The statement that would be true of the reflection of the existing fountain across the y - axis is B. There are two sets of parallel lines: T'V' || R'U' and T'R' || V'U'
How to reflect across the y - axis ?A reflection of a shape would lead to a congruent shape in another part of the graph. This means that the new shape would have the same set of parallel lines as the original.
The quadrilateral TRUV had parallel line sets of TV || RU and TR || VU so the reflected figure would have congruent parallel lines at T'V' || R'U' and T'R' || V'U'.
Find out more on reflection at https://brainly.com/question/29788009
#SPJ1
The options for the question are:
There are two sets of parallel lines: TV VU and TR || R'U
There are two sets of parallel lines: T'V' || R'U' and T'R' || V'U'
The points T. R, U, and V have these coordinates: (-2,-7),(6,7),(-2,-4)
.and (-6,-4).
The points T. R. U, and V have these coordinates: (2,-7), (6,7),(2,-4) and (6,-4)
suppose that a die is rolled twice and the average of the two numbers of spots is recorded as a quantity z what are the mean value and the variance of z?
The mean value and the variance of z are 3.5 and 0.486, respectively.
Suppose that a die is rolled twice and the average of the two numbers of spots is recorded as a quantity z. What are the mean value and the variance of z?
Let X be the first number of spots and Y be the second number of spots. As X and Y are independent and have the same distribution, we have
E(X) = E(Y) = (1 + 2 + 3 + 4 + 5 + 6) / 6 = 21 / 6 = 3.5,
Var(X) = Var(Y) = (1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2) / 6 - (21 / 6)^2 = 2.9167.
Let Z = (X + Y) / 2 be the quantity of interest. Then
E(Z) = E[(X + Y) / 2] = E(X) / 2 + E(Y) / 2 = 3.5,
Var(Z) = Var[(X + Y) / 2] = Var(X) / 4 + Var(Y) / 4 = 0.486.
Therefore, the mean value and the variance of z are 3.5 and 0.486, respectively.
To learn more about mean and variance refer :
https://brainly.com/question/15811075
#SPJ11
A survey of all being on earth found that 96% preferred orange juice to all other juices if 72 people preferred orange juice, how many beings were surveyed altogether?
As per the given percentage, the total number of beings surveyed is 75.
We are given that 96% of all beings on earth prefer orange juice. This means that if we take a random sample of beings from earth, 96% of them would prefer orange juice. Mathematically, we can express this as:
Percentage of beings who prefer orange juice = 96%
We are also given that 72 people preferred orange juice. We can use this information to find the total number of beings surveyed. Let's assume that the total number of beings surveyed is "x".
Now, we know that 96% of these beings prefer orange juice. We can express this as:
96% of x = 72
To solve for "x", we need to get rid of the percentage sign. We can do this by converting the percentage to a decimal. To convert a percentage to a decimal, we divide it by 100.
So, 96% can be expressed as 0.96 (96/100). Therefore, we can rewrite the above equation as:
0.96x = 72
To solve for "x", we can divide both sides of the equation by 0.96:
x = 72 ÷ 0.96
x = 75
To know more about percentage here
https://brainly.com/question/13729841
#SPJ4
the radioactive decay of sm-151 (an isotope of samarium) can be modeled by the differential equation dy/dt 0.0077y, where t is measured in years. find the half-life of sm-151.
The radioactive decay of sm-151 (an isotope of samarium) can be modeled by the differential equation dy /dt = -0.0077y, DOthe half-life of Sm-151 is 90 years.
What is sm-151?Sm-151 is a radioactive isotope of the element Samarium. The symbol for Sm-151 is 151Sm, and the atomic number of Samarium is 62. This isotope has a half-life of 88 years.
Differential equations differential equation that model the radioactive decay of Sm-151 is given as
dy/dt = -0.0077y, where t is measured in years.
To find the half-life of Sm-151, we can use the formula for half-life, which is given as:
t1/2 = (ln 2) / k
Where k is the decay constant. To find k, we can use the given differential equation.
dy/dt = -0.0077y
Separating variables, we get
dy / y = -0.0077 dt
Integrating both sides,
we get ln y = -0.0077 t + C
Where C is the constant of integration.
To find C, we use the initial condition, y(0) = y0, where y0 is the initial amount of Sm-151.
