Answer:
A. Physical B.Chemical C. Physical
Explanation:
Shiny is a physical Mercury is liquid which is physical and sliver added into calcium is a chemical property.
Need help on question 16
Answer: HF
If a hydrogen is bonded to an oxygen, fluorine, or nitrogen atom, it will form a hydrogen bond. Due to an unequal sharing of electrons, there is a significant dipole moment where the hydrogen atom is positive and the flourine/oxygen/nitrogen is negative.
which of the following occurs when an ionic compound dissolves in a polar solvent such as water? select all that apply: the water molecules chemically react with the ions. the disorder of the ionic salt is decreased. the water molecules attract both the anions and cations in the ionic salt. the ions become solvated by water molecules, which reduces the electrostatic attractions between the ions.
When an ionic compound dissolves in a polar solvent such as water the ions become solvated by water molecules, which reduces the electrostatic attractions between the ions. This statement (d) is correct.
When an ionic compound is dissolved in a polar solvent like water, the ions are dissociated due to the solvation of the ionic compound. As a result, the ions become hydrated and the hydration of ions occurs by the attraction of ions to water molecules.
In general, ionic compounds dissolve in polar solvents such as water, where the water molecules surround the ions of the ionic compound. As a result, the solvation process occurs and the ions become hydrated.
The hydration process reduces the electrostatic attraction between the ions of the ionic compound, resulting in the dissociation of the ions. In summary, when an ionic compound dissolves in a polar solvent such as water, the ions become solvated by water molecules, which reduces the electrostatic attractions between the ions.
Learn more about ionic compounds here:
brainly.com/question/30420333
#SPJ11
Would water, lead, air or glass allow sound to travel the fastest? Explain why, using scientific terminology
Answer:
water would allow sound to travel the fastest due to its higher density and elasticity compared to air, which makes it a better medium for transmitting sound waves.
Explanation: Answer is in explanation
Sound travels fastest in solids, and specifically in materials that are elastic, dense, and have strong intermolecular forces between their particles. Among the options given, glass is a solid, but it is not very elastic or dense, so it is not the best material for sound to travel through quickly. Lead is a dense material, but it is also very heavy and not very elastic, so it is not the best either.
Air is a gas, and gases are not very dense or elastic, so sound travels relatively slowly through them. The speed of sound in air is about 343 meters per second at standard temperature and pressure.
Water is a liquid, but it is much denser and more elastic than air, so sound travels about four times faster in water than in air, at around 1,484 meters per second.
Therefore, among the given options, water would allow sound to travel the fastest due to its higher density and elasticity compared to air, which makes it a better medium for transmitting sound waves.
an ionic compound is prepared according to the following unbalanced chemical equation. a -g sample of contains molecules. the compound consists of by mass. what are the identities of m and x, and what is the correct name for ? starting with g each of m and , what mass of can be prepared?
Correct name is, M: Al X: Cl. The correct name for MX3 is aluminum trichloride. Starting with 1.00 g each of Al and Cl2, the maximum mass of AlCl3 that can be prepared is 2.41 g.
Use Avogadro's number to convert the number of molecules to moles:
9.26 x 10^20 molecules X × (1 mol X / 6.022 x 10^23 molecules X) = 0.0154 mol X
Since the compound MX3 has three X atoms for every M atom, we know that the number of moles of M in the sample is:
0.0154 mol X / 3 = 0.00513 mol M
Next, we can use the mass percent of X in MX3 to find the mass of X in the compound. If we assume a 100 g sample of MX3, then the mass of X in the sample would be:
60.40 g X / 100 g MX3 × 100 g = 60.40 g X
We can convert this mass to moles using the molar mass of X:
60.40 g X × (1 mol X / 39.95 g X) = 1.51 mol X
Since there are three X atoms in each molecule of MX3, we know that the total number of moles of X in 1.00 g of X2 is:
1.00 g X2 × (1 mol X2 / 31.84 g X2) × 2 mol X / 1 mol X2 = 0.0627 mol X
Similarly, the number of moles of M in 1.00 g of M is:
1.00 g M × (1 mol M / 26.98 g M) = 0.0371 mol M
The limiting reactant in the reaction to form MX3 will be the element that produces the smaller amount of product, which in this case is M. Therefore, the maximum mass of MX3 that can be prepared using 1.00 g of M and 1.00 g of X2 is:
0.0371 mol M × (1 mol MX3 / 1 mol M) × (123.32 g MX3 / 1 mol MX3) = 4.57 g MX3
To know more about compound, here
brainly.com/question/14522285
#SPJ4
--The complete question is, An ionic compound MX3 is prepared according to the following unbalanced chemical equation. M+XMX3 A 0.109-g sample of X, contains 9.26 x 1020 molecules.
