stuff alone.

Very few people thought that DNA could be the hereditary material. Early studies of DNA suggested, erroneously, that the molecule was made up of the same sequence of four bases repeated over and over—ACGTACGTACGT… for example. No one could imagine how such a monotonously simple molecule could contain the information necessary to build a living organism.

But during the 1930s and 1940s, new experiments began to suggest that DNA might, in fact, be important. It turned out that different strains of bacteria can exchange DNA and that when they do certain traits, such as the ability to cause disease in humans, can be passed from one strain of bacteria to another. Scientists also learned that when a virus infects a cell it injects its DNA into the cell, which then produces many copies of the virus, suggesting that DNA contains instructions for building viruses. And they found that different species of organisms have different proportions of bases in their DNA—one species might have DNA that is 30 percent A, 20 percent C, 20 percent G, and 30 percent T, while another might have 20 percent A, 30 percent C, 30 percent G, and 20 percent T. People began to think that genetic information might be written in the differences between the DNA bases of different species.

What does DNA look like?

A DNA molecule is a double helix, a structure that looks much like a ladder twisted into a spiral. The sides of the ladder are made of alternating sugar and phosphate molecules, the sugar of one nucleotide linked to the phosphate of the next. DNA is often said to have a sugar and phosphate "backbone."

Each rung of the ladder is made of two nitrogenous bases linked together in the middle. The length of a DNA molecule is often measured in "base pairs," or bp—that is, the number of rungs in the ladder. Sometimes, this unit of measurement is shortened simply to "bases."The structure of DNA was worked out in 1953 by James D. Watson and Francis Crick, who worked together in the Cavendish laboratory in Cambridge, England. By the time they began their work in the early 1950s, it was clear that DNA is the hereditary material, and scientists were racing to find out more about the long-ignored molecule, picking apart the implications of each new detail. Everyone knew they couldn't really understand how DNA works until they understood how its nucleotide building blocks are put together.

(Im a Really fast Typer and Thinker)

A population of beetles is mostly composed of individuals with the dominant green color, but there are several with the recessive brown
color. A displaced species of bird moves into the habitat and preferentially preys upon the green beetles. Over time, what can be expected
to happen to the beetle population?
O A. The beetles will migrate to avoid being eaten by the birds in the habitat.
OB. The beetle population will become extinct.
O C. The beetle population will stabilize because the birds will not eat more beetles than necessary to maintain ecological balance.
O D. The brown beetles will become more common.

Answers

The green beetles will decrease in number while the brown beetles will become more common.

According to Darwin's theory of evolution, organisms that are better adapted to their environment are able to live longer and survive long enough to reproduce thereby perpetuating their favorable characteristics in the population.

Since the green beetles are more common but they are preferentially preyed upon by the invasive bird species, the green beetles will decrease in number while the brown beetles will become more common.

Learn more: https://brainly.com/question/17638582

Help me Pleaseeeee its only for grade 5​

Answers

What help u need ?
....

If the birth rate and death rate are balanced in a population, how might a population increase in size?
a. By doubling
b. By emigration
c. By immigration
d. By an increase in density

Answers

A . By doubling because the population increases

Help quick!!!!!! In dire need 1st and the correct answer gets brainliest.

Answers

Answer:

they can all be applied to other plants.

they can all be easily observed (i got the question right on the test :)

the most prevalent type of antibody in the blood is

Answers

Answer:

IgG is the most abundant antibody isotype in the blood (plasma), accounting for 70-75% of human immunoglobulins (antibodies). IgG detoxifies harmful substances and is important in the recognition of antigen-antibody complexes by leukocytes and macrophages.

Explanation:

IgG is the most abundant antibody isotype in the blood (plasma

Give two ways that differentiation is the same in plants and animal.​

Answers

Cell elongation does not occur in animals. The cells of multicellular animals and plants must also differentiate , so that its cells develop features that enable them to fulfil specific roles. Cells that have differentiated have become specialised.

Differentiation in plants and animals involves the specialization of cells for specific functions, and it results in the development of different tissues and organs.

What is differentiation in plants and animals?

Differentiation refers to the process by which cells become specialized in structure and function. In plants and animals, this process occurs during development and results in the formation of different types of cells, tissues, and organs.

During differentiation, cells undergo changes in gene expression, which leads to the production of different types of proteins and other molecules. These changes can be triggered by various signals, such as hormones, growth factors, and environmental cues.

In animals, differentiation occurs during embryonic development and results in the formation of different types of tissues, such as muscle, bone, and nerve tissue. In plants, differentiation occurs during both embryonic development and growth and results in the formation of different types of tissues, such as root tissue, leaf tissue, and stem tissue.

Learn more about differentiation, here:

https://brainly.com/question/14496325

#SPJ2

how will you select and grow a resistant strain of e. coli in this experiment?

Answers

Streptomycin treatment is used in medicine. It s growth is to expose a sample of E.coli to streptomycin by innoculating it into a streptomycin positive plate. any colonies that grow will carry a mutation for resistance.