Substituting this in the above equation, we get ln y0 = CSo,
the equation becomes y = -0.0077 t + ln y0
Taking the exponential of both sides, we get y = y0 e^(-0.0077t)
Using the formula for k, we get k = 0.0077
Substituting this in the formula for half-life,
we get: t1/2 = (ln 2) / k
= (ln 2) / 0.0077
= 90 years
Therefore, the half-life of Sm-151 is 90 years.
Learn more about differential equations at: https://brainly.com/question/1164377
#SPJ11
Solve the equation
1/4xln(16q^8)-ln3=ln24
We can claim that after answering the above question, the Therefore, the solution to the original equation is: [tex]q = 9^x\\[/tex]
What is equation?In mathematics, an equation is a statement that states the equality of two expressions. An equation consists of two sides separated by an algebraic equation (=). For example, the argument "2x + 3 = 9" states that the sentence "2x Plus 3" equals the value "9". The goal of solving equations is to find the value or values of the variable(s) that will allow the equation to be true. Equations can be simple or complex, linear or nonlinear, and contain one or more parts. For example, in the equation "x2 + 2x - 3 = 0," the variable x is raised to the second power. Lines are used in many areas of mathematics, including algebra, calculus, and geometry.
given equation:
[tex]1/4xln(16q^8) - ln3 = ln24\\1/4xln(16q^8) = ln(24 * 3)\\1/4xln(16q^8) = ln72\\ln(16q^8)^(1/4x) = ln72\\16q^8^(1/4x) = 72\\16q^8 = 72^(4x)\\ln(16q^8) = ln(72^(4x))\\[/tex]
[tex]ln(16) + ln(q^8) = 4x ln(72)\\ln(q^8) = 4x ln(72) - ln(16)\\ln(q^8) = ln(72^(4x)) - ln(16^1)\\ln(q^8) = ln((72^(4x))/16)\\q^8 = e^(ln((72^(4x))/16))\\q^8 = (72^(4x))/16\\q^8 = 9^(8x)\\q = 9^x\\[/tex]
Therefore, the solution to the original equation is:
[tex]q = 9^x\\[/tex]
To know more about equation visit:
https://brainly.com/question/649785
#SPJ1
Pls help due today…..
Please
We can find angle z by using triangle interior theorem
All angles in a triangles add up to 180 so
[tex]z + 82 +90 = 180[/tex]
[tex]z = 8[/tex]
To find c, we know c is the hypotenuse and we are given a base of 5, we can use cosine
[tex] \cos(82) = \frac{5}{c} [/tex]
[tex]c = \frac{5}{ \cos(82) } [/tex]
Use a calculator, and we get
[tex]c = 35.92[/tex]
To find a, we can use tangent
[tex] \tan(82) = \frac{a}{5} [/tex]
[tex]5 \tan(82) = a[/tex]
[tex]a = 35.58[/tex]
for each of the number lines, write an absolute value equation in the form |x-c|=d, where c and d are some numbers, to satisfy the given solution set.
PLEASE HELP!!!!!!!!! ASAP!!!!!!
Here are some examples:
Distance to endpoint: |2 - (-2)| = 4
Equation: |x - 2| = 4
When answering questions on Brainly, you should always be factually accurate, professional, and friendly. You should be concise and not provide extraneous amounts of detail. You should also use the following terms in your answer, if they are relevant to the question being asked.
In order to write an absolute value equation in the form |x-c|=d to satisfy a given solution set on a number line, you need to do the following:First, identify the number c, which is the midpoint of the solution set. This is because the absolute value of x-c is equal to the distance between x and c on the number line.
Next, identify the number d, which is equal to the distance between the midpoint c and one of the endpoints of the solution set. This is because the absolute value of x-c can never be greater than the distance between x and c, so the maximum value of x that satisfies the equation is c+d and the minimum value is c-d.Finally, write the equation in the form |x-c|=d using the values of c and d that you identified.
Set of solutions (-3, 1) In the middle: (-3 + 1)/2 = -1
Endpoint distance: |-1 - (-3)| = 2
Formula: |x + 1| = 2
Set of solutions (-4, 4)
Center: (-4 + 4)/2 = 0.
Endpoint distance: |0 - (-4)| = 4
Equation: 4 for |x| Set of solutions (-2, 6)
Center: (-2 + 6)/2 = 2
Endpoint distance: |2 - (-2)| = 4
Equation: 4 for |x - 2|
To learn more about : Distance
https://brainly.com/question/26046491
#SPJ11
HELP ITS DUE TODAY!!!!!!!!!!!!!!!!!!!!
