The combustion of propane (C 3H 8) in the presence of excess oxygen yields CO 2 and H 2O: C 3H 8 (g) + 5O 2 (g) → 3CO 2 (g) + 4H 2O (g) When 2.5 mol of O 2 are consumed in their reaction, ________ mol of CO 2 are produced.

Answers

Answer 1

Answer:

1.5 mol of CO₂

Explanation:

Use the mole ratio to find how many moles of CO₂ are produced from the reaction.

For every 5 moles of O₂, three moles of CO₂ is produced.

2.5 mol O₂ × 3 mol CO₂ ÷ 5 mol O₂

= 2.5 mol O₂ × 0.6

= 1.5 mol CO₂

When 2.5 mol of O₂ is consumed in the reaction, 1.5 mol of CO₂ is produced.

Hope that helps.


Related Questions

In the following reaction: Mg + 2HCl → MgCl2 + H2 How many liters of H2 would be produced if you started with 24.3 g of Mg?

Answers

Answer:

22.4 L H2

Explanation:

There is a better explanation https://brainly.com/question/9562878

A compound, C11H12O2, has an IR spectrum showing a peak at 1710 cm-1. Its 1H NMR spectrum has peaks at delta 1.3 (3 H, triplet), 4.3 (2 H, quartet), 6.5 (1 H, doublet), 7.4-7.6 (5 H, multiplet), and 7.7 (1 H, doublet).

Required:
Draw its structure below.

Answers

Answer:

Ethyl cinnamate

Explanation:

For this question, we have to start with the IR info. If we have a peak at 1710 this indicates the presence of a carbonyl group in the molecule (C=O). Additionally, if we calculate the I.H.D (index of hydrogen deficiency), we will have a value of "6". We already know that we have a C=O group, so, this counts for 1 of the 6 additionally, we can have a benzene ring so, this counts for 4, so far we have 5. Finally, we will have a double bond outside of benzene and we will have a total of 6, so:

Benzene: 4

Carbonyl group: 1

Double bond: 1

For a total of six (that fits with the I.H.D calculation). So, so far we know that we have a benzene ring, a double bond, and a carbonyl group. In the formula we have 2 oxygens, therefore we can have a carboxylic acid or an ester. In this case, the IR info doesn't give any additional info, so our best option is the ester group.

The 1H NMR info give is:

Signal A= 1.3 (3 H, triplet)

Signal B= 4.3 (2 H, quartet)

Singal C= 6.5 (1 H, doublet)

Signal D= 7.4-7.6 (5 H, multiplet)

Signal E= 7.7 (1 H, doublet)

The molecule that fits with this NMH spectrum and the info given by the I.H.D is "ethyl cinnamate".

See figure 1

I hope it helps!

Fructose-2,6-bisphosphate is a regulator of both glycolysis and gluconeogenesis for the phosphofructokinase reaction of glycolysis and the fructose-1,6-bisphosphatase reaction of gluconeogenesis. In turn, the concentration of fructose-2,6-bisphosphate is regulated by many hormones, second messengers, and enzymes.
How do the following affect glycolysis and gluconeogenesis?
Activate glycolysis Inhibit gluconeogenesis Activate gluconeogenesis Inhibit glycolysis
1. increased levels of fructose-2,6-bisphosphatase
2. activation of fructose-2,6-bisphosphate (FBPase-2)
3. increased glucagon levels
4. activation of PFK-2
5. increased levels of CAMP

Answers

Answer:

1. Increased levels of fructose-2,6-bisphosphatase : Activate gluconeogenesis Inhibit glycolysis

2. Activation of fructose-2,6-bisphosphate (FBPase-2) : Activate glycolysis Inhibit gluconeogenesis

3. Increased glucagon levels : Activate gluconeogenesis Inhibit glycolysis

4. Activation of PFK-2 : Activate glycolysis Inhibit gluconeogenesis

5. Increased levels of CAMP : Activate gluconeogenesis Inhibit glycolysis

Explanation:

Glycolysis is the breakdown of glucose molecules in order to release energy in the form of ATP in response to the energy needs of the cells of an organism.

Gluconeogenesis is the process by which cells make glucose from other molecules for other metabolic needs of the cell other than energy production.

Glycolysis and gluconeogenesis are metabolically regulated in the cell by various enzymes and molecules.

The following shows the various regulatory methods and their effects on both processes:

1. The enzyme fructose-2,6-bisphosphatase functions in the regulation of both processes. It catalyzes the breakdown of the molecule fructose-2,6-bisphosphate which is an allosteric effector of two enzymes phosphofructokinasse-1, PFK-1 and fructose-1,6-bisphosphatase, FBPase-1 which fuction in glycolysis and gluconeogenesis respectively.

Increased levels of fructose-2,6-bisphosphatase  activates gluconeogenesis and inhibits glycolysis by its breakdown of fructose-2,6-bisphosphate.

2. Fructose-2,6-bisphosphate increases the activity of PFK-1 and inhibits the the activity of FBPase-1. The effect is that glycolysis is activated while gluconeogenesis is inhibited.

3. Glucagon is a hormone that stimulates the synthesis of cAMP. It fuctions to activate gluconeogenesis and inhibit glycolysis.

4. Phosphosfructikinase-2, PFK-2 is an enzyme that catalyzes the formation of fructose-2,6-bisphosphate. Activation of PFK-2 results the activation of glycolysis and inhibition of gluconeogenesis.