Streptomycin treatment is known to boast or increase the growth of E. coli by nitrate respiration.

Streptomycin is simply regarded as an antibiotic which is often used to treat moderate to severe tuberculosis, pneumonia, E. coli, etc.

See full question below

How will you select and grow a resistant strain of E.coli in this experiment?multiple choice:

(1). expose a sample of E.coli to streptomycin by innoculating it into a streptomycin positive plate. any colonies that grow will carry a mutation for resistance,

(2.) expose a sample of E.coli to sterptomycin by innoculating it into a streptomycin negative plate, any colonies that grow will carry a mutation for resistance,

(3.) samples of bacteria are taken from the culture and observed under a microscope for signs of susceptibility or resistance. those that are resistant are separated and plated.

(4.) a culture of E.coli will be mixed with streptomycin so that the antibiotic can alter the genetic composition of the bacteria

Learn more about resistant strain of e. coli from

https://brainly.com/question/6390757

What is the
Digestive process

Answers

Answer:

the digestive process is the process in which food travels down our thorax into our stomach where the acid breaks it down to gather nutrients and what not to fuel our body then the rest is turned into waste.

Explanation:

What is the surgery that involves trimming excess prostate tissue in order to treat urinary problems that are caused by an enlarged prostate?

Answers

Answer:

d. TURP is correct

Explanation: Transurethral resection of the prostate

Answer: D) Turp


hope this helps

Name three components of the cell membrane and explain how each contributes the semipermeable nature of the membrane.

Answers

The principal components of the plasma membrane are lipids ( phospholipids and cholesterol), proteins, and carbohydrates. The plasma membrane protects intracellular components from the extracellular environment. The plasma membrane mediates cellular processes by regulating the materials that enter and exit the cell.

All of the following among A-D apply to toll-like receptors EXCEPT A. they bind to PAMPS B. they induce the release of cytokines when activated C. they directly lyse bound pathogens D. when stimulated, they activate the immune system of the body E. there are no exceptions, A-D are all true

Answers

The toll-like receptors do NOT directly lyse bound pathogens (Option C). These protein receptors play fundamental roles in the innate immune system.

Toll-like receptors (TLRs) are single-pass membrane-spanning protein receptors that play fundamental functions in the innate immune system.

TLRs are differentially expressed on the surface of antigen-presenting cells (i.e., macrophages and dendritic cells) in order to recognize evolutionary conserved antigenic domains in different pathogenic microorganisms (e.g. bacteria).

TLRs initiate innate immune responses such as, for example, inflammatory responses, by identifying conserved pathogen-associated molecule patterns (PAMPs).

Learn more in:

https://brainly.com/question/10791388

Biology questionnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Answers

Answer:

3rd one

Explanation:

Answer:

c. firewood

Explanation:

its a chemical reaction

Which equations are balanced? Select all that appl

Answers

Answer:

B

D

F

Explanation:

cultivation of plant populations of a single species​

Answers

Single species population-dynamic models for annuals with dormant seeds growing seasonal

Why does litmus paper go blue when ammonium hydroxide touches it

Answers

Litmus paper is an example of a pH indicator. A result of red means that the substance is acidic and blue means that the substance is alkaline.

Litmus paper goes blue what ammonium hydroxide touches it because ammonium hydroxide is alkaline

Hope this helps!

Identify the muscle(s) that is/are primarily responsible for holding the head of the humerus in the glenoid cavity.

Answers

Answer:

the rotator cuff muscles I believe

What is needed by all living things to carry out all of life's processes?

Answers

Answer:

Living organisms need energy  to carry out all of life's processes.

Can you please help me

Answers

I am here to give the brainiest answer not to get points

Answer: yes

Which biome are the best suited for agriculture? Explain why each of the biomes you did not specify is less suitable for agriculture.

Answers

The biomes most suited for agriculture are temperate deciduous forest and grasslands. Tundra is not suitable for agriculture because it is to cold and has water logged soil. Boreal forest is not suitable because it has a short growing season and mineral poor soil.

Recall what you know about hypertonic, hypotonic, and isotonic solutions. When an environment is hypotonic, what happens
to the cell?

Answers

Hypotonic solutions are lowly concentrated solutions
Hypertonic are highly concentrated solutions
While isotonic have equally concentrated

When a cell is placed in a hypotonic sol water moves out of the cell by osmosis making the cell flaccid

When a cell is submerged in a hypotonic solution, water osmosis causes the cell to become flaccid.

What is osmosis?

A semi-permeable membrane is used in the process of osmosis, which allows solvent molecules to move from a solution of low concentration to a solution of high concentration.

Osmosis is a passive process that doesn't require any energy to complete. In order for the concentrations on either side of the membrane to be equal, molecules must shift from an area of greater concentration to one of lower concentration.

Any solvent, including gases and supercritical liquids, can go through the osmosis process.

When solute concentrations inside and outside of the cell are equal, an isotonic solution has been created.When the concentration of solutes outside the cell is higher than within, the solution is said to be hypertonic. When the concentration of solutes inside the cell is higher than outside, the solution is said to be hypotonic.