Step-by-step explanation:
Please give brainliest
1a) 3√49
3 x √49
3x 7 =21
b) 2³√64
2 x √4
2x2 =4
c) (√x+2)²
the square will cancel the square root
= x+2
Answer:
These are correct
Step-by-step explanation:
1. a) 21
1. b) 8
1. c) x+2
2. a) x/10 and subtracting or simplifying it gives you the same answer
2. b) 2(3x-1)/ x+3 the operation is simplifying
2. c) 7x+2/ x(x+1) combine the fractions and find a common denominator
2. d) 6/x simplify
2. e) 2x^2 simplify or divide
3. a) 6x^3 y^4
3. b) 16a^2 b^6
3. c) 4x^2
3. d) 2
The area of a circle is 36л ft². What is the circumference, in feet? Express
your answer in terms of pie
Answer:
12π feet
Step-by-step explanation:
The formula for the area of a circle is A = πr², where A is the area and r is the radius. We are given that the area is 36π ft², so we can set up an equation:
36π = πr²
To solve for the radius, we can divide both sides by π:
36 = r²
Taking the square root of both sides, we get:
r = 6
Now that we know the radius is 6 feet, we can use the formula for the circumference of a circle, C = 2πr:
C = 2π(6)
Simplifying, we get:
C = 12π
Therefore, the circumference of the circle is 12π feet.
Explain when each method (graphing,
substitution, and linear combinations) is a good
method to find a solution to a system
of equations.
Method 1: Graphing
Graphing is best when the both equations are shown in slope-intercept form. For example:
[tex]y=\frac{1}{2} x+2\\y=-\frac{1}{2} x+4[/tex]
[tex](2,3)[/tex]
You can easily graph this system of equations and find the intersecting point. The graph is displayed below. This may not always be the case, however and you may get complicated fractions in your answer. In this case, substitution or elimination may be better.
Method 2: Substitution
Substitution is a good method to solve a system of equations when one of the equations can be rearranged to isolate one variable, or the equation already solves for a variable. This isolated expression can then be substituted into the other equation(s) to create a new equation(s) with only one variable.
For example, consider the system of equations:
[tex]y=x-2\\2x-5y=1[/tex]
Since y is much easier to substitute, we can choose y to substitute into the other equation:
[tex]2x-5(x-2)=1[/tex]
We can then simplify the equation:
[tex]2x-5x+10=1\\-3x=-9\\x=3[/tex]
Then you can substitute x into the original equation:
[tex]y=3-2\\y=1[/tex]
Solution: [tex](3,1)[/tex]
Substitution can be a useful method when the system involves two or three variables and one equation can be easily rearranged to isolate a variable. However, it can become more difficult or time-consuming when the system involves more variables or when the equations are not solving for a variable or can be easily solved. In these cases, other methods such as elimination is more efficient.
Method 3: Elimination
Elimination is a good method to solve a system of equations when the equations can be added or subtracted in a way that eliminates one of the variables.
For example, consider the system of equations:
[tex]x+y=90\\x-y=18[/tex]
We can cancel out the variable y and add the other numerals and variables:
[tex]2x=108[/tex]
This simplifies to:
[tex]x=54[/tex]
We can then solve for y:
[tex]54+y=90\\y=36[/tex]
Solution: [tex](54, 36)[/tex]
Once we have the value of x, we can substitute it back into one of the original equations to solve for y.
Although elimination is slightly more complicated, it is the most efficient method out of all of the three methods I have shown here.
Hope this helped you :)
(This took like 30 minutes ;-;)
In ΔPQR, r = 7.8 cm, q = 6 cm and ∠Q=30°. Find all possible values of ∠R, to the nearest 10th of a degree.
The twο pοssible values οf ∠R tο the nearest 10th οf a degree are 33.6° and 326.4°.
What is a triangle?A triangle is a clοsed twο-dimensiοnal geοmetric shape with three straight sides and three angles. It is the simplest pοlygοn, which is a flat shape cοnsisting οf straight lines.