The compound MX; consists of 60.40% X by mass. What are the identities of M and X? (Express your answer as a chemical symbol.)
M: X: What is the correct name for MX3?
Starting with 1.00 g each of M and of X2, what mass of MX, can be prepared?--
An ion has 19 protons, 20
neutrons, and 18 electrons. What
is the correct isotope notation?
A. 39K+1
19
B. 39Ca-¹
19
D. 19 Ca+¹
39
C. 18K+1
Enter the answer choice letter.
Enter
The isotopic representation for a potassium ion which has 19 protons, 20 neutrons, and 18 electrons is shown as ³⁹₁₉K⁺¹. Option A is the correct answer according to the question.
What is an isotope?An isotope is a variant of an element that has the same number of protons in the nucleus but a different number of neutrons. This means that isotopes of the same element have the same atomic number (number of protons) but different atomic masses (sum of protons and neutrons).
Isotopes can be either stable or unstable (radioactive), and the number of neutrons in an isotope affects its stability and other properties, such as its nuclear binding energy and decay rate. Many isotopes are used in scientific research, medicine, and industry, including in radiometric dating, nuclear energy, and medical imaging.
The potassium in the question given has a positive charge and thus has lost one electron. Therefore the proton is one number higher than the electrons. Neutral potassium has 19 electrons and ionic form has 18.
Learn more about isotopes here:
https://brainly.com/question/27475737
#SPJ1
A container has .25 moles of CO, 1.25 moles of NH 3 , and .75 moles Kr. If the pressure of Carbon
Monoxide is 440 torr, what is the total pressure and the pressure of the other two gasses?
The partial pressures of NH3 and Kr are 244.44 torr and 147.73 torr, respectively.
Steps
We can use the ideal gas law to solve this problem, which states:
PV = nRT
we need to find the total number of moles of gas in the container:
Total moles = 0.25 moles CO + 1.25 moles NH3 + 0.75 moles Kr
Total moles = 2.25 moles
Next, we can use the ideal gas law to find the total pressure:
PtotalV = ntotalRT
Ptotal = ntotalRT/V
Ptotal = PCO + PNH3 + PKr
PNH3/Ptotal = nNH3/ntotal
PKr/Ptotal = nKr/ntotal
Substituting the given values:
PCO = 440 torr
ntotal = 2.25 moles
nNH3 = 1.25 moles
nKr = 0.75 moles
PNH3/Ptotal = 1.25/2.25 = 0.5556
PKr/Ptotal = 0.75/2.25 = 0.3333
Now we can solve for the partial pressures:
PNH3 = 0.5556 x Ptotal
PNH3 = 0.5556 x Ptotal = 0.5556 x (440 torr + PN2 + PKr)
PNH3 = 244.44 torr
PKr = 0.3333 x Ptotal
PKr = 0.3333 x Ptotal = 0.3333 x (440 torr + PN2 + PNH3)
PKr = 147.73 torr
So the total pressure is:
Ptotal = PCO + PNH3 + PKr
Ptotal = 440 torr + 244.44 torr + 147.73 torr
Ptotal = 832.17 torr
And the partial pressures of NH3 and Kr are 244.44 torr and 147.73 torr, respectively.
learn more about pressure here
https://brainly.com/question/28012687
#SPJ1
a sample of nitrogen gas expands in volume from 1.4 to 5.3 l at constant temperature. calculate the work done in joules if the gas expands
The work done by the gas during the expansion is 496 J.
Assuming that the nitrogen gas behaves ideally, the work done during the expansion can be calculated using the following equation:
W = -PΔV
where W is the work done, P is the pressure of the gas, and ΔV is the change in volume of the gas. Since the temperature is constant, the pressure of the gas can be assumed to be constant as well. Therefore, we can simplify the equation to:
W = -P(Vf - Vi)
where Vi is the initial volume of the gas and Vf is the final volume of the gas.
Substituting the given values, we get:
W = -(1 atm) (5.3 L - 1.4 L) = -4.9 L atm
To convert L atm to joules, we need to use the conversion factor 101.3 J/L atm:
W = -4.9 L atm × 101.3 J/L atm = -496 J
Since the work done is negative, this means that the gas is doing work on its surroundings, which is consistent with the fact that the gas is expanding.
Find out more about work done
brainly.com/question/9252627
#SPJ4
2. The approximate concentration of hydrochloric acid, HCl, in the stomach (stomach acid) is 0.17M. Calculate the mass of the following antacids required to neutralize 50cm of stomach acid. (a) Bicarbonate of soda NaHCO3 (b) Aluminum hydroxide, Al(OH)3 Please .