5. Cyclic-AMP (cAMP) synthesis in response to glucagon release serves to activate a cAMP-dependent protein kinase which phosphorylates the bifunctional protein PFK-2/FBPase-2. This phosphorylation enhances the activity of FBPase-2 while inhibiting the activity of PFK-2, resulting in the  activation of gluconeogenesis and inhibition of glycolysis.

How many mL of 2.5M HCl would be needed to completely neutralize a standard solution of 0.53M NaOH in a titration

Answers

Answer:

Amount of HCL = 0.00318 L  of 3.18 ml

Explanation:

Given:

HCL = 2.5 M

NaOH = 0.53 M

Amount of NaOH  = 15 ml = 0.015 L

Find:

Amount of HCL

Computation:

HCL react with NaOH

HCl + NaOH ⇒ NaCl + H₂O

So,

Number of moles = Molarity × volume

Number of moles of NaOH  = 0.53 × 0.015

Number of moles of NaOH = 0.00795 moles

So,

Number of moles of HCl needed =  0.00795 mol es

So,

Volume = No. of moles / Molarity

Amount of HCL = 0.00795  / 2.5

Amount of HCL = 0.00318 L  of 3.18 ml

Permanganate ion reacts in basic solution with oxalate ion to form carbonate ion and solid manganese dioxide. Balance the skeleton ionic equation for the reaction between NaMnO4 and Na2C2O4 in basic solution: Fill in all blanks with numbers so if the term is not in the equation make it 0.
Mno4^- (aq)+ C204^2- (aq)+
H^+(aq) + OH^-(aq)
H2O(l) MnO2(s)+
CO3^2 (aq)+ H^+(aq)+
OH^- (aq) + H2O(l)

Answers

Answer:

2MnO4^- (aq) + 3C2O4^2- (aq) + 2H2O (l) --> 2MnO2(s) +6CO3^2 -(aq) + 4H^+ (aq)

Explanation:

First, write the half equations for the reduction of MnO4^- and the oxidation of C2O4^2- respectively. Balance it.

Reduction requires H+ ions and e- and gives out water, vice versa for oxidation.

Reduction:

MnO4^- (aq) + 4H^+ (aq) + 3e- ---> MnO2(s) + 2H2O (l)

Oxidation:

C2O4^2- (aq) + 2H2O (l) ---> 2CO3^2 -(aq) + 4H^+ (aq) + 2e-

Balance the no. of electrons on both equations so that electrons can be eliminated. we can do so by multiplying the reduction eq by 2, and oxidation eq by 3.

2MnO4^- (aq) + 8H^+ (aq) + 6e- ---> 2MnO2(s) + 4H2O (l)

3C2O4^2- (aq) + 6H2O (l) ---> 6CO3^2 -(aq) + 12H^+ (aq) + 6e-

Now combine both equations and eliminate repeating H+ and H2O.

2MnO4^- (aq) + 8H^+ (aq) + 3C2O4^2- (aq) + 6H2O (l) --> 2MnO2(s) + 4H2O (l) +6CO3^2 -(aq) + 12H^+ (aq)

turns into:

2MnO4^- (aq) + 3C2O4^2- (aq) + 2H2O (l) --> 2MnO2(s) +6CO3^2 -(aq) + 4H^+ (aq)

what is the concentration in ppm of a solution which is prepared by dissolving in 15mg of nacl in 200ml water

Answers

Answer:

Explanation:

In weight/volume (w/v) terms,

   1 ppm = 1g m-3 = 1 mg L-1 = 1 μg mL-1

200 mL = 0.2 L

15 / 0.2 mg L-1 =75 ppm

The concentration in ppm of a solution which is prepared by dissolving in 15mg of NaCl in 200ml water is 75 mg/.,

What is ppm?

ppm stand for 'part per million' and it is used to define the concentration of any substance as mass of any substance present in per liter of volume of solution, its unit for measurement is mg/L.

Given that, mass of NaCl = 15mg

Volume of solution = 200mL = 0.2L

Concentration in ppm will be calculated as:
ppm = 15/0.2 = 75mg/L

Hence ppm concentration of NaCl is 75 mg/L.

To know more about ppm, visit the below link:
https://brainly.com/question/16877061

#SPJ2

What mass of product, in grams, can be made by reacting 5.0g of aluminum and 22g of bromine?

Answers

Answer:

Approximately [tex]24\; \rm g[/tex] (at most.)

Explanation:

Aluminum [tex]\rm Al[/tex] reacts with bromine [tex]\rm Br_2[/tex] at a [tex]2:3[/tex] ratio:

[tex]\rm 2\; Al\, (s) + 3\; Br_2\, (g) \to 2\; AlBr_3\, (s)[/tex].

Look up the relative atomic mass of [tex]\rm Al[/tex] and [tex]\rm Br[/tex]. From a modern periodic table:

[tex]\rm Al[/tex]: [tex]26.982[/tex].[tex]\rm Br[/tex]: [tex]79.904[/tex].

Calculate the formula mass of the reactants and of the product:

[tex]M(\mathrm{Al}) = 26.986\; \rm g \cdot mol^{-1}[/tex].[tex]M(\mathrm{Br_2}) = 2\times 79.904 = 159.808\; \rm g \cdot mol^{-1}[/tex].[tex]M(\mathrm{AlBr_3}) = 26.986 + 3 \times 79.904 = 266.698\; \rm g \cdot mol^{-1}[/tex].