We can use the Law οf Cοsines tο find the length οf side QR:
[tex]c^2 = a^2 + b^2 - 2ab[/tex] cοs(C)
where c is the length οf side QR, a is the length οf side PQ (which is unknοwn), b is the length οf side PR (which is 7.8 cm), and C is the angle οppοsite side c (which is 30°). Substituting the given values, we get:
[tex]QR^2 = PQ^2 + 7.8^2 - 2(PQ)(7.8)cos(30^\circ )[/tex]
[tex]QR^2 = PQ^2 + 60.84 - 7.8PQ[/tex]
Next, we can use the Law οf Sines tο relate the length οf side PQ tο the angle οppοsite it, ∠P:
PQ/sin(30°) = QR/sin(P)
PQ = QR(sin(30°)/sin(P))
Substituting this expressiοn fοr PQ intο the equatiοn fοr [tex]QR^2[/tex] abοve, we get:
[tex]QR^2 = [QR(sin(30^\circ)/sin(P))]^2 + 60.84 - 7.8[QR(sin(30^\circ)/sin(P))][/tex]
Simplifying and rearranging, we get a quadratic equatiοn in terms οf QR:
[tex]QR^2 - 3.9QR + 28.99 = 0[/tex]
Using the quadratic fοrmula, we find that:
QR ≈ 7.466 cm οr QR ≈ 3.866 cm
Since we knοw that QR < PQ + PR = 6 + 7.8 = 13.8, the οnly valid sοlutiοn is QR ≈ 7.466 cm. Therefοre, we have:
[tex]cos(R) = (PQ^2 + QR^2 - PR^2)/(2PQQR)[/tex]
[tex]cos(R) = (PQ^2 + 7.466^2 - 7.8^2)/(2PQ(7.466))[/tex]
[tex]cos(R) = (PQ^2 - 4.928)/[2PQ(7.466)][/tex]
Since cοs(R) ≤ 1, we have:
[tex]PQ^2 - 4.928 ≤ 2PQ(7.466)[/tex]
Sοlving fοr PQ using the quadratic fοrmula, we get:
PQ ≤ 5.474 cm οr PQ ≥ 20.032 cm
Since PQ < PR, the οnly valid sοlutiοn is:
PQ ≈ 5.474 cm
Nοw we can use the Law οf Cοsines again tο find ∠R:
[tex]cos(R) = (PQ^2 + PR^2 - QR^2)/(2PQPR)[/tex]
[tex]cos(R) = (5.474^2 + 7.8^2 - 7.466^2)/(2(5.474)(7.8))[/tex]
cοs(R) ≈ 0.828
R ≈ 33.6° οr R ≈ 326.4°
Therefοre, the twο pοssible values οf ∠R tο the nearest 10th οf a degree are 33.6° and 326.4°.
To learn more about triangle from the given link:
https://brainly.com/question/2773823
#SPJ1
Jaxon invested $710 in an account paying an interest rate of 8\tfrac{7}{8}8 8 7 % compounded quarterly. Jason invested $710 in an account paying an interest rate of 8\tfrac{5}{8}8 8 5 % compounded continuously. After 8 years, how much more money would Jaxon have in his account than Jason, to the nearest dollar?
Answer:
I attached your answer along with an explanation
Step-by-step explanation:
Please Like me follow me and Give me Crown for more help. :)
for the beam and loading shown, (a) draw the shear and bending-moment diagrams, (b) determine the equations of the shear and bending-moment curves. 5.1
Bending moment curve equation below point A will be:
M = 15x - 3x² for 0 ≤ x ≤ b
Determination of shear and bending moment curves.
For the beam and loading shown, we can do the following:
Equation of shear curve (above point A):V = RA - w.x
For x = a,V = RA - w.a
For x = b,V = RA - w.b
Since the loading is symmetric, RA = w(a + b) / 2= (6 * 5) / 2= 15kNV = 15 - 6a for a ≤ x ≤ b
Equation of shear curve (below point A):
V = RA - w.x
For x = 0,V = RA - w.0RA = w(a + b) / 2= (6 * 5) / 2= 15kNV = 15k for 0 ≤ x ≤ a
The shear curve equation becomes;
V = 15k for 0 ≤ x ≤ a
V = 15 - 6a for a ≤ x ≤ b
Equation of bending moment curve (above point A):
M = RAx - ½w.x²For 0 ≤ x ≤ a,
M = 15x - ½(6x²) = 15x - 3x²For a ≤ x ≤ b,
M = 15x - 6a(x - a) - ½(6x²)= 15x - 6ax + 6a² - 3x²
The bending moment curve equation above point A becomes:
M = 15x - 3x² for 0 ≤ x ≤ a
M = 15x - 6ax + 6a² - 3x² for a ≤ x ≤ b
Equation of bending moment curve (below point A):
M = RAx - ½w.x²For 0 ≤ x ≤ b,
M = 15x - ½(6x²) = 15x - 3x²
The bending moment curve equation below point A becomes;
M = 15x - 3x² for 0 ≤ x ≤ b
Learn more about Bending Moment.