A- approximately 0.714 g of NaHCO3 is required to neutralize 50 mL of 0.17 M HCl. b- approximately 0.221 g of Al(OH)3 is required to neutralize 50 mL of 0.17 M HCl.
(a) Bicarbonate of soda, NaHCO₃, reacts with hydrochloric acid, HCl, to produce sodium chloride, NaCl, water, and carbon dioxide gas, CO₂, according to the balanced chemical equation:
NaHCO₃(s) + HCl (aq) → NaCl (aq) + H₂O (l) + CO₂ (g)
From the balanced equation, the stoichiometry of the reaction is 1 mole of NaHCO₃ reacts with 1 mole of HCl. The molar mass of NaHCO₃ is 84.01 g/mol.
To calculate the mass of NaHCO₃ required to neutralize 50 mL of 0.17 M HCl, we need to first calculate the number of moles of HCl in 50 mL of the solution:
0.17 M = 0.17 mol/L
Number of moles of HCl in 50 mL = (0.17 mol/L) x (0.050 L) = 0.0085 mol
Since 1 mole of NaHCO₃ reacts with 1 mole of HCl, we need 0.0085 moles of NaHCO₃ to neutralize the acid. Therefore, the mass of NaHCO₃ required is:
Mass of NaHCO₃ = 0.0085 mol x 84.01 g/mol = 0.714 g
(b) Aluminum hydroxide, Al(OH)₃, reacts with hydrochloric acid, HCl, to produce aluminum chloride, AlCl₃, water, and heat, according to the balanced chemical equation:
Al(OH)₃ (s) + 3 HCl (aq) → AlCl₃ (aq)
From the balanced equation, the stoichiometry of the reaction is 1 mole of Al(OH)₃ reacts with 3 moles of HCl. The molar mass of Al(OH)₃ is 78.00 g/mol.
To calculate the mass of Al(OH)₃ required to neutralize 50 mL of 0.17 M HCl, we need to first calculate the number of moles of HCl in 50 mL of the solution, as we did in part (a):
Number of moles of HCl in 50 mL = 0.0085 mol
Since 1 mole of Al(OH)₃ reacts with 3 moles of HCl, we need 0.0085/3 = 0.00283 moles of Al(OH)₃ to neutralize the acid. Therefore, the mass of Al(OH)₃ required is:
Mass of Al(OH)3 = 0.00283 mol x 78.00 g/mol = 0.221 g
Learn more about mass here:
https://brainly.com/question/17067547
#SPJ1
Match them for me please!
Change in shape is physical change. Transformation of one substance to another is Chemical change. Evidence of a chemical change is precipitation.
What is precipitation ?Precipitation in an aqueous solution is the process of converting a dissolved material into an insoluble solid from a supersaturated solution. The precipitate is the substance that forms. In the instance of an inorganic chemical reaction that results in precipitation, the chemical reagent that causes the solid to form is referred to as the precipitant.
The transparent liquid that remains above the precipitated or centrifuged solid phase is also known as the "supernate" or "supernatant."
When solid impurities segregate from a solid phase, the concept of precipitation can be expanded to other areas of chemistry (organic chemistry and biochemistry) and even applied to solid phases (e.g., metallurgy and alloys).
To know more about precipitation , visit;
https://brainly.com/question/29762381
#SPJ1
a meal providing 1200 kcalories contains 10 g of saturated fats, 14 g of monounsaturated fats, and 20 g of polyunsaturated fats. what is the percentage of energy supplied by the lipids?
The lipids in the meal provide 33% of the total energy.
To calculate the percentage of energy supplied by the lipids in the meal, we need to know the total number of calories provided by the lipids. Since 1 gram of fat provides 9 calories of energy, we can calculate the total number of calories provided by the different types of fats in the meal as follows;
Total calories from saturated fats = (10 g) x (9 kcal/g) = 90 kcal
Total calories from monounsaturated fats = (14 g) x (9 kcal/g) = 126 kcal
Total calories from polyunsaturated fats = (20 g) x (9 kcal/g) = 180 kcal
The total number of calories provided by the lipids in the meal is therefore; Total calories from all fats = 90 kcal + 126 kcal + 180 kcal = 396 kcal
To calculate the percentage of energy supplied by the lipids, we can divide the total number of calories provided by the lipids by the total number of calories in the meal and then multiply by 100
Percentage of energy supplied by lipids = (396 kcal / 1200 kcal) x 100% = 33%
Therefore, the percentage of energy supplied by lipids will be 33%.