Therefore, when a cell is submerged in a hypotonic solution, water osmosis causes the cell to become flaccid.

Read more about osmosis, here

https://brainly.com/question/1799974

#SPJ2

a difference between bacterial and eukaryotic transcription

Answers

Answer:

According to Wikipedia, In bacteria, transcription and translation can occur simultaneously in the cytoplasm of the cell, whereas in eukaryotes transcription occurs in the nucleus and translation occurs in the cytoplasm.

GIVE BRAINLIEST PLZ! :)

The difference between bacterial and eukaryotic transcription is that in bacteria, transcription and translation can occur simultaneously in the cytoplasm of the cell, whereas in eukaryotes transcription occurs in the nucleus and translation occurs in the cytoplasm.

What is the difference between eukaryotes and prokaryotes?

The main difference between eukaryotes and prokaryotes is that the eukaryotes are well developed and advanced and have different cell organelles and they have different functions in the cell and the prokaryotes are not well developed and they are found in the unicellular organisms.

The unicellular organisms are made of one cell and carry out the processes of life as a single cell and the multicellular organisms are made up of two or more cells that have specific functions to contribute to the life processes.

Therefore, The difference between bacterial and eukaryotic transcription is that in bacteria, transcription and translation can occur simultaneously in the cytoplasm of the cell, whereas in eukaryotes transcription occurs in the nucleus and translation occurs in the cytoplasm.

Learn more about eukaryotes and prokaryotes on:

https://brainly.com/question/4644590

#SPJ6


I’ll give brain

Drag the tiles to the correct boxes to complete the pairs.


What is the function of each lymph organ?

The last drop-down box is spleen which you can’t see in the picture.

Answers

Answer: The primary lymphoid organs are the red bone marrow, in which blood and immune cells are produced, and the thymus, where T-lymphocytes mature. The lymph nodes and spleen are the major secondary lymphoid organs; they filter out pathogens and maintain the population of mature lymphocytes

Explanation: hope this helps bye :)

Underground stem of which of the following does not store food? a)Zaminkand
b)Colocasia
c)Turmeric
d)Asparagus​

Answers

Answer:

asparagus doesn't store food.

they overcame by the blood of the lamb and the word of their testimony

Answers

Answer:

Revelation 12:11

pls helppppppppppp really need help

Answers

Answer:

16: Genes

17: Proteins

18: Offspring

19: Blueprint

20: Code, Dna, Rna

Explanation:

I hope this helps :)

organism that makes its own food

Answers

« autotroph »

An autotroph is an organism that can produce its own food using light, water, carbon dioxide, or other chemicals

hope it helps

Answer:

Explanation:

autotrophs

An autotroph is an organism that can produce its own food using light, water, carbon dioxide, or other chemicals. Because autotrophs produce their own food, they are sometimes called producers. Plants are the most familiar type of autotroph, but there are many different kinds of autotrophic organisms.

As organisms release energy during cellular respiration, carbon dioxide is produced from the carbon in energy storage molecules. This process moves carbon from biotic to ________________ a the producers b the decomposers c abiotic matter

Answers

Answer:

Abiotic Matter

Explanation:

where does the electron transport chain get the high-energy electrons that are passed down the chain​

Answers

Answer:

It gets the electrons from NADH and FADH2, which are produced in the Krebs cycle.

Explanation:

Other Questions
There are 13 books on your shelf, and you will take 5 of them on vacation with you.How many ways can the books be chosen? who holds the record for most consecutive wins in baseball? Simplify the linear expression.5/3a+1/81/6a1/2Enter your answer as simplified fractions in the boxes. PLEASE HELP what is atmospheres what are the stylistic and iconographic characteristics of fauvism? why are kids so hyper? The same quantity of each solute is added to water. Which solution will have the greatest number of H30+ ions at equilibrium?(1 point)O weak acidO strong acidO strong baseO weak base Like always, I need help :( how many gallons of gasoline are consumed in the us daily? Find the line integral along the curve C from the origin along the x-axis to the point (6, 0) and then counterclockwise around the circumference of the circle x2 y2 Females have the chromosomes XY. True False Which of the following best describes the general steps in writing an argumentative essay? A. outlining, prewriting, and revising B.researching and drafting C.outlining and drafting D.prewriting, drafting, and revising A fish swims 6 feet directly above a scuba diver. The fish suddenly dives to double its depth under the surface of the ocean. The fish dives to a depth of 42 feet. What is the position of the scuba diver relative to the surface of the ocean? Choose from the drop-down menu to correctly complete the statement. who was galelio galeli el calentamiento global no se va a parar hagamos algo. Find a value c in the interval [0,3] such that f(c) is equal to the average value. What is the volume????? The city commission would like to install new flagpoles that are each 15 yards tall. If there are 3 feet in 1yard, how tall are the flagpoles in the model? Need help pleaseAnswer Which number is a zero of the given function?g(x) = (x^2 36) (x + 7)