brainly.com/question/30242055
#SPJ11
describe the technique used to count the rational numbers (1-1 correspondence with the natural number
Yet because we can compare the set of positive rational numbers exactly to the collection of natural numerals, we may infer that the set of positive rational must have a number of clusters of 0, or n(Q+)=0. Due to the fact that these two numbers must equal one another, 02 = 0.
Since they may be arranged in a one-to-one correspondence with the natural numbers (the integers, such as 1, 2, and 3), Cantor showed in 1873 that the rational numbers, although being infinite, are countable (or denumerable).
How are the rational numbers counted as a group?
To achieve this, we take into account the this double integers grid upon that positive orthogonal. If p and q are positive natural numbers, then p/q may be used to represent any positive valid value.
Simply put, we establish the following values: h(0) = 0, h(2n) = f(n), for all natural numbers n > 0, and h(2n-1) = g(n) = -f(n), for all natural numbers n > 0.
To know more about rational click here
brainly.com/question/12797867
#SPJ4
the average on a standardized test of educational achievement is 600, and the standard deviation is 50. what is the percentage of the area between 550 and 725?
37.5% of the area between 550 and 725 on a standardized test of educational achievement lies within one standard deviation of the mean score of 600.
The area between 550 and 725 on a standardized test of educational achievement is equal to the percentage of students whose scores fall within one standard deviation (or 68%) of the mean score of 600. This can be expressed mathematically as:
Percentage = (725 - 550) / (2 * 50) = 37.5 / 100 = 37.5%
To explain in more detail, a standard deviation is a measure of the spread of a dataset around its mean value. The mean value in this case is 600, and the standard deviation is 50. Therefore, one standard deviation from the mean is calculated by subtracting or adding the standard deviation (50) from the mean (600), giving a range of 550 to 650.
Since the area in question spans across two standard deviations (550 to 725), the area is calculated by subtracting the lower range (550) from the upper range (725) and then dividing it by two standard deviations (100). This gives us the area, which is 37.5%.
To summarize, 37.5% of the area between 550 and 725 on a standardized test of educational achievement lies within one standard deviation of the mean score of 600.
See more about standard deviation at: https://brainly.com/question/475676
#SPJ11
DIrections: Find the area of the given quadrilateral or four sided polygon. Please show all of your work in order to receive full credit.
Hint: Decompose and Recompose!
I need help please
The Area of the given quadrilateral or four sided polygon is equal to the value of 36 cm².
Given,
Length of the Rectangle is equal to 6 cm.
Breadth of rectangle is 4 cm.
Height of the right angled triangle is 4 cm.
Length of the base of the triangle is 3 cm.
First we need to find the area of single then multiply it with 2 since the lengths of the triangles are same and the area will also be same.
⇒ Area of Triangle = [tex]\frac{1}{2} * b *h[/tex]
Area of Triangle = [tex]\frac{1}{2}[/tex] * 4 * 3
Area of Triangle = 6 cm².
Now, area of two triangles is equal to 2 * 6 cm² = 12 cm².
⇒ Area of Rectangle = length * breadth
Area of Rectangle = 6 * 4
Area of Rectangle = 24 cm²
Now, total area = Area of Triangle + Area of Rectangle
Total area = 12 cm² + 24 cm²
Total area = 36 cm².
Therefore, the Area of the given quadrilateral or four sided polygon is equal to the value of 36 cm².
Learn more about Areas:
https://brainly.com/question/27701864
#SPJ1
Which side lengths could be used to create a right triangle?
a(15, 17, 29
b(20, 21, 29
c(13, 17, 19
d(10, 12, 22
the skewness coefficient can be used to multiple select question. compare standard deviations. compare two samples with different measurement units. compare means. compare one sample to a known reference distribution.
The skewness coefficient is a measure of asymmetry in a distribution that can be used to compare means and compare one sample to a known reference distribution, but it is not typically used to compare standard deviations or compare two samples with different measurement units.
The skewness coefficient is a measure of the degree of asymmetry in a probability distribution. It indicates the direction and degree of skewness in a distribution, and can be used to compare means and compare one sample to a known reference distribution.