To know more about lipids here
https://brainly.com/question/3498396
#SPJ4
a flask contains 2.838 m formic acid and 1.913 m formate anion. these two chemicals are a conjugate acid/base pair that should be able to form a buffer. if formic acid has a 298 k value for ka of 1.85x10-4, what is the ph of the solution in this flask?
The pH of the buffer solution given in the flask containing 2.838 m formic acid and 1.913 m Formate anion is 3.56.
The pH of a buffer solution can be calculated using the Henderson-Hasselbalch equation:
pH = pKa + log([A⁻]/[HA])
where pKa is the acid dissociation constant of formic acid (HCOOH) which is 1.85x10⁻⁴ at 298 K1, [A⁻] is the concentration of Formate anion (HCOO⁻) and [HA] is the concentration of formic acid (HCOOH).
The molarity of formic acid in the flask is 2.838 M and that of Formate anion is 1.913 M.
Since these two chemicals are a conjugate acid/base pair that should be able to form a buffer, we can assume that all of the formic acid will dissociate into H⁺ and HCOO⁻ ions.
Therefore,
[HCOO⁻] = 1.913 M and
[H⁺] = 1.85x10⁻⁴ × 2.838 / 1.913
= 2.75 x 10⁻⁴ M.
Taking -log[H⁺] gives us pH:
= -log(2.75 x 10⁻⁴) = 3.56.
Therefore, the pH of the solution in this flask is 3.56.
To know more about a buffer solution, refer:
https://brainly.com/question/27371101
#SPJ4
select all products obtained when 3,3,6-trimethylcyclohexene is treated with nbs and irradiated with uv light.
When 3,3,6-trimethylcyclohexene is treated with NBS and irradiated with UV light, all the products obtained are given below:Br2 → NBS and hν → BrNSBS = N-bromosuccinimide1-bromo-3,3,6-trimethylcyclohexene → Cyclohexene molecule (elimination of HBr) + HBr → 3,3,6-trimethylcyclohexene
To produce a cyclic bromide, the addition of NBS to 3,3,6-trimethylcyclohexene is required. Bromine is unable to add to an alkene in a syn way.
Addition would be anti if NBS was used. The result is a cyclic bromide as a result of the bromination.
N-bromosuccinimide (NBS) is used to brominate alkenes at room temperature instead of molecular bromine. Instead of bromine, NBS is used to brominate alkenes because it has a high affinity for bromine, allowing it to deliver it to the alkene without having to add a catalyst.
The main reaction between 3,3,6-trimethylcyclohexene and NBS under UV light is 1-bromo-3,3,6-trimethylcyclohexene plus HBr.
The reaction is performed in the presence of ultraviolet light. The reaction takes place in the presence of a radical initiator (UV light). As a result, 3,3,6-trimethylcyclohexene is changed into 1-bromo-3,3,6-trimethylcyclohexene plus HBr (hydrogen bromide).
Therefore, the products obtained when 3,3,6-trimethylcyclohexene is treated with NBS and irradiated with UV light are 1-bromo-3,3,6-trimethylcyclohexene and HBr.
To know more about bromination refer to-
brainly.com/question/28938775#
#SPJ11
if two separate chambers, a and b, have the same volume and contain the same number of moles, but container a is held at a higher temperature than b. container a will have:
If two separate chambers, a and b, have the same volume and contain the same number of moles, but container a is held at a higher temperature than b, container a will have a greater pressure.
Pressure is defined as force per unit area, and it is the perpendicular force exerted by a gas per unit area of the container's surface. The temperature of a gas is directly proportional to the average speed of its particles because they have more kinetic energy when they are warmer. When the temperature of the gas is raised, its particles gain more kinetic energy, and the gas's average velocity rises.Pressure is affected by temperature because the kinetic energy of gas molecules affects how often they collide with one another and with the container walls.
As a result, if two separate chambers, a and b, have the same volume and contain the same number of moles, but container a is held at a higher temperature than b, container a will have a greater pressure.
For more such questions on Pressure
https://brainly.com/question/3328692
#SPJ11
a farmer notices that the nitrates (no3) from his fertilizer are disappearing rapidly from his soil. this could be due to:
The farmer noticed that the nitrates (NO3) from his fertilizer are disappearing rapidly from his soil. This could be due to several reasons, including: Leaching, Denitrification, Plant Uptake.
Leaching: This is the process whereby nitrates are washed away from the soil by rainfall or irrigation. When there is heavy rainfall or excessive watering, nitrates can be washed away from the topsoil, leaving the plants without the required nutrients.
Denitrification: This is a process whereby bacteria in the soil break down nitrates into nitrogen gas, which is released into the atmosphere. This process can occur in poorly drained soil, which is waterlogged and lