The sound level produced by the fireworks explosion at your location is approximately 104.8 dB that can be calculated using the given information of power and distance.
To calculate the sound level produced by the fireworks explosion, we can use the formula for sound intensity level (L), which is given by L = 10 log(I/I0), where I is the sound intensity and I0 is the reference intensity [tex](10^{(-12)} W/m^2)[/tex].
First, we need to calculate the sound intensity (I) at the location directly below the explosion. Since the sound radiates equally in all directions, we can assume that the sound energy is spread over the surface of a sphere with a radius equal to the distance from the explosion.
The power (P) of the sound is given as 75 kW. We can use the formula [tex]P = 4\pi r^2I[/tex], where r is the distance from the explosion (25 m in this case), to calculate the sound intensity (I). Rearranging the formula, we have [tex]I = P / (4\pi r^2)[/tex].
Substituting the values into the formula, we get [tex]I = 75,000 / (4\pi(25^2)) = 75,000 / (4\pi(625)) = 0.03 W/m^2.[/tex]
Now, we can calculate the sound level (L) using the formula L = 10 log(I/I0). Substituting the values, we have[tex]L = 10 log(0.03 / 10^{(-12)}) = 10 log(3 * 10^1^0) ≈ 10 * 10.48 = 104.8 dB.[/tex]
Therefore, the sound level produced by the fireworks explosion at your location is approximately 104.8 dB.
Learn more about sound intensity here:
https://brainly.com/question/32194259
#SPJ11
Assume all junction capacitances are equal and each has a capacitance of (1/250 p. If the emitter resistance of transistor i bye by a capacitance C1pf, determine the upper cutoff frequency fy for the amplifier? O A 5.00 GHz OB. 48.00 MHz OC 480.0 kHz VC. OD. 12.50 MHz
Assume all junction capacitances are equal and each has a capacitance of (1/250 p. If the emitter resistance of transistor i bye by a capacitance C1pf, determine the upper cutoff frequency fy for the amplifier? O A 5.00 GHz OB. 48.00 MHz OC 480.0 kHz VC. OD. 12.50 MHz
The upper cutoff frequency fy for the amplifier is 12.50 MHz.
Option D is the correct answer.
Capacitance of each junction = (1/250)p
Capacitance at emitter resistance = C1 = 1p
The upper cutoff frequency of the amplifier is given by the following formula:
fmax = 1/2πRoutC
where,
Rout = output resistance = emitter resistance = R1 = R2 = R3 = ... = Rn
fmax = Upper cutoff frequency
C = junction capacitance
The capacitance at the emitter resistance is in series with the junction capacitance to give a new capacitance.
So the equivalent capacitance = Ceq is given by:
Ceq = C1 + C
The equivalent capacitance is in parallel with all the junction capacitances.
Hence the equivalent capacitance of all the junctions and emitter resistance is given by the following formula:
Ceq = 1/(1/250 n + 1/1)
= (1/250 × 10⁹ + 1) n
= 0.996n
Now we can calculate the upper cutoff frequency using the formula:
fmax = 1/2πRoutCeq
Rout = R1||R2||R3||...||Rn= R/n
i.e.,Rout = R/n = R1/n = R2/n = R3/n = ... = Rn/n
where,R = 2kΩ (given)
Therefore, the upper cutoff frequency is given by the formula:
fmax = 1/2πRoutCeq = 1/2π(R/n)(0.996 n)
= 1/2πR(0.996/n)
= (0.996/2πn) × 10⁶
= 0.996/2π × 10⁶/4
= 12.50 MHz
Hence, the upper cutoff frequency fy for the amplifier is 12.50 MHz.
Option D is the correct answer.
Learn more about the cutoff frequency:
brainly.com/question/30092924
#SPJ11
(a) A 0.552 kg particle has a speed of 2.17 m/s at point A and kinetic energy of 7.64 ) at point B. What is its kinetic energy at A? Submit Answer Tries 0/10 (b) What is its speed at point B? Submit Answer Tries 0/10 (c) What is the total work done on the particle as it moves from A to B?
The total work done on the particle as it moves from A to B is 11.32 J.
(a) A 0.552 kg particle has a speed of 2.17 m/s at point A and kinetic energy of 7.64 J at point B. What is its kinetic energy at A?The kinetic energy of an object is given by the formula KE = (1/2)mv², where m is the mass of the object and v is its velocity.Therefore, at point A,KE = (1/2)mv²= (1/2)(0.552 kg)(2.17 m/s)²= 1.44 J(b) What is its speed at point B?Given that, the particle has kinetic energy of 7.64 J at point B. KE = (1/2)mv², where m is the mass of the object and v is its velocity.Therefore, at point B, 7.64 J = (1/2)(0.552 kg)v²Therefore, v² = (2 x 7.64 J) / (0.552 kg) v² = 27.71
The speed of the object at point B is given by the formula, v = √(27.71) = 5.26 m/s(c) What is the total work done on the particle as it moves from A to B?
The work done on the particle as it moves from A to B is given by the difference in kinetic energy, W = ΔKEKE(B) - KE(A) = (1/2)mv(B)² - (1/2)mv(A)²= (1/2)m(v(B)² - v(A)²) = (1/2)(0.552 kg)(5.26 m/s)² - (1/2)(0.552 kg)(2.17 m/s)²= 11.32 JTherefore, the total work done on the particle as it moves from A to B is 11.32 J.
Learn more about Speed here,
https://brainly.com/question/13943409
#SPJ11
For an object moving with a constant velocity, what is the slope of a straight line in its position versus time graph? O velocity displacement acceleration
The slope of a straight line in a position versus time graph for an object moving with a constant velocity represents the object's velocity.
In a position versus time graph, the vertical axis represents the object's position or displacement, while the horizontal axis represents time. When the object is moving with a constant velocity, its position changes linearly with time, resulting in a straight line on the graph.
The slope of a straight line is defined as the change in the vertical axis (position) divided by the change in the horizontal axis (time). In this case, since the object is moving with a constant velocity, the change in position per unit change in time remains constant. Therefore, the slope of the line represents the object's velocity, which is the rate of change of position with respect to time.
Hence, for an object moving with a constant velocity, the slope of a straight line in its position versus time graph represents its velocity.
Learn more about constant velocity here:
https://brainly.com/question/29297343
#SPJ11
An annulus with inner radius a=1.6 m and outer radius b=3.8 m lies in the x−y plane. There is a constant electric field with magnitude 9.9 m
V
, that makes an angle θ=65.9 ∘
with the horizontal. What is the electric flux through the annulus? V⋅m 1 point possible (graded) An annulus with inner radius a=1.6 m and outer radius b=3.8 m lies in the x−y plane. There is a constant electric field with magnitude 9.9 m
V
, that makes an angle θ=65.9 ∘
with the horizontal. What is the electric flux through the annulus? V⋅m
the electric flux through the annulus is 34.3 V m.