A positive skewness coefficient indicates that the distribution has a longer tail on the right side and that the mean is greater than the median, while a negative skewness coefficient indicates that the distribution has a longer tail on the left side and that the mean is less than the median.
The skewness coefficient can be useful in detecting departures from normality and in identifying outliers that might affect statistical inference.
However, the skewness coefficient is not typically used to compare standard deviations or to compare two samples with different measurement units.
Comparing standard deviations involves analyzing the variability in the data, whereas comparing means and comparing one sample to a known reference distribution involves analyzing the central tendency of the data.
Additionally, comparing two samples with different measurement units requires converting the measurements to a common scale, which is not related to skewness.
To know more about skewness coefficient refer here:
https://brainly.com/question/28503966#
#SPJ11
10 1/4 divided by 5 1/2?
Answer:
To divide two mixed numbers, we need to first convert them to improper fractions.
10 1/4 is the same as (10 x 4 + 1)/4 = 41/4
5 1/2 is the same as (5 x 2 + 1)/2 = 11/2
So, we need to divide 41/4 by 11/2:
(41/4) ÷ (11/2)
When dividing by a fraction, we can multiply by its reciprocal (flip the fraction):
(41/4) x (2/11)
Now, we can simplify by canceling out the common factors:
(41 x 2) / (4 x 11) = 82/44 = 41/22
Therefore, 10 1/4 divided by 5 1/2 is equal to 41/22 or approximately 1.86 when rounded to two decimal places.
Por lo tanto, 10 1/4 dividido por 5 1/2 es igual a 41/22 o aproximadamente 1,86 cuando se redondea a dos decimales.
Warm up State the theorems and show the steps needed to find the measure of angle a b and c
The value of the missing angles of the quadrilateral are:
a = 110°
b = 70°
c = 20°
How to find the missing angle?Theorem sum of angles in a triangle states that they sum up to 180 degrees. Thus:
d = 180 - (78 + 32)
d = 70°
Similarly:
e = 180 - (78 + 32 + 18)
e = 20°
Sum of angles on a straight line is 180 degrees. Thus:
a = 180 - 70
a = 110°
We can see that e + b will be equal to 90 degrees because of the definition of right angles. Thus:
b = 90° - 20°
b = 70°
From sum of angles in a triangle as 180° is:
c = 180 - (90 + 70)
c = 20°
Read more about Missing Angle at: https://brainly.com/question/28293784
#SPJ1
< Back to task
In the quadrilateral below, angles DAB and BCD are the same size.
What is the size of angle DAB?
D
228
34° -B
Answer >
The size of angle DAB in the quadrilateral is 49°.
How to find the size of angle DAB?The sum of the interior angles of a quadrilateral is 360°. We can say:
∠A + ∠B + ∠C + ∠D = 360°
∠A + 34° + ∠C + 228° = 360°
∠A + ∠C + 262° = 360°
∠A + ∠C = 360 - 262
∠A + ∠C = 98
Since angles DAB and BCD are the same size. This implies ∠A = ∠C. Thus:
∠A + ∠A = 98
2∠A = 98
∠A = 98/2
∠A = 49°
Therefore, the size of angle DAB is 49°.
Learn more about quadrilateral on:
https://brainly.com/question/23935806
#SPJ1
Complete Question
Check the attached image
What is the value of y in the solution to the system of equations?
²x+y=1
-X
2x - 3y = -30
-8
-3
3
O 8
So, the system of equations solution is (x, y) = (-27/8, 31/4), and the value of y in this solution is 31/4, which is roughly 7.75. As a result, the answer is y = 31/4.
What is equation?An equation is a statement in mathematics that states the equality of two expressions. An equation has two sides that are separated by an algebraic equation (=). For example, the argument "2x + 3 = 9" asserts that the phrase "2x + 3" equals the value "9". The purpose of equation solving is to determine which variable(s) must be changed in order for the equation to be true. Simple or complex equations, regular or nonlinear equations, and equations with one or more elements are all possible. In the equation "x2 + 2x - 3 = 0," for example, the variable x is raised to the second power. Lines are employed in a variety of mathematical disciplines, including algebra, calculus, and geometry.
the system of equations,
[tex]y = 1 - 2x\\2x - 3(1 - 2x) = -30\\2x - 3 + 6x = -30\\8x = -27\\x = -27/8\\2(-27/8) + y = 1\\-27/4 + y = 1\\y = 1 + 27/4\\y = 31/4[/tex]
So, the system of equations solution is (x, y) = (-27/8, 31/4), and the value of y in this solution is 31/4, which is roughly 7.75.