Calculate the quantity (in number of moles of formula units) of each reactant:

[tex]\displaystyle n(\mathrm{Al}) = \frac{m(\mathrm{Al})}{M(\mathrm{Al})} = \frac{5.0\; \rm g}{26.986\; \rm g \cdot mol^{-1}} \approx 0.18528\; \rm mol[/tex].[tex]\displaystyle n(\mathrm{Br_2}) = \frac{m(\mathrm{Br_2})}{M(\mathrm{Br_2})} = \frac{22\; \rm g}{159.808\; \rm g \cdot mol^{-1}} \approx 0.13767\; \rm mol[/tex].

Assume that [tex]\rm Al\, (s)[/tex] is the limiting reactant. From the coefficients:

[tex]\displaystyle \frac{n(\mathrm{AlBr_3})}{n(\mathrm{Al})} = 1[/tex].

Based on the assumption that [tex]\rm Al\, (s)[/tex] is the limiting reactant:

[tex]\begin{aligned}n(\mathrm{AlBr_3}) &= \frac{n(\mathrm{AlBr_3})}{n(\mathrm{Al})} \cdot n(\mathrm{Al}) \\ &=1\times 0.18528\; \rm mol \approx 0.185\; \rm mol\end{aligned}[/tex].

In other words, if [tex]\rm Al[/tex] is the limiting reactant (meaning that [tex]\rm Br_2[/tex] is in excess,) then approximately [tex]0.556\; \rm mol[/tex] of [tex]\rm AlBr_3[/tex] will be produced.

On the other hand, assume that [tex]\rm Br_2\; (g)[/tex] is the limiting reactant. Similarly, from the coefficients:

[tex]\displaystyle \frac{n(\mathrm{AlBr_3})}{n(\mathrm{Br_2})} = \frac{2}{3}[/tex].

Based on the assumption that [tex]\rm Br_2\, (g)[/tex] is the limiting reactant:

[tex]\begin{aligned}n(\mathrm{AlBr_3}) &= \frac{n(\mathrm{AlBr_3})}{n(\mathrm{Br_2})} \cdot n(\mathrm{Br_2}) \\ &= \frac{2}{3}\times 0.13767\; \rm mol \approx 0.0918\; \rm mol\end{aligned}[/tex].

Compare the [tex]n(\mathrm{AlBr_3})[/tex] value based on the two assumptions. Only the smallest value, [tex]n(\mathrm{AlBr_3}) \approx 0.0918\; \rm mol[/tex] (under the assumption that [tex]\rm Br_2\, (g)[/tex] is the limiting reactant,) would resemble the theoretical yield. The reason is that [tex]\rm Br_2\, (g)[/tex] would run out before all that [tex]\rm 5.0\; g[/tex] of [tex]\rm Al\, (s)[/tex] was converted to [tex]\rm AlBr_3\, (g)[/tex].

Apply the formula mass of [tex]\rm AlBr_3[/tex] to find the mass of that (approximately) [tex]0.0918\; \rm mol[/tex] of [tex]\rm AlBr_3[/tex] formula units:

[tex]\begin{aligned}m(\mathrm{AlBr_3}) &= n(\mathrm{AlBr_3}) \cdot M(\mathrm{AlBr_3}) \\ &= 0.0918\; \rm mol \times 266.698\; g \cdot mol^{-1} \approx 24\; \rm g\end{aligned}[/tex].

2,4-Dimethylpent-2-ene undergoes an electrophilic addition reaction in the presence of HBr to form 2-bromo-2,4-dimethylpentane. Complete the mechanism of this addition and draw the intermediates formed as the reaction proceeds.

Answers

Answer:

See figure 1

Explanation:

In this case, we have to start with the ionization reaction of HBr to produce the hydronium ion ([tex]H^+[/tex]) and the bromide ion ([tex]Br^-[/tex]). Then the double bond in the alkene can attack the hydronium ion to produce a carbocation. The most stable carbocation would be the tertiary one, therefore we have to put the positive charge in the tertiary carbon. Then, the bromide attacks the carbocation to produce the final halide.

See figure 1

I hope it helps!

Methanol is produced industrially by catalytic hydrogenation of carbon monoxide according to the following equation: CO(g) + 2 H2(g) → CH3OH(l) If the yield of the reaction is 40%, what volume of CO (measured at STP) would be needed to produce 1.0 × 106 kg CH3OH?

Answers

Answer:

1.7 × 10⁹ L

Explanation:

Step 1: Write the balanced equation

CO(g) + 2 H₂(g) → CH₃OH(l)

Step 2: Calculate the moles corresponding to 1.0 × 10⁶ kg CH₃OH

The molar mass of CH₃OH is 32.04 g/mol.

[tex]1.0 \times 10^{6} kg \times \frac{10^{3}g }{1kg} \times \frac{1mol}{32.04g} = 3.1 \times 10^{7} mol[/tex]

Step 3: Calculate the theoretical yield of CH₃OH

The real yield of CH₃OH is 3.1 × 10⁷ mol  and the percent yield is 40%. The theoretical yield is:

[tex]3.1 \times 10^{7} mol (R) \times \frac{100mol(T)}{40mol(R)} = 7.8 \times 10^{7}mol(T)[/tex]

Step 4: Calculate the moles of CO required to produce 7.8 × 10⁷ mol of CH₃OH

The molar ratio of CO to CH₃OH is 1:1. The moles of CO required are 1/1 × 7.8 × 10⁷ mol = 7.8 × 10⁷ mol

Step 5: Calculate the volume of 7.8 × 10⁷ mol of CO at STP

The volume of 1 mole of CO at STP is 22.4 L.

[tex]7.8 \times 10^{7}mol \times \frac{22.4L}{mol} = 1.7 \times 10^{9}L[/tex]

Which types of electron orbitals will have higher energy than a 4d orbital?

A) 4p

B) 3s

C) 5s

D) 4f

Answers

Answer:

D) 4f

Explanation:

To determine which electron orbital that will have higher energy than a 4d orbital, we write the electron configuration starting with s-orbital.

1s

2s         2p

3s         3p          3d       3f

4s         4p          4d       4f

5s         5p           5d       5f

6s         6p          6d       6f

7s         7p           7d       7f

In ascending order, 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 3f, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 6f, 7d, 7f.

From the electronic configuration formula above, the electron orbitals that have higher energy than a 4d orbital are 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 6f, 7d, 7f.

Therefore, 4f is the correct answer.

Answer:

D) 4f

Explanation:

An aqueous solution is 40.0 % by mass hydrochloric acid, HCl, and has a density of 1.20 g/mL. The mole fraction of hydrochloric acid in the solution is

Answers

Answer:

The molar concentration of HCl in the aqueous solution is 0.0131 mol/dm3

Explanation:

To get the molar concentration of a solution we will use the formula:

Molar concentration = mass of HCl/ molar mass of HCl

Mass of HCl in the aqueous solution will be 40% of the total mass of the solution.

We can extract the mass of the solution from its density which is 1.2g/mL

We will further perform our analysis by considering only 1 ml of this aqueous solution.

The mass of the substance present in this solution is 1.2g.

The mass of HCl Present is 40% of 1.2 = 0.48 g.

The molar mass of HCl can be obtained from standard tables or by adding the masses of Hydrogen (1 g) and Chlorine (35.46 g) = 36.46g/mol

Therefore, the molar concentration of HCl in the aqueous solution is 0.48/36.46 = 0.0131 mol/dm3

The amount of space an object takes up is called _____. gravity weight mass volume

Answers

Volume is the amount of space an object takes up

chromium (iii) or chromium(ii) are frequently used to apply chrome finish to sink fixtures such as faucets. if 45.2 Amps flow through a solution of chromium (iii) for 2 hours, how many grams of chromium can be deposited on a fixture A...175.35g B...58.45g c...0.016g d....0.974g

Answers

Answer:

58.45g is the answer

Explanation:

took the test

The mass of chromium that can be deposited is equal to 58.45 g. Therefore, option B is correct.

What is electric current?

For a steady flow of charge through a conductor, the current can be determined with the following equation:

[tex]{\displaystyle I={Q \over t}[/tex]

where Q is the electric charge while time t. If Q and t are measured in coulombs (C) and seconds then I will be in amperes.

Electric charge flows by electrons, from lower potential to higher electrical potential. Any stream of charged objects can constitute an electric current.

Given, the amount of electric current flowing through the solution:

I = 45.2 A

The time for which the current flows, t = 2 hrs = 2 × 60 ×60 = 7200 sec

The charge flowing through the solution, Q = I × t

Q = 45.2 × 7200

Q = 325440 C

The number of moles of electrons in 325440 C charge = 325440/96500 = 3.37 mol

We know Cr³⁺ + 3e⁻ →  Cr (s)

3 moles of electrons deposit of chromium  = 1 mol

3.37 mol of electrons deposit of chromium  = 3.37/3 = 1.12 mol

The mass of chromium in 1.12 mol = 1.12 × 52 = 58.45 g

Learn more about electric current, here:

https://brainly.com/question/2264542

#SPJ2

Calculate the maximum wavelength of light that will cause the photoelectric
effect for potassium. Potassium has work function 2.29 eV = 3.67 x 10-19 J.

Answers

Answer:

Explanation:

Work function of potassium = 2.29 eV = 3.67 X 10⁻¹⁹ J

So the minimum energy of photon must be equal to 3.67 X 10⁻¹⁹ J .

energy of photon of wavelength λ = hc / λ

where h = 6.67  x 10⁻³⁴

c = 3 x 10⁸

Putting the values in the equation above

6.67  x 10⁻³⁴  x  3 x 10⁸ / λ =  3.67 X 10⁻¹⁹

λ  = 6.67  x 10⁻³⁴  x  3 x 10⁸ /  3.67 X 10⁻¹⁹

= 5.452 x 10⁻⁷

= 5452 x 10⁻¹⁰ m

= 5452 A .

A student found the mass of an object to be 26.5 g. To find the volume, the student submerged the object in a graduated cylinder of water. Submerging the object in the water in the graduated cylinder increased the water level by 24.1 mL. The density of the object is
Question 17 options:

A) 0.909 g/mL.

B) 1.1 g/mL.

C) 1.10 g/mL.

D) 1.0906 g/mL.

Answers

Answer: The density of the object is 1.10 g/ml

Explanation: Density of object = ?

Mass of object = 26.5 g

Volume of object = volume of water displaced = 24.1 ml

Putting values in above equation, we get:

[tex]Density: \frac{26.5g}{24.1ml} = 1.10g/ml[/tex]

Thus density of the object is 1.10 g/ml

Classify each of these reactions.
1) Ba(ClO3)2(s)--->BaCl2(s)+3O2(g)
2) 2NaCl(aq)+K2S(aq)--->Na2S(aq)+2KCl(aq)
3) CaO(s)+CO2(g)--->CaCO3(s)
4) KOH(aq)+AgCl(aq)---->KCl(aq)+AgOH(s)
5) Ba(OH)2(aq)+2HNO2(aq)--->Ba(NO2)2(aq)+2H2O(l)
Each classify reaction should be either one of this.
a. acid-base neutralization
b. precipitation
c. redox
d. none of the above

Answers

Answer:

1. REDOX

2. None of the above

3. Precipitation

4. Preicipitation

5. Acid base neutralization

Explanation:

Reactions where a solid is formed, are named as precipitation. This solid is called precipitated.

Option 4 and 3.

3) CaO (s) + CO₂ (g) →  CaCO₃(s)

4) KOH (aq)  + AgCl (aq)  →  KCl (aq)  + AgOH(s)

Reactions where water is produced, and you have an acid and a base as reactants, are named as neutralization. You called them acid-base because, the products.

5) Ba(OH)₂ (aq)  +  2HNO₂(aq)  →  Ba(NO₂)₂ (aq) + 2H₂O(l)

Redox, are the reactions where one of the reactans can be oxidized and reduced, when a mole of electrons is released, or gained.

1) Ba(ClO₃)₂ (s)  → BaCl₂ (s) +  3O₂(g)

Oxygen from the chlorate is oxidized (increases the oxidation state from -2 to 0) and the chlorine is reduced (decreases the oxidation state from +5 to -1).

2.  2NaCl(aq)  +  K₂S(aq)  Na₂S (aq)  + 2KCl (aq)

None of the above

Which of the following is an example of a formula of a compound?
A. NH3
B. Nitrogen trihydride
C. Nitrogen + Hydrogen = Nitrogen trihydride
D. Ammonia​

Answers

Answer:

A) NH3

It is the only one that is a formula!!

Answer: A
Ammonia is a compound of nitrogen and 3 molecules of hydrogen while NH3 is a formula

An organic acid is composed of carbon (68.84%), hydrogen (4.96%), and oxygen (26.20%). Its molar mass is 122.12 g/mol. Determine the molecular formula of the compound.

Answers

Answer:

The molecular formula of the compound is [tex]C_{7}H_{6}O_{2}[/tex].

Explanation:

Let consider that given percentages are mass percentages, so that mass of each element are determined by multiplying molar massof the organic acid by respective proportion. That is:

Carbon

[tex]m_{C} = \frac{68.84}{100}\times \left(122.12\,\frac{g}{mol} \right)[/tex]

[tex]m_{C} = 84.067\,g[/tex]

Hydrogen

[tex]m_{H} = \frac{4.96}{100}\times \left(122.12\,\frac{g}{mol} \right)[/tex]

[tex]m_{H} = 6.057\,g[/tex]

Oxygen

[tex]m_{O} = \frac{26.20}{100}\times \left(122.12\,\frac{g}{mol} \right)[/tex]

[tex]m_{O} = 31.995\,g[/tex]

Now, the number of moles ([tex]n[/tex]), measured in moles, of each element are calculated by the following expression:

[tex]n = \frac{m}{M}[/tex]

Where:

[tex]m[/tex] - Mass of the element, measured in grams.

[tex]M[/tex]- Molar mass of the element, measured in grams per mol.

Carbon ([tex]m_{C} = 84.067\,g[/tex], [tex]M_{C} = 12.011\,\frac{g}{mol}[/tex])

[tex]n = \frac{84.067\,g}{12.011\,\frac{g}{mol} }[/tex]

[tex]n = 7[/tex]

Hydrogen ([tex]m_{H} = 6.057\,g[/tex], [tex]M_{H} = 1.008\,\frac{g}{mol}[/tex])

[tex]n = \frac{6.057\,g}{1.008\,\frac{g}{mol} }[/tex]

[tex]n = 6[/tex]

Oxygen ([tex]m_{O} = 31.995\,g[/tex], [tex]M_{O} = 15.999\,\frac{g}{mol}[/tex])

[tex]n = \frac{31.995\,g}{15.999\,\frac{g}{mol} }[/tex]

[tex]n = 2[/tex]

For each mole of organic acid, there are 7 moles of carbon, 6 moles of hydrogen and 2 moles of oxygen. Hence, the molecular formula of the compound is:

[tex]C_{7}H_{6}O_{2}[/tex]

What was one idea Dalton taught about atoms?
A. Atoms contained negatively charged particles scattered inside.
B. Atoms of one type would not react with atoms of another type.
C. All atoms of one type were identical in mass and properties.
D. Atoms changed into new elements when they formed compounds.

Answers

Answer:

C

Explanation:

I had this question and C is the right answer

One idea that Dalton taught about atoms was that all atoms of one type were identical in mass and properties.

What is an atom?

An atom is defined as the smallest unit of matter which forms an element. Every form of matter whether solid,liquid , gas consists of atoms . Each atom has a nucleus which is composed of protons and neutrons and shells in which the electrons revolve.

The protons are positively charged and neutrons are neutral and hence the nucleus is positively charged. The electrons which revolve around the nucleus are negatively charged and hence the atom as a whole is neutral and stable due to presence of oppositely charged particles.

Atoms of the same element are similar as they have number of sub- atomic particles which on combination do not alter the chemical properties of the substances.

Learn more about atom,here:

https://brainly.com/question/13654549

#SPJ5

Complete ionic equation K2CO3(aq)+2CuF(aq) → Cu2CO3(s)+2KF(aq) Examine each of the chemical species involved to determine the ions that would be present in solution. Be sure to consider both the coefficients and subscripts of the molecular equation, and then write this precipitation reaction in the form of a balanced complete ionic equation. Express your answer as a chemical equation including phases.

Answers

Answer:

2K+(aq) + CO3²¯(aq) + Ca^2+(aq) + 2F¯(aq) —› Cu2CO3(s) + 2K+(aq) + 2F¯(aq)

Explanation:

K2CO3(aq) + 2CuF(aq) → Cu2CO3(s) + 2KF(aq)

The complete ionic equation for the above equation can be written as follow:

In solution, K2CO3 and CuF will dissociate as follow:

K2CO3(aq) —› 2K+(aq) + CO3²¯(aq)

CuF(aq) —› Ca^2+(aq) + 2F¯(aq)

Thus, we can write the complete ionic equation for the reaction as shown below:

K2CO3(aq) + 2CuF(aq) —›

2K+(aq) + CO3²¯(aq) + Ca^2+(aq) + 2F¯(aq) —› Cu2CO3(s) + 2K+(aq) + 2F¯(aq)

A saturated solution of lead(II) iodide, PbI2 has an iodide concentration of 3.0 x 10^-3 mol/L.
a) What is the molar solubility of PbI2?
b) Determine the solubility constant, Ksp, for lead(II) iodide.
c) Does the molar solubility of lead (II) iodide increase, decrease, or remain unchanged with the addition of potassium iodide to the solution? EXPLAIN.

Answers

Answer:

a) 1.5 x 10^-3 mol/L

b) 1.35×10^-8

c) decrease

Explanation:

The solubility of lead II iodide is given by the equation;

PbI2(s) -----> Pb^2+(aq) + 2I^-

By looking at the ICE table, I^-=2x= 3.0 x 10^-3 mol/L/2 = 1.5×10^-3 mol/L

Hence molar solubility of PbI2 = 1.5 x 10^-3 mol/L

Ksp= [Pb^2+] [2I^-]^2 =

Let the molar solubility of each ion be x, therefore;

Ksp= 4x^3

Ksp= 4(1.5 x 10^-3 mol/L)^3= 1.35×10^-8

Addition of kI to the saturated solution will shift the equilibrium position to the left thereby decreasing the solubility of the PbI2 in the system due to common ion effect. The concentration of the iodide ion is now excess in the system leading to the reverse reaction being favoured according to Le Chateliers principle.

a) The molar solubility of PbI₂ is  [tex]1.5 * 10^{-3} mol/L[/tex]

b) The solubility constant is [tex]1.35*10^{-8}[/tex]

c) The molar solubility of lead (II) will decrease.

Molar Solubility:

The solubility of lead II iodide is given by the equation;

[tex]PbI_2(s) ----- > Pb^{2+}(aq) + 2I^-[/tex]

By looking at the ICE table,

[tex]I^-=2x= 3.0 * 10^{-3} mol/L/2 =[/tex]  [tex]1.5 * 10^{-3} mol/L[/tex]

Hence, molar solubility of PbI2 = [tex]1.5 * 10^{-3} mol/L[/tex]

[tex]Ksp= [Pb^{2+}] [2I^-]^2[/tex]

Let the molar solubility of each ion be x, therefore;

[tex]Ksp= 4x^3\\\\Ksp= 4(1.5 * 10^{-3} mol/L)^3\\\\Ksp= 1.35*10^{-8}[/tex]

The addition of KI to the saturated solution will shift the equilibrium position to the left thereby decreasing the solubility of the PbI₂ in the system due to common ion effect. The concentration of the iodide ion is now excess in the system leading to the reverse reaction being favoured according to Le- Ch-ateliers principle.

Find more information about Solubility product here:

brainly.com/question/9807304

The second-order decomposition of HI has a rate constant of 1.80 · 10-3 M-1s-1. How much HI remains after 27.3 s if the initial concentration of HI is 4.78 M?

Answers

Answer:   3.87M  of HI remains after 27.3 s

Explanation:

Using the Second order decomposition equation of

1/[H]t =K x t +1/[A]o

Given initial concentration ,[A]o = 4.78M

time, t = 27.3 s

rate of constant , k= 1.80 x 10^-3 M-1s-1

1/[H] t= 1/[A] t= concentration after time, t=?

SOLUTION

1/[A] t =kt +1/[A]o

1/[A] t =(1.80 x 10^-3 (27.3)+1/4.78

0.04914+0.2092=0.2583

1/[A] t =0.2583

[A] t =1/0.2583= 3.87M

Draw the Lewis structure for methane (CH4) and ethane (C2H6) in the box below. Then predict which would have the higher boiling point. Finally, explain how you came to that conclusion.

Answers

Answer:

Ethane would have a higher boiling point.

Explanation:

In this case, for the lewis structures, we have to keep in mind that all atoms must have 8 electrons (except hydrogen). Additionally, each carbon would have 4 valence electrons, with this in mind, for methane we have to put the hydrogens around the carbon, and with this structure, we will have 8 electrons for the carbon. In ethane, we will have a bond between the carbons, therefore we have to put three hydrogens around each carbon to obtain 8 electrons for each carbon.