Given that the inner radius of the annulus, a = 1.6 m, the outer radius of the annulus, b = 3.8 m, the magnitude of the electric field, E = 9.9 m V, and the angle between the horizontal and electric field, θ = 65.9°.
The formula to calculate the electric flux is given by,Φ = E.A cosθWhere E is the magnitude of the electric field, A is the area of the surface, and θ is the angle between the electric field and the normal to the surface.
The area of the annulus is given by,A = π(b² - a²)Substituting the given values in the above equation, we get,A = π(3.8² - 1.6²)A = 12.2 π m²Now substituting the values of E, A, and θ in the electric flux formula, we get,Φ = E.A cosθΦ = 9.9 × 12.2π × cos 65.9°Φ = 34.3 V mHence,
the electric flux through the annulus is 34.3 V m.
to know more about electric flux
https://brainly.com/question/26289097
#SPJ11
A coil of inductance 130 mH and unknown resistance and a 1.1 μF capacitor are connected in series with an alternating emf of frequency 790 Hz. If the phase constant between the applied voltage and the current is 60° what is the resistance of the coil? Number Units
The resistance of the coil is 349.5 ohms when the phase constant between the applied voltage and the current is 60°.
Inductance = 130 mH
capacitance (C) = 1.1 μF
Frequency = 790 Hz.
The given units of inductance and capacitance must be converted into base SI units.
Inductance = 130 mH = 0.130 H
capacitance (C) = 1.1 μF = 1.1 μF = [tex]1.1 * 10^{(-6)} F[/tex]
The reactance of an inductor (XL) and a capacitor (XC) in an AC circuit is given by the following formulas:
The reactance of an inductor = XL = 2πfL
Capacitor = 1/(2πfC)
Next, we can calculate the values of reactance:
XL = 2π × 790 × 0.130 = 645.4 Ω (ohms)
XC = 1/(2π × 790 × [tex]1.1 * 10^{(-6)} F[/tex])
XC = 181.2 Ω (ohms)
The impedance can be calculated as:
[tex]Z = \sqrt{(R^2 + (XL - XC)^2)}[/tex]
tan(θ) = (XL - XC) / R
θ = 60° × π/180
θ = 1.047 radians
tan(1.047) = (645.4 - 181.2) / R
R = (645.4 - 181.2) / tan(1.047)
R = 349.5 Ω
Therefore, we can infer that the resistance of the coil is 349.5 ohms.
To learn more about Resistance
https://brainly.com/question/29550977
#SPJ4
a 27 cm wrench is used to generate a torque at a bolt. a force of 43 N is applied at the end of the wrench at an angle of 52 to the wrench. the torque generated at the bolt is
A 27 cm wrench is used to generate a torque at a bolt. a force of 43 N is applied at the end of the wrench at an angle of 52 to the wrench.The torque generated at the bolt is approximately 9.147 N·m.
Let's proceed with the calculation:
Given:
Length of the wrench (L) = 27 cm = 0.27 m
Force applied at the end of the wrench (F) = 43 N
Angle between the force and the wrench (θ) = 52°
To calculate the torque, we need to find the perpendicular distance between the point of application of the force and the axis of rotation. This can be done using trigonometry.
Perpendicular distance (d) = L × sin(θ)
= 0.27 m × sin(52°)
Calculating the value of d:
d ≈ 0.27 m × 0.788 = 0.21276 m
Now we can calculate the torque:
Torque (τ) = F × d
= 43 N × 0.21276 m
≈ 9.14668 N·m
Therefore, the torque generated at the bolt is approximately 9.147 N·m.
To learn more about torque visit: https://brainly.com/question/17512177
#SPJ11
How much larger is the dameter of the sun compared to the
diameter of jupiter?
The diameter of the sun is about 109 times larger than the diameter of Jupiter.
How much larger is the diameter of the sun compared to the diameter of Jupiter?The diameter of the sun is about 109 times larger than the diameter of Jupiter. The diameter of the sun is approximately 1.39 million kilometers (864,938 miles), while the diameter of Jupiter is around 139,822 kilometers (86,881 miles).
Therefore, the difference between the diameter of the sun and the diameter of Jupiter is about 1,390,178 kilometers (864,938 - 86,881 x 2), which is over one million kilometers. Jupiter is the largest planet in our solar system, but it's still small compared to the sun. Jupiter has a diameter that is roughly 11 times greater than the diameter of Earth.
The sun and Jupiter are both celestial objects in our solar system. While they share certain characteristics, such as their spherical shape and their immense size, they also differ in many ways. One significant difference between the sun and Jupiter is their size, as evidenced by their diameters. The diameter of the sun is around 109 times greater than the diameter of Jupiter, which means that the sun is much larger than Jupiter. The diameter of the sun is roughly 1.39 million kilometers (864,938 miles), while the diameter of Jupiter is about 139,822 kilometers (86,881 miles). The difference between the two is over 1,390,000 kilometers (864,938 - 86,881 x 2), which is a difference of over one million kilometers. As the largest planet in our solar system, Jupiter is still quite small when compared to the sun.
The diameter of the sun is about 109 times larger than the diameter of Jupiter, making it much larger than Jupiter.
To know more about solar system visit:
brainly.com/question/32240766
#SPJ11
Voorve (B wave rectifer ve load: (PIV V with res BLEM FOUR (12 pts, 2pts each part) select the correct answer: Rectifiers are used in energy conversion systems to A. convert the DC voltage to an AC voltage B. convert the AC voltage to a DC voltage C. improve the system's efficiency D. all 2) The output voltage of a controlled rectifier is varied by controlling the rectifier A. frequency B. duty-cycle C. input voltage D. phase 3) The duration of one switching cycle in inverters is A. equal to the conduction time of one switch in one switching cycle B. twice the conduction time of one switch in one switching cycle C. half the conduction time of one switch in one switching cycle D. none 4) In transmission lines, aluminum conductors have a conductors A. lower weight B. lower cost C. higher power factor D. A and B E. A, B and C of the in comparison with copper unded to fully charge the
smission lines, aluminum conductors have a conductors in comparison with copper A. lower weight B. lower cost C. higher power factor (D) A and B E. A, B and C 5) A 100 Wh battery is charged using a 36 W charger. The time needed to fully charge the battery if it is initially completely discharged is A. 167 minutes B. 83 minutes C. 333 minutes D. 100 minutes E. None 6) Practically, to improve the output power quality of an inverter, the switching frequency of the switches operate is increased. A. True B. False
A rectifier is an electronic device or circuit that converts alternating current (AC) into direct current (DC). It allows current to flow in one direction by utilizing diodes or other semiconductor devices. An inverter is an electronic device or circuit that converts direct current (DC) into alternating current (AC). It reverses the DC input voltage polarity to produce an AC output waveform. A conductor is a material or substance that allows the flow of electric current. It is characterized by having low electrical resistance, enabling the easy movement of electrons in response to an applied electric field.
1. Rectifiers are used in energy conversion systems to convert the AC voltage to a DC voltage. The correct answer is B.
2. In controlled rectifiers, the output voltage is varied by controlling the rectifier's duty cycle. The correct answer is B.
3. The duration of one switching cycle in inverters is equal to the conduction time of one switch in one switching cycle. The correct answer is A.
4. In transmission lines, aluminum conductors have a lower weight and lower cost as compared to copper conductors. The correct answer is D. A and B.
5. A 100 Wh battery is charged using a 36 W charger. The time needed to fully charge the battery if it is initially completely discharged is 167 minutes. The correct answer is A.
6. Practically, to improve the output power quality of an inverter, the switching frequency of the switches operate is increased. The correct answer is A. True.
Learn more about conductors: https://brainly.com/question/492289
#SPJ11
A generator connectod to an RLC circuit has an ms voltage of 160 V and an ims current of 36 m . Part A If the resistance in the circuit is 3.1kΩ and the capacitive reactance is 6.6kΩ, what is the inductive reactance of the circuit? Express your answers using two significant figures. Enter your answers numerically separated by a comma. Item 14 14 of 15 A 1.15-k? resistor and a 585−mH inductor are connoctod in series to a 1150 - Hz generator with an rms voltage of 12.2 V. Part A What is the rms current in the circuit? Part B What capacitance must be inserted in series with the resistor and inductor to reduce the rms current to half the value found in part A?
a) The inductive reactance of the circuit IS 3.8KΩ and the rms current in the circuit is 1.68 mA
b) Capacitance that must be inserted in series with the resistor and inductor to reduce the rms current to half is 62.8μF
a) To calculate the inductive reactance [tex](\(X_L\))[/tex] of the circuit, we'll use the formula:
[tex]\[X_L = \sqrt{{X^2 - R^2}}\][/tex]
where X is the total reactance and R is the resistance in the circuit. Given that [tex]\(X_C = 6.6 \, \text{k}\Omega\)[/tex] and [tex]\(R = 3.1 \, \text{k}\Omega\),[/tex] we can calculate X:
[tex]\[X = X_C - R = 6.6 \, \text{k}\Omega - 3.1 \, \text{k}\Omega = 3.5 \, \text{k}\Omega\][/tex]
Substituting the values into the formula:
[tex]\[X_L = \sqrt{{(3.5 \, \text{k}\Omega)^2 - (3.1 \, \text{k}\Omega)^2}}\][/tex]
Calculating the expression:
[tex]\[X_L \approx 3.8 \, \text{k}\Omega\][/tex]
b) For the second problem, with a 1.15 k\(\Omega\) resistor, a 585 mH inductor, a 1150 Hz generator, and an rms voltage of 12.2 V:
a) To find the rms current I in the circuit, we'll use Ohm's law:
[tex]\[I = \frac{V}{Z}\][/tex]
The total impedance Z can be calculated as:
[tex]\[Z = \sqrt{{R^2 + (X_L - X_C)^2}}\][/tex]
Substituting the given values:
[tex]\[Z = \sqrt{{(1.15 \, \text{k}\Omega)^2 + (3.8 \, \text{k}\Omega - 6.6 \, \text{k}\Omega)^2}}\][/tex]
Calculating the expression:
[tex]\[Z \approx 7.24 \, \text{k}\Omega\][/tex]
Then, using Ohm's law:
[tex]\[I = \frac{12.2 \, \text{V}}{7.24 \, \text{k}\Omega} \approx 1.68 \, \text{mA}\][/tex]
b) To reduce the rms current to half the value found in part A, we need to insert a capacitor in series with the resistor and inductor. Using the formula for capacitive reactance [tex](\(X_C\))[/tex]:
[tex]\[X_C = \frac{1}{{2\pi fC}}\][/tex]
Rearranging the equation to solve for C:
[tex]\[C = \frac{1}{{2\pi f X_C}}\][/tex]
Substituting the values:
[tex]\[C = \frac{1}{{2\pi \times 1150 \, \text{Hz} \times (0.5 \times 1.68 \, \text{mA})}}\][/tex]
Calculating the expression:
[tex]\[C \approx 62.8 \, \mu\text{F}\][/tex]
Learn more about inductive reactance here:
https://brainly.com/question/30752659
#SPJ11
During the transient analysis of an RLC circuit, if the response is V(s) = (16s-20)/(s+1)(s+5), it is:
A. Step response of a series RLC circuit
B. Natural response of a parallel RLC circuit
C. Natural response of a series RLC circuit
D. None of the other choices are correct
E. Step response of a parallel RLC circuit
The response V(s) = (16s-20)/(s+1)(s+5) belongs to natural response of a series RLC circuit. Therefore, option C is correct.
Explanation:
The response V(s) = (16s-20)/(s+1)(s+5) belongs to natural response of a series RLC circuit.
In an RLC circuit, the transient analysis relates to the study of circuit responses during time transitions before attaining the steady state. Here, the response of the circuit to a step input or impulse input is analyzed, which is known as step response or natural response.
The natural response of a circuit depends upon the initial conditions, which means it is an undamped oscillation.
The response V(s) = (16s-20)/(s+1)(s+5) does not belong to the step response of a series RLC circuit, nor the natural response of a parallel RLC circuit.
Therefore, option C is correct.
learn more about series RLC circuit here:
https://brainly.com/question/32069284
#SPJ11
. Laser safety - Optical density and the Eye a) Calculate the optical density factor if you want to reduce your laser power 500 times (ie. make a 500mW laser 1mW). b) What is the minimum OD required for laser safety glasses if you want to protect your eyes from any damage? c) What wavelength region is called "eye-safe" and why?
(a)The optical density factor to reduce laser power is 500 times, ensuring laser safety. (b)To protect the eyes from any damage one must consult the appropriate laser safety standards. (c) 1,400 to 1,500 nm wavelength is called "eye-safe".
a) To calculate the optical density factor for reducing laser power, we need to divide the initial power by the desired power. In this case, the initial power is 500mW, and the desired power is 1mW. So, the optical density factor can be calculated as 500mW / 1mW = 500.
b) The minimum optical density (OD) required for laser safety glasses depends on the laser power and the corresponding maximum permissible exposure (MPE) limit. The MPE limit varies for different laser wavelengths. To determine the minimum OD, one must consult the appropriate laser safety standards or guidelines that specify the MPE limits for different wavelengths.
c) The "eye-safe" wavelength region refers to a range of laser wavelengths that are considered relatively safe for the eyes. Typically, this region lies in the near-infrared (NIR) spectrum, around 1,400 to 1,500 nanometers (nm). The reason for considering this range as eye-safe is that the cornea and the lens of the eye have high absorption coefficients for wavelengths within this region, minimizing the risk of damage to the retina.
However, it is important to note that even within the eye-safe range, laser power and exposure duration should still be within safe limits to avoid any potential harm.
Learn more about optical density here:
https://brainly.com/question/29833831
#SPJ11
A wave is represented by the equation = . ( − ), where x and y in meters, t in seconds. Find the amplitude, wavelength, frequency, wave speed and direction. Find the displacement at t = 0.05 second and at a point x = 0.40 m.
the specific values for the amplitude, wavelength, frequency, wave speed, direction, and displacement at t = 0.05 s and x = 0.40 m can be determined by applying the equations and substituting the given values.
The equation for the wave is given as y(x, t) = A sin(kx - ωt), where:A represents the amplitude of the wave.k is the wave number, related to the wavelength λ by the equation k = 2π/λ.ω is the angular frequency, related to the frequency f by the equation ω = 2πf.From the equation, we can deduce the following information:The amplitude of the wave is equal to A.
The wavelength λ can be determined by the equation λ = 2π/k.The frequency f is given by f = ω/(2π).The wave speed v is related to the frequency and wavelength by the equation v = λf = ω/k.The direction of the wave can be determined by observing the sign of the coefficient of x in the equation.
A positive sign indicates a wave propagating in the positive x-direction, and a negative sign indicates a wave propagating in the negative x-direction.To find the displacement at a specific time and position, we substitute the given values of t and x into the equation y(x, t) and evaluate it.By using the given equation and substituting the provided values of t = 0.05 s and x = 0.40 m, we can calculate the displacement at that point in the wave.Therefore, the specific values for the amplitude, wavelength, frequency, wave speed, direction, and displacement at t = 0.05 s and x = 0.40 m can be determined by applying the equations and substituting the given values.
Learn more about wave here:
https://brainly.com/question/25954805
#SPJ11
I need help please :((((((
Suppose you walk across a carpet with socks on your feet. When you touch a metal door handle, you feel a shock because, c. Excess negative charges build up in your body while walking across the carpet, then jump when attracted to the positive charges in the door handle.
When you walk across a carpet with socks on your feet, the friction between the carpet and your socks causes the transfer of electrons. Electrons are negatively charged particles. As you move, the carpet rubs against your socks, stripping some electrons from the atoms in the carpet and transferring them to your socks. This results in your body gaining an excess of negative charges.
The metal door handle, on the other hand, contains positive charges. When you touch the metal door handle, there is a sudden flow of electrons from your body to the door handle. This movement of electrons is known as an electric discharge or a static shock. The excess negative charges in your body are attracted to the positive charges in the door handle, and this attraction causes the sudden discharge of electrons, resulting in the shock that you feel.
It's important to note that the shock occurs due to the difference in charges between your body and the metal door handle. The friction between your socks and the carpet allows for the buildup of static electricity, and the shock is a result of the equalization of charges when you touch the metal object. Therefore, Option E is correct.
Know more about Friction here:
https://brainly.com/question/24338873
#SPJ8
How much energy, in joules, is released when 70.00 {~kg} of hydrogen is converted into helium by nuclear fusion?
Therefore, 5.95 × 10²⁰ J of energy is released when 70.00 kg of hydrogen is converted into helium by nuclear fusion.
The nuclear fusion of 70 kg of hydrogen to helium releases 5.95 × 10²⁰ J of energy. In order to determine how much energy is released when 70.00 kg of hydrogen is converted into helium through nuclear fusion, one can use the equationE=mc².
Here, E is the energy released, m is the mass lost during the fusion reaction, and c is the speed of light squared (9 × 10¹⁶ m²/s²).The amount of mass lost during the reaction can be calculated using the equation:Δm = (m_initial - m_final)Δm = (70 kg - 69.96 kg) = 0.04 kg.
Substituting the values in the first equation:
E = (0.04 kg) × (3 × 10⁸ m/s)²E = 3.6 × 10¹⁷ J, This is the amount of energy released by the fusion of 1 kg of hydrogen.
Therefore, to find the total energy released by the fusion of 70.00 kg of hydrogen, we must multiply the amount of energy released by the fusion of 1 kg of hydrogen by 70.00 kg of hydrogen:E_total = (3.6 × 10¹⁷ J/kg) × (70.00 kg)E_total = 2.5 × 10²⁰ J. Therefore, 5.95 × 10²⁰ J of energy is released when 70.00 kg of hydrogen is converted into helium by nuclear fusion.
Learn more about nuclear fusion
https://brainly.com/question/14019172
#SPJ11
A raft is made of 15 logs lashed together. Each is 41 cm in diameter and has a length of 6.4 m. specific gravity of wood is 0.60. Express your answer using two significant figures.
The weight of the raft is approximately 4750 kg.
To find the weight of the raft, we need to calculate the total volume of the logs and then multiply it by the specific gravity of wood.
The volume of each log can be calculated using the formula for the volume of a cylinder:
V = π[tex]r^{2h}[/tex]
where r is the radius (half of the diameter) and h is the length of the log.
Given that the diameter of each log is 41 cm, the radius is 20.5 cm or 0.205 m, and the length of the log is 6.4 m.
Substituting these values into the volume formula, we get:
V = π[tex](0.205)^{2}[/tex] × 6.4
Calculating this expression, we find:
V ≈ 0.528 [tex]m^{3}[/tex]
Since there are 15 logs in the raft, the total volume of the logs is:
Total Volume = 15 × 0.528 ≈ 7.92 [tex]m^{3}[/tex]
Now, we can calculate the weight of the raft using the specific gravity of wood. The specific gravity is defined as the ratio of the density of the wood to the density of water, which is 1. The specific gravity of wood is given as 0.60.
Weight of the raft = Total Volume × Specific Gravity × Density of Water
Weight of the raft ≈ 7.92 [tex]m^{3}[/tex] × 0.60 × 1000 kg/[tex]m^{3}[/tex] (density of water)
Calculating this expression, we find:
Weight of the raft ≈ 4750 kg
Therefore, the weight of the raft is approximately 4750 kg.
Learn more about gravity here:
https://brainly.com/question/31321801
#SPJ11
A copper wire used for house hold electrical outlets has a radius of 2.0 mm (1mm = 10³m). Each Copper atom donates one electron for conduction. If the electric current in this wire is 15 A. copper density is 8900 kg/m³ and its atomic mass is 64 u, (lu = 1.66 x 10-27 kg), the electrons drift velocity Va in this wire is a) 2.11 x 10-4 m/s. b) 2.85 x 10-4 m/s. c) 8.91 x 10-5 m/s, d) 1.14 x 10-4 m/s. e) 4.56 x 10-5 m/s, f) None of the above.
The drift velocity (Va) of electrons in the copper wire can be calculated using the formula Va = I / (nAe), In this case, with a given current of 15 A and the properties of copper, the drift velocity is approximately 8.91 x 10^-5 m/s (option c).
The drift velocity of electrons in a wire is the average velocity at which they move in response to an applied electric field. It can be calculated using the formula Va = I / (nAe), where I is the current flowing through the wire, n is the number of charge carriers per unit volume, A is the cross-sectional area of the wire, and e is the charge of an electron.
In this case, the current is given as 15 A. The number of charge carriers per unit volume (n) can be determined using the density of copper (ρ) and its atomic mass (m). Since each copper atom donates one electron for conduction, the number of charge carriers per unit volume is n = ρ / (mN_A), where N_A is Avogadro's number.
The cross-sectional area of the wire (A) can be calculated using the radius (r) of the wire, which is given as 2.0 mm. The area is A = πr^2. By substituting the given values into the formula, we can calculate the drift velocity Va, which comes out to be approximately 8.91 x 10^-5 m/s. Therefore, option c is the correct answer.
Learn more about velocity here:
https://brainly.com/question/30559316
#SPJ11
Two pistons of a hydraulic lift have radii of 2.67 cm and 20.0 cm. A mass of 2.00×10^3 kg is placed on the larger piston. Calculate the minimum downward force needed to be exerted on the smaller piston to hold the larger piston level with the smaller piston.
------------- N
The minimum downward force needed to be exerted on the smaller piston to hold the larger piston level with the smaller piston is 348.8 N.
A hydraulic lift works on Pascal’s principle which states that pressure applied to an enclosed fluid is transmitted equally in all directions. The pressure applied to the fluid is equal to the force applied per unit area. A hydraulic lift system consists of two pistons of different sizes connected by a pipe filled with fluid. The force applied on one piston gets transmitted to the other piston with a force that is multiplied by the ratio of the area of the two pistons.
The area of the smaller piston is given as follows:A = πr²where r = 2.67 cm = 0.0267 mTherefore, A = π(0.0267)² = 0.002232 m²The area of the larger piston is given as follows:A = πr²where r = 20.0 cm = 0.20 mTherefore, A = π(0.20)² = 0.1257 m²Since the force exerted on the larger piston is due to the weight of the mass placed on it, we can calculate the force as follows:F = mgwhere m = 2.00×10³ kg, and g = 9.81 m/s²Therefore, F = (2.00×10³)(9.81) = 19.62 kN = 1.962×10⁴ N.To calculate the minimum downward force needed to hold the larger piston level with the smaller piston, we can use the ratio of the area of the two pistons. Let F₁ be the force needed to be exerted on the smaller piston.
Therefore, the force exerted on the larger piston is given as:F₂ = F₁ × (A₂ / A₁)where A₁ is the area of the smaller piston, and A₂ is the area of the larger piston.Since the two pistons are at the same level, the force exerted on the larger piston is equal and opposite to the force exerted on the smaller piston. Therefore, we can write:F₁ = F₂ / (A₂ / A₁)F₁ = (1.962×10⁴) / (0.1257 / 0.002232)F₁ = 348.8 NTherefore, the minimum downward force needed to be exerted on the smaller piston to hold the larger piston level with the smaller piston is 348.8 N.
Learn more about Pascal’s principle here,
https://brainly.com/question/4262025
#SPJ11
compare transportation in the past and present
Answer:
In the past, the primary means of transportation was walking or riding on horses, carriages, or boats. Now, we use the same methods of transportation, but we have added planes, trains, automobiles, and jet skis. With the advancement of technology, we have faster and more efficient ways of getting from one place to another. Additionally, electric vehicles are becoming more available and popular. Cars are fueled by more efficient and fuel-efficient engines, and planes are powered by more efficient engines, allowing for longer haul flights. Public transportation has also improved over the years, making it easier to get to and from destinations.
Explanation:
A 0.250 kg mass is attached to a horizontal spring of spring constant 140 N/m, supported by a frictionless table. A physics student pulls the mass 0.12 m from equilibrium, and the mass is then let go. Assume no air resistance and that it undergoes simple harmonic motion.
a) Calculate the work done by the student on the mass in pulling it a distance of 0.12 m.
b) Using conservation of energy principles, calculate the maximum speed of the mass.
a) The work done by the student on the mass in pulling it a distance of 0.12 m is 0.10 J.b) The maximum speed of the mass is 0.79 m/s.
a) Work done by the student on the mass in pulling it a distance of 0.12 m.The amount of work done by the student is equal to the amount of potential energy stored in the spring.Potential energy stored in the spring = 1/2 kx²where, k is the spring constant and x is the displacement from the equilibrium position.Now, the displacement of the mass is given as 0.12 m.Substituting the given values,1/2 × 140 N/m × (0.12 m)² = 0.10 JTherefore, the work done by the student on the mass in pulling it a distance of 0.12 m is 0.10 J.
b) Maximum speed of the massUsing the law of conservation of energy, the potential energy stored in the spring is equal to the kinetic energy of the mass at the maximum speed.Potential energy stored in the spring = Kinetic energy of the mass at maximum speed1/2 kA² = 1/2 mv²where, A is the amplitude, m is the mass, and v is the maximum velocity of the mass.Substituting the given values,1/2 × 140 N/m × (0.12 m)² = 1/2 × 0.250 kg × v²Solving for v, v = 0.79 m/sTherefore, the maximum speed of the mass is 0.79 m/s.
Learn more about Potential energy here,
https://brainly.com/question/21175118
#SPJ11
A long straight wire has a current of 18.0 A flowing upwards. An electron is traveling parallel to the wire, in the same direction as the current, and at a speed of 125,000 m/s. If the electron is 15.0 cm from the wire, what is the magnitude and direction of the magnetic force on the moving electron?
Hence, the magnitude of the magnetic force acting on the electron is 5.12 × 10^-14 N and its direction is in the right-hand direction.
When a current-carrying wire is placed in a magnetic field, it experiences a force. The right-hand rule for magnetic force can be used to determine the direction of the force. When a current-carrying wire is placed in a magnetic field, it experiences a force. The right-hand rule for magnetic force can be used to determine the direction of the force. The direction of the force is perpendicular to both the magnetic field and the current in the wire.
Given:
The current in the wire is 18.0 A flowing upwards.
The electron is traveling parallel to the wire, in the same direction as the current, and at a speed of 125,000 m/s.
The electron is 15.0 cm from the wire.
Force experienced by the electron moving with velocity v and charge q in a magnetic field B is given by the formula:F = q(v×B)
Here, q = -1.6 × 10^-19 C, v = 125,000 m/s, and B is given by B = μ₀I/2πr
μ₀ = 4π×10^-7 Tm/A
The magnitude of magnetic force on the electron is given as:F = (1.6 × 10^-19 C) × (125,000 m/s) × [4π×10^-7 Tm/A × 18.0 A/(2π × 0.15 m)]
F = 5.12 × 10^-14 N
As the direction of the current in the wire is upwards and the electron is traveling parallel to the wire, in the same direction as the current, so the direction of the magnetic force on the electron will be in the right-hand direction.
Hence, the magnitude of the magnetic force acting on the electron is 5.12 × 10^-14 N and its direction is in the right-hand direction.
To know more about magnetic field visit:
https://brainly.com/question/31743819
#SPJ11
As a woman walks, her entire weight is momentarily placed on one heel of her high-heeled shoes. Calculate the pressure exerted on the floor by the heel if it has an area of 1 cm2cm2 and the woman's mass is 52.5 kg. Express the pressure in Pa. (In the early days of commercial flight, women were not allowed to wear high-heeled shoes because aircraft floors were too thin to withstand such large pressures.)
P=
The pressure exerted on the floor by the heel is 5.15025 × 10⁷ Pa.
Given data,Mass of the woman, m = 52.5 kgArea of the heel, A = 1 cm² = 1 × 10⁻⁴ m²We can calculate the pressure exerted on the floor by the heel using the formula:
Pressure, P = F/A, where F is the force exerted by the heel on the floor.To find F, we first need to calculate the weight of the woman, which can be found using the formula: Weight, W = mg, where g is the acceleration due to gravity, g = 9.81 m/s²Weight of the woman, W = mg = 52.5 × 9.81 = 515.025 N.
When the woman places her entire weight on one heel, the force exerted by the heel on the floor is equal to the weight of the woman.Force exerted by the heel, F = 515.025 NPressure, P = F/A = 515.025/1 × 10⁻⁴ = 5.15025 × 10⁷ Pa.
Therefore, the pressure exerted on the floor by the heel is 5.15025 × 10⁷ Pa.
Learn more about Mass here,
https://brainly.com/question/86444
#SPJ11
What velocity would a proton need to circle Earth 1,050 km above the magnetic equator, where Earth's magnetic field is directed horizontally north and has a magnitude of
4.00 ✕ 10−8 T?
(Assume the raduis of the Earth is 6,380 km.)
Magnitude:
The velocity required for a proton to circle the Earth 1,050 km above the magnetic equator, given Earth's magnetic field of magnitude 4.00 x 10^-8 T, is approximately [tex]5.44 * 10^6 m/s[/tex]
To determine the velocity required for a proton to circle the Earth 1,050 km above the magnetic equator, we can use the concept of centripetal force and the Lorentz force.
The centripetal force required for the proton to move in a circular path is provided by the magnetic force exerted by Earth's magnetic field. The Lorentz force is given by the formula:
F = q * v * B
where F is the magnetic force, q is the charge of the proton, v is its velocity, and B is the magnitude of Earth's magnetic field.
Since the proton is moving in a circular orbit, the centripetal force required is:
F = (m * v^2) / r
where m is the mass of the proton and r is the radius of the proton's orbit.
Setting the Lorentz force equal to the centripetal force, we have:
q * v * B = (m * v^2) / r
Rearranging the equation, we find:
v = (q * B * r) / m
Substituting the given values:
q = charge of a proton = 1.6 x 10^-19 C
B = 4.00 x 10^-8 T
r = radius of orbit = radius of Earth + altitude = (6,380 km + 1,050 km) = 7,430 km = 7,430,000 m
m = mass of a proton = 1.67 x 10^-27 kg
Plugging in these values, we get:
v = [tex](1.6 * 10^{-19} C * 4.00 * 10^-8 T * 7,430,000 m) / (1.67 * 10^{-27} kg)[/tex]
Calculating the expression, we find:
v ≈ [tex]5.44 * 10^6 m/s[/tex]
Learn more about Lorentz force here:
https://brainly.com/question/32812932
#SPJ11
A loop of wire with velocity 3 m/s moves through a magnetic field whose strength increases with distance at a rate of 5T/m. If the loop has area 0.75 m² and internal resistance 5 Ω, what is the current in the wire?
A. I=3 A
B. I=56A
C. I=11.25 A
D. I=2.25A
The current in the wire is option is A, I = 3A.
The rate of increase of the magnetic field is 5 T/m and the velocity of the wire is 3 m/s.
Therefore, the change in the magnetic field per unit time, that is, the emf induced in the wire is;
emf = Bvl
where
B is the magnetic field,
v is the velocity,
l is the length of the wire, in this case, the length of the wire is equal to the perimeter of the loop.
The area of the loop is 0.75 m²;
therefore, the perimeter is;
P = √(4 × 0.75 m² / π) = 0.977m
Substituting the values given;
emf = (5 T/m × 3.08 m) × 3 m/s = 14.655 V
The current in the wire is given by;
I = emf / R
where
R is the internal resistance of the wire, in this case, it is 5 Ω.
Substituting the values in the equation,
I = 14.655 V / 5 Ω = 2.931 A = 3A(approx)
Therefore, the correct option is A. I = 3A.
Learn more about current:
https://brainly.com/question/1100341
#SPJ11
A cart with mass 200 g moving on a friction-less linear air track at an initial speed of 1.2 m/s undergoes an elastic collision with an initially stationary cart of unknown mass. After the collision, the first cart continues in its original direction at 1.00 m/s. What is the mass of the second cart?
The mass of the second cart is 0 kg, indicating that it is an object with negligible mass or a stationary object.
In an elastic collision, the total momentum before and after the collision remains constant. We can express this principle using the equation:
(m1 * v1) + (m2 * v2) = (m1 * u1) + (m2 * u2)
Where m1 and m2 are the masses of the first and second carts, v1 and v2 are their initial velocities, and u1 and u2 are their velocities after the collision.
In this scenario, the initial velocity of the first cart is given as 1.2 m/s, and its velocity after the collision is 1.00 m/s. The mass of the first cart is 200 g, which is equivalent to 0.2 kg.
We can rearrange the equation and solve for the mass of the second cart:
(m1 * v1) + (m2 * v2) = (m1 * u1) + (m2 * u2)
(0.2 * 1.2) + (m2 * 0) = (0.2 * 1.2) + (m2 * 1.00)
0.24 = 0.24 + m2
By subtracting 0.24 from both sides, we find that m2 = 0 kg.
Learn more about velocity here:
https://brainly.com/question/30559316
#SPJ11
a
physics system in resonance
can someone answer a very extensive theory about it
Resonance is a fundamental concept in physics that occurs when a system vibrates at its natural frequency or multiples thereof, resulting in an amplified response. It plays a crucial role in various fields, including mechanics, electromagnetics, and acoustics. Resonance phenomena can be observed in a wide range of systems, from pendulums and musical instruments to electrical circuits and even large structures like bridges. Understanding resonance involves analyzing the underlying mathematical equations and principles governing the system's behavior. By studying resonance, scientists and engineers can design and optimize systems to maximize their efficiency, avoid destructive vibrations, and enhance performance. If you would like a more detailed explanation of resonance and its applications in a specific context, please provide further information or specify the area you are interested in.
Resonance is a fascinating concept that emerges when a system oscillates at its natural frequency, leading to a significant response. This phenomenon has extensive applications across various branches of physics, engineering, and other scientific disciplines. In the realm of mechanics, resonance can occur in simple systems like a mass-spring system or complex structures such as buildings. In electromagnetics, it manifests in circuits and antennas, while in acoustics, it contributes to the rich sounds produced by musical instruments. Analyzing resonance involves understanding the dynamics of the system, calculating natural frequencies, and exploring the effects of damping. Scientists and engineers utilize this knowledge to create efficient designs, avoid unwanted resonant frequencies, and optimize performance. Should you require further information about a specific area or application of resonance, feel free to provide additional details for a more tailored response.
To know more about electromagnetics.
https://brainly.com/question/23727978?referrer=searchResults
#SPJ11
A
current of 5A passes along the axis of a cylinder of 5cm radius.
What is the flux density at the surface of the cylinder?
A current of 5A passes along the axis of a cylinder of 5cm radius. The flux density at the surface of the cylinder is 2 × 10^-6 Tesla (T).
To calculate the flux density at the surface of the cylinder, we can use Ampere's law, which relates the magnetic field generated by a current-carrying conductor to the current passing through it.
The formula for the magnetic field generated by a current-carrying wire at a radial distance from the wire is given by:
B = (μ₀ × I) / (2π × r)
Where:
B is the magnetic field (flux density)
μ₀ is the permeability of free space (4π × 10^-7 T·m/A)
I is the current passing through the wire
r is the radial distance from the wire
In this case, the current passing through the cylinder is 5 A, and we want to calculate the flux density at the surface of the cylinder, which has a radius of 5 cm (0.05 m).
Plugging the values into the formula, we get:
B = (4π × 10^-7 T·m/A × 5 A) / (2π × 0.05 m)
Simplifying the expression:
B = (2 × 10^-7 T·m) / (0.1 m)
B = 2 × 10^-6 T
Therefore, the flux density at the surface of the cylinder is 2 × 10^-6 Tesla (T).
To learn more about flux density visit: https://brainly.com/question/16234377
#SPJ11
Hydroelectric generators at Hoover Dam produce a maximum current of 8.05 x 10³ A at 251 kV. a) What is the power output? ___________________ W b) The water that powers the generators enters and leaves the system at low speed (thus its kinetic energy does not change) but loses 155 m in altitude. How many cubic meters per second are needed, assuming 86 % efficiency? __________ m³/s
The power output Hydroelectric generators at Hoover Dam produce a maximum current of 8.05 x 10³ A at 251 kV is 2.022 x 10⁹W. Cubic meters per second needed by assuming 86 % efficiency is 1547.83 m³/s.
a) The formula to calculate the power output is,
Power (P) = Current (I) x Voltage (V)
It is given that, Current (I) = 8.05 x 10³ A and Voltage (V)= 251 kV= 251,000 V
Substituting these values into the formula:
Power = (8.05 x 10³ A) x (251,000 V)
Power = 2.022 x 10⁹ W
Therefore, the power output is 2.022 x 10⁹ watts.
b) To calculate the flow rate of water needed, we can use the formula:
Power (P) = Efficiency (η) x Density (ρ) x Acceleration due to gravity (g) x Flow rate (Q) x Height (h)
It is given that, Power (P) = 2.022 x 10⁹ W, Efficiency (η) = 0.86 (86% efficiency), Density of water (ρ) = 1000 kg/m³, Acceleration due to gravity (g) = 9.8 m/s², Height (h) = 155 m
Substituting these values into the formula:
2.022 x 10⁹ W = 0.86 x (1000 kg/m³) x (9.8 m/s²) x Q x 155 m
Simplifying the equation:
Q= (2.022 x 10⁹ W) / (0.86 x 1000 kg/m³ x 9.8 m/s² x 155 m)
Q=1547.83 m³/s
Therefore, 1547.83 cubic meters per second of water are needed, assuming 86% efficiency.
To learn more about power: https://brainly.com/question/11569624
#SPJ11
Among other things, the angular speed of a rotating vortex (such as in a tornado) may be determined by the use of Doppler weather radar. A Doppler weather radar station is broadcasting pulses of radio waves at a frequency of 2.85 GHz, and it is raining northeast of the station. The station receives a pulse reflected off raindrops, with the following properties: the return pulse comes at a bearing of 51.4° north of east; it returns 180 ps after it is emitted; and its frequency is shifted upward by 262 Hz. The station also receives a pulse reflected off raindrops at a bearing of 52.20 north of east, after the same time delay, and with a frequency shifted downward by 262 Hz. These reflected pulses have the highest and lowest frequencies the station receives. (a) Determine the radial-velocity component of the raindrops (in m/s) for each bearing (take the outward direction to be positive). 51.4° north of east ________
52.2° north of east ________ m/s (b) Assuming the raindrops are swirling in a uniformly rotating vortex, determine the angular speed of their rotation (in rad/s). _____________ rad/s
(a) The radial-velocity component of the raindrops 51.4° north of east is -7.63 m/s
The radial-velocity component of the raindrops 52.2° north of east is 7.63 m/s.
(b) The angular speed of their rotation (in rad/s) is 1.68 × 10^3 rad/s.
(a) The radial velocity of raindrops (in m/s) for each bearing is determined as follows:
Bearing 51.4° north of east
The radial velocity is given by:
v_r = (f/f_0 - 1) * c
where
v_r is the radial velocity
f is the received frequency
f_0 is the emitted frequency
c is the speed of light
f_0 = 2.85 GHz = 2.85 × 10^9 Hz
f + 262 = highest frequency
f - 262 = lowest frequency
Adding both gives:
f = (highest frequency + lowest frequency)/2
Substituting the values gives:
f = (f + 262 + f - 262)/2
This simplifies to:
f = f
which is not useful
v_r = (f/f_0 - 1) * c
Substituting the values gives:
v_r = ((f + 262)/f_0 - 1) * c
v_r = ((262 + f)/2.85 × 10^9 - 1) * 3 × 10^8
v_r = -7.63 m/s
Therefore, the radial-velocity component of the raindrops 51.4° north of east is -7.63 m/s.
Bearing 52.2° north of east
Substituting the values gives:
v_r = ((f - 262)/f_0 - 1) * c
v_r = ((f - 262)/2.85 × 10^9 - 1) * 3 × 10^8
v_r = 7.63 m/s
Therefore, the radial-velocity component of the raindrops 52.2° north of east is 7.63 m/s.
(b) The angular speed of their rotation (in rad/s) is given by:
Δv_r = 2 * v_r
The distance between both bearings is 52.2° - 51.4° = 0.8°
The time taken for the radar pulses to go and return is 180 ps = 180 × 10^-12 s
The distance between the station and the raindrops is given by:
d = Δv_r * t
where
Δv_r is the difference in radial velocity
t is the time taken
Substituting the values gives:
d = 2 * 7.63 * 180 × 10^-12
d = 2.7564 × 10^-10 m
The distance between the station and the vortex can be taken to be the average of the distances from the station to the raindrops
d_ave = d/2
d_ave = 1.3782 × 10^-10 m
The radius of the vortex is given by:
r = d_ave/sin(0.8°/2)
r = 9.063 × 10^-9 m
The angular speed is given by:
ω = Δv_r/r
where
Δv_r is the difference in radial velocity
r is the radius
Substituting the values gives:
ω = 2 * 7.63/9.063 × 10^-9
ω = 1.68 × 10^3 rad/s
Therefore, the angular speed of their rotation (in rad/s) is 1.68 × 10^3 rad/s.
Learn more about the radial velocity:
brainly.com/question/28044471
#SPJ11
A block of mass m=2.90 kg initially slides along a frictionless horizontal surface with velocity t 0
=1.50 m/s. At position x=0, it hits a spring with spring constant k=49.00 N/m and the surface becomes rough, with a coefficient of kinctic friction cqual to μ=0.300. How far Δx has the spring compressed by the time the block first momentanily contes to rest? Assame the pakative. direction is to the right.
Therefore, the spring has compressed 2.5 cm before the block comes momentarily to rest.
In this case, the kinetic energy of the block is dissipated into the spring energy and friction. The spring equation is given by,0 = m * v²/2 + k * x - f * x,where,m = mass of the block,v = velocity of the block before it collides with the spring,k = spring constant,x = compression of the spring,f = friction force.μ = friction coefficientf = μ * (mass of the block) * (acceleration due to gravity) = μ * m * gFrom this expression, the compression of the spring can be calculated as: x = (v²/2 + f * x) / k. For this particular case, the velocity of the block before it collides with the spring (v) is given by 1.5 m/s. The mass (m) is 2.9 kg and the spring constant (k) is 49 N/m. The coefficient of kinetic friction (μ) is 0.3. The acceleration due to gravity (g) is 9.8 m/s².Then, the friction force f is given by,f = μ * m * g = 0.3 * 2.9 * 9.8 = 8.514 NSubstitute all the values in the above expression, x = (1.5²/2 + 8.514 * x) / 49.Then, solving for x, we get x = 0.025 m = 2.5 cm. Therefore, the spring has compressed 2.5 cm before the block comes momentarily to rest.
To know more about horizontal surface visit:
https://brainly.com/question/14457006
#SPJ11
found at 18.3 cm and 58.2 cm. Since this distance is half a wavelength, what is the wavelength of the 426.7 hertz sound wave in meters? found at 15.4 cm and 49.7 cm. Since this distance is half a wavelength, what is the wavelength of the 500 hertz sound wave in meters? found at 15.3 cm and 48.7 cm. Since this distance is half a wavelength, what is the wavelength of the 512 hertz sound wave in meters? and 58.2 cm. Given this wavelength and frequency, what is the speed of the sound wave?
The wavelength of a 426.7 Hz sound wave is 39.9 cm, the wavelength of a 500 Hz sound wave is 34.3 cm, and the wavelength of a 512 Hz sound wave is 33.4 cm. Additionally, the speed of the sound wave is 171.008 m/s.
To find the wavelength of a sound wave, formula used
wavelength = velocity / frequency.
Given that the distance is half a wavelength, the wavelength can be calculated by doubling the given distance.
For the sound wave with a frequency of 426.7 Hz, the distances are 18.3 cm and 58.2 cm. Since the total distance is 2 times the wavelength, the wavelength is:
58.2 cm - 18.3 cm = 39.9 cm.
For the sound wave with a frequency of 500 Hz, the distances are 15.4 cm and 49.7 cm. The wavelength is:
49.7 cm - 15.4 cm = 34.3 cm.
For the sound wave with a frequency of 512 Hz, the distances are 15.3 cm and 48.7 cm. The wavelength is:
48.7 cm - 15.3 cm = 33.4 cm.
For finding the speed of the sound wave, the obtained wavelength of 33.4 cm and the frequency of 512 Hz can be use.
The formula for speed is:
velocity = wavelength * frequency.
Converting the wavelength to meters (1 cm = 0.01 m), the wavelength is
33.4 cm * 0.01 m/cm = 0.334 m
Therefore, the speed of the sound wave is:
0.334 m * 512 Hz = 171.008 m/s.
Learn more about sound wave here:
https://brainly.com/question/31851162
#SPJ11