As a result, the answer is y = 31/4.
To know more about equation visit:
https://brainly.com/question/649785
#SPJ1
2 people - 0 people = ? people
Use the given scale factor and the side lengths of the scale drawing to determine the side lengths of the real objects.
Using the scale factor of 4:1, the side lengths of the real objects are:
B. Side a is 5 inches long and side b is 4.5 inches long.
What is a Scale Factor?A scale factor is a number that represents the ratio of the size or dimensions of an object in relation to another object. It is a proportional relationship between two similar objects, where the scale factor is the ratio of any corresponding lengths or dimensions.
Thus, given that the scale factor is 4:1, it means 4 inches of the scale drawing represents 1 inch of the real object.
Therefore, the sides would be:
Side a = 20/4 = 5 in.
Side b = 18/4 = 4.5 in
The answer is B.
Learn more about scale factor on:
https://brainly.com/question/29474743
#SPJ1
if the company sells the jelly beans in packs of 9 bags, what can we say about the likelihood that the average weight of the bags in a randomly selected pack is 2 or more grams lighter than advertised?
There is a 2.28% likelihood that the average weight of the bags in a randomly selected pack is 2 or more grams lighter than advertised.
Assume that the advertised weight is equivalent to the typical weight of one bag, which is 30 grammes. A pack of nine bags would therefore weigh 9 x 30 = 270 grammes.
Let's now assume that each bag actually weighs 30 grammes on average, with a 2 gramme standard deviation, according to a normal distribution (which represents the variability in the weight of the bags).
We need to apply the central limit theorem to determine the probability that the average weight of the bags in a randomly selected pack is 2 or more grammes less than stated. According to this theorem, the mean of a sufficiently large sample (in this case, nine bags) will have a sampling distribution that is roughly normal, with a mean of 30 grammes and a standard deviation of 2 grammes divided by the square root of the sample size (9 = 0.67 grammes). The mean will also be equal to the population's standard deviation.
We can determine the likelihood that the sample mean of a pack of 9 bags weighs less than 28 grammes using a normal distribution table or calculator (which is 2 grammes less than the advertised weight of 30 grams). This likelihood is roughly 0.0228, or 2.28%.
Learn more about randomly selected here:
https://brainly.com/question/23701039
#SPJ4
alexa started randomly playing a movie and would not stop, despite my repeated orders. what's going on here?
It sounds like you may be experiencing a bug with your Alexa device. This is likely due to a software update or miscommunication between the device and the server.
To resolve this issue, you may need to restart your device by unplugging it from the power source and plugging it back in. You can also try clearing the cache of your device. Additionally, you may need to update the software of your device by visiting the Amazon website and downloading the most recent version of the software. If the issue persists, you may need to contact Amazon customer service for further assistance.
For more such questions on Alexa device.
https://brainly.com/question/18743371#
#SPJ11
The "Good Ole Times" magazine charges for classified ads by the "column inch". A "column inch" is as wide as one column, and it is one inch high. The cost is $43. 50 per column inch. How much would the magazine charge to print a 1¾ inch ad?
The magazine would cost $33.93 to print a 1¾ inch ad in the "Good Ole Times" magazine.
The cost of a classified ad in the "Good Ole Times" magazine is determined by its size in column inches, with a cost of $43.50 per column inch. To determine how much the magazine would charge to print a 1¾ inch ad, we need to calculate the size of ad in column inches and then multiply that by the cost per column inch.
One way to convert 1¾ inches to column inches is to convert the fractional part (¾) to a decimal by dividing it by 4, which is the number of quarters in an inch. This gives us:
1¾ inches = 1 + ¾ inches = 1 + 0.75 inches = 1.75 inches
To express this measurement in column inches, we divide by the width of a column, which is not given in the problem. Assuming a typical newspaper column width of 2.25 inches, we get:
1.75 inches ÷ 2.25 inches per column = 0.7778 column inches
Rounding this to two decimal places, we get:
0.78 column inches
Now we can calculate the cost of the ad as follows:
Cost = Size in column inches × Cost per column inch
Cost = 0.78 column inches × $43.50 per column inch
Cost = $33.93
Therefore, the magazine would charge $33.93 to print a 1¾ inch ad.