Now, the main difference between methane and ethane is an additional carbon. In ethane, we have an additional carbon, therefore due to this additional carbon, we will have more area of interaction for ethane. If we have more area of interaction we have to give more energy to the molecule to convert from liquid to gas, so, the ethane will have a higher boiling point.

I hope it helps!

The Lewis structure shows the valence electrons in a molecule. Ethane will have a higher boiling point than methane.

We can deduce the number of valence electrons in a molecule by drawing the Lewis structure of the molecule. The Lewis structure consists of the symbols of elements in the compound and the valence electrons in the compound.

We know that the higher the molar mass of a compound the greater its boiling point. Looking at the Lewis structures of methane and ethane, we cam see that ethane has a higher molecular mass (more atoms) and consequently a higher boiling point than methane.

Learn more: https://brainly.com/question/2510654

Calculate the pH of a buffer solution that contains 0.25 M benzoic acid (C 6H 5CO 2H) and 0.15M sodium benzoate (C 6H 5COONa). [K a = 6.5 × 10 –5 for benzoic acid]

Answers

Answer:

3.97

Explanation:

pH of buffer solution = pKa+Log(Cb/Ca)

pH of buffer solution = -log(Ka)+log(Cb/Ca)............... Equation 1

Where Ca = concentration of acid, Cb = concentration of base.

Given: Ka = 6.5×10⁻⁵, Ca = 0.25 M, Cb = 0.15 M

Substitute into equation 1

pH of buffer solution = -log(6.5×10⁻⁵)+log(0.15/0.25)

pH of buffer solution = 4.19+(0.22)

pH of buffer solution = 3.97.

The free energy obtained from the oxidation (reaction with oxygen) of glucose (C6H12O6) to form carbon dioxide and water can be used to re-form ATP by driving the above reaction in reverse. Calculate the standard free energy change for the oxidation of glucose.

Answers

Answer:

The correct answer is -2878 kJ/mol.

Explanation:

The reaction that takes place at the time of the oxidation of glucose is,  

C₆H₁₂O₆ (s) + 6O₂ (g) ⇒ 6CO₂ (g) + 6H₂O (l)

The standard free energy change for the oxidation of glucose can be determined by using the formula,  

ΔG°rxn = ∑nΔG°f (products) - ∑nΔG°f (reactants)

The ΔG°f for glucose is -910.56 kJ/mol, for oxygen is 0 kJ/mol, for H2O -237.14 kJ/mol and for CO2 is -394.39 kJ/mol.  

Therefore, ΔG°rxn = 6 (-237.14) + 6 (-394.39) - (-910.56)

ΔG°rxn = -2878 kJ/mol

Balance the following
Na+02-→ Na20
Al+O2 ->Al2O3
H2+12+ ->HI
Mg+H2O → Mg(OH)2+H2
Ca+O2 -> Cao​

Answers

Answer:

1. Na + O2 → Na2O (Balanced)

2. 4Al + 3O2 → 2(Al2O3) (Balanced)

3. H2 + i2 → 2HI (Balanced)

4. Mg + 2H2O → Mg(OH)2+ H2 (Balanced)

5. 2Ca +O2 → 2CaO (Balanced)

Which is the electron configuration for bromine?

Answers

Answer:

The answer below would be written in a straight line from left to right but I wrote it as a list to make it easier to read.

Explanation:

1s^2

2s^2

2p^6

3s^2

3p^6

4s^2

3d^10

4p^5

What is the product of the unbalanced combustion reaction below?
C4H10(g) + O2(g) →

Answers

Answer:

Option C . CO2(g) + H2O(g)

Explanation:

When hydrocarbon undergoes combustion, carbon dioxide (CO2) and water (H2O) are produced.

C2H4(g) + O2(g) —› CO2(g) + H2O(g)

Thus, the product of the unbalanced combustion reaction is:

CO2(g) + H2O(g)

Thus, we can balance the equation as follow:

C2H4(g) + O2(g) —› CO2(g) + H2O(g)

There are 2 atoms of C on the left side and 1 atom on the right side. It can be balanced by putting 2 in front of CO2 as shown below:

C2H4(g) + O2(g) —› 2CO2(g) + H2O(g)

There are 4 atoms of H on the left side and 2 atoms on the right side. It can be balanced by putting 2 in front of H2O as shown below:

C2H4(g) + O2(g) —› 2CO2(g) + 2H2O(g)

There are a total of 6 atoms of O on the right side and 2 atom on the left side. It can be balanced by putting 3 in front of O2 as shown below:

C2H4(g) + 3O2(g) —› 2CO2(g) + 2H2O(g)

Thus, the equation is balanced.

What is the mass of a sample of water that takes 2000 kJ of energy to boil into steam at 373 K. The latent heat of vaporization of water is 2.25 x 10^6 J kg-1

Answers

Answer:

0.89kg

Explanation:

Q=mL L=specific latent heat

Q=energy required in J

m=mass in Kg

Q=mL

m=Q/L

m=2000000J/2.25 x 10^6 J kg-1

m=0.89kg

assume that amonia can be prepared by the folowing reaction in the gas phase at STP. If the reaction conditions are maintainted at STP, how many liters of NH3 can be produced by the reaction of 12.0 L of H2 and the exact required volumen of N2

Answers

Answer:

8.00L of ammonia can be produced

Explanation:

The reaction is:

N₂(g) + 3H₂(g) → 2NH₃(g)

Where 1 mole of nitrogen reacts with 3 moles of hydrogen to produce 2 moles of ammonia.