To know more bout Cost:
https://brainly.com/question/28837463
#SPJ4
I need help with this problem. Joe bought a gallon of gasoline for 2. 85 per gallon and c cans of oil for 3. 15 per can
From the given information provided, the expression that need to determine the total amount is Total cost = $2.85/gallon x g gallons + $3.15/can x c cans.
The expression that can be used to determine the total amount Joe spent on gasoline and oil is:
Total cost = Cost of gasoline + Cost of oil
We can represent the cost of gasoline as:
Cost of gasoline = price per gallon x number of gallons
Substituting the given values, we get:
Cost of gasoline = $2.85/gallon x g gallons
Similarly, we can represent the cost of oil as:
Cost of oil = price per can x number of cans
Substituting the given values, we get:
Cost of oil = $3.15/can x c cans
Putting it all together, we get:
Total cost = $2.85/gallon x g gallons + $3.15/can x c cans
Expression that can be used to determine the total amount Joe spent on gasoline and oil is:
Total cost = $2.85/gallon x g gallons + $3.15/can x c cans
Question - Joe bought g gallons of gasoline for $2.85 per gallon and c cans of oil for $3.15 per can. What expression can be used to determine the total amount Joe spent on gasoline and oil?
Learn more about amount here: brainly.com/question/25720319
#SPJ4
the most important thing to notice about a table of q-sort correlates is the a. smallest correlation. b. exact value of the correlations. c. wording of specific items. d. general patterns that emerge.
The most important thing to notice about a table of q-sort correlates is d. general patterns that emerge.
Q-sorting is a method of ranking items in order of preference or importance, and Q-sort correlates are used to identify relationships between the ranked items. The correlations in the table represent how strongly the items are associated with each other based on their rankings.
While the exact value of the correlations is important for statistical analysis, the most valuable information in a table of q-sort correlates is the general patterns that emerge. These patterns can help to identify groups of items that are closely related to each other, as well as those that are more distantly related.
Understanding the wording of specific items may also be important, as it can impact how the items are ranked and how they relate to each other. However, the primary focus of a table of q-sort correlates is on the relationships between the items, rather than the items themselves.
For more details about information click here:
https://brainly.com/question/13629038#
#SPJ11
Think of a time when you had a question in math class, did you ask it? If so, did it get answered? If you tend to not ask your questions, why do you think you hesitate to ask? Have you ever had someone else ask the same question you had? How did it make you feel? Relief?
Asking questions in math class is crucial for deepening understanding, and teachers strive to create a supportive learning environment for students to feel comfortable seeking help.
Students may hesitate to ask questions in math class for various reasons, such as fear of being judged by peers or the teacher, feeling like their question is not important, or simply not wanting to disrupt the flow of the lesson. However, it's essential to remember that asking questions is an integral part of the learning process and can lead to a deeper understanding of the subject.
When students do ask questions, they may feel relieved to have their doubts clarified, and it can also benefit other students who may have had the same question but were hesitant to ask. Teachers typically encourage questions and strive to create a supportive learning environment where students feel comfortable asking for help.
In summary, asking questions is an essential aspect of learning, and students should feel encouraged to ask them, as it can lead to a deeper understanding of the subject and help their peers who may have had similar questions.
To learn more about math class please click on below link
https://brainly.com/question/10704243
#SPJ1
alicia had $22 to spend on pencils if each pencil cost $1.50 how many pencils can she buy? What is the Inequality or Equation
If each pencil cost $1.50 and Alicia had $22 to spend on them, she could purchase 14 pencils. This situation's inequality is as follows: 1.5x ≤ 22.
To find out how many pencils Alicia can buy, we can divide her total budget by the cost per pencil:
Number of pencils = Total budget / Cost per pencil
Number of pencils = $22 / $1.50
Number of pencils = 14.67 (rounded to two decimal places)
Alicia cannot buy a fraction of a pencil, so she can buy a maximum of 14 pencils.
The inequality that represents this situation is:
1.5x ≤ 22
Where x represents the number of pencils Alicia can buy. We divide both sides of the inequality by 1.5 to isolate x:
x ≤ 14.67
Since Alicia cannot buy a fraction of a pencil, we round down to the nearest whole number and get:
x ≤ 14
So, Alicia can buy a maximum of 14 pencils.
To learn more about inequality, refer:-
https://brainly.com/question/30228778
#SPJ1