Avogadro's law states that, under constant pressure and temperature, equal volumes of gases contains equal number of moles.

As in the reaction conditions are mantained at STP (Pressure and temperature are constant) you can say of the reaction that:

1 liter of nitrogen reacts with 3 liters of hydrogen to produce 2 liters of ammonia

Thus, if 12.0L of hydrogen reacts and 3L of hydrogen produce 2L of ammonia, liters of ammonia produced are:

12L H₂(g) ₓ (2L NH₃(g)  /  3L H₂(g)) =

8.00L of ammonia can be produced
Other Questions
Question 2Imagine you are a researcher with a pharmaceutical company who has just discovered a new drug that may potentiallycure Ebola. Compose a three-paragraph memo to the chief executive officer of the company that addresses these aspectsof the situation:1. Summarize the situation in West Africa, including the impact on the economies of the affected countries and theresources that are scarce.2. Discuss the resources you have used to discover the drug or will need to continue producing it. (Take an educatedguess at what you will need for this part, just be sure to classify your needs into the proper factor of production.)3. Discuss the opportunity cost to the company in devoting more resources to the production and distribution of thenew drug.4. Applying your knowledge of the factors of production and PPCs, explain the impact that your drug could have on theeconomies of countries in West Africa affected by the Ebola virus. 10 points will give brainliest, In the picture On May 22, Jarrett Company borrows $7,500 from Fairmont Financing, signing a 90-day, 8%, $7,500 note. What is the journal entry needed to record the transaction by Jarrett Company why the filament of bulb has high melting point need some help thxx ;) Experiment consist of drawing one card from a standard 52 card deck. What is the probability of drawing a black 10? hen Jayden, a salesman at Srastis, a company that sells home appliances, did not achieve his sales targets for three consecutive quarters, his manager asked him to resign. In the context of human resource planning, this scenario best illustrates _____ at Srastis. Scores on the test are normally distributed with a mean of 79 and a standard deviation of 8.4. Find the numerical limits for a B grade. Round your answers to the nearest whole number, if necessary calculator 45% of 80.374 is a number between they ran ____ the thief In the contracting process, a licensee must be careful to:__________ a. avoid giving the principal any advice about the transaction. b. describing the normal requirements of a contract to a client. c. drafting a contract illegally. d. pointing out to the principals the importance of meeting contingency deadlines. Help me pls!What is heliuim? precalc! how do you solve by completing the square? i have 2 examples! (17 & 18 please) tysm A facilities manager at a university reads in a research report that the mean amount of time spent in the shower by an adult is 5 minutes. He decides to collect data to see if the mean amount of time that college students spend in the shower is significantly different from 5 minutes. In a sample of 11 students, he found the average time was 4.52 minutes and the standard deviation was 0.75 minutes. Using this sample information, conduct the appropriate hypothesis test at the 0.1 level of significance. Assume normality. (can you please show how to do this without a calculator or excel i just dont want answer but want to know how to do it). a) What are the appropriate null and alternative hypotheses? A) H0: = 5 versus Ha: < 5 B) H0: = 5 versus Ha: 5 C) H0: x = 5 versus Ha: x 5 D) H0: = 5 versus Ha: > 5 b) What is the test statistic? Give your answer to four decimal places. c) What is the P-value for the test? Give your answer to four decimal places. d) What is the appropriate conclusion? A) Fail to reject the claim that the mean time is 5 minutes because the P-value is larger than 0.01. B) Reject the claim that the mean time is 5 minutes because the P-value is larger than 0.01. C) Reject the claim that the mean time is 5 minutes because the P-value is smaller than 0.01. D) Fail to reject the claim that the mean time is 5 minutes because the P-value is smaller than 0.01. PLEASE HELP ASAP!! The Joint Commission is qualified to recommend that hospitals implement patient-centered health-care teams because _____. a. it is a branch of the federal government b. it certifies more than 19,000 hospitals and is in a position to know what works c. they have invested in the professional development hospitals must purchase to introduce SBAR d. the board comprises former patients and physicians with deep experience in health-care teams The graph of the function P(x) = 0.74^2 + 22x + 75 is shown. The function models the profits, P, in thousands of dollars for a tech company to manufacture a calculator, where x is the number of calculators produced, in thousands: If the company wants to keep its profits at or above $175,000, then which constraint is reasonable for the model? 3.09 x 5.6 and 24.13 < x 32.82 0 x < 5.6 and 24.13 < x 32.82 3.09 x 32.82 5.6 x 24.13 68. A hexagon has two sides each of length 3x inches. It has three sides each of length 2x inches. The sixth side has a length of 15 inches. If the perimeter of the hexagon is 135 inches, what is the value of x? E.4F.5G. l0H. 15 Write any five points which helps everyone to orgasms faster. Marguerite had been asked by her manager to write a summary of a seminar she had attended. Marguerites summary explained that the speakers thick accent and excessive use of jargon made it hard for her to follow his presentation. Its clear that Marguerite experienced _____ barriers during the seminar. Line B passes through the points (5, 10) and (0, 0). What is the slope of the line perpendicular to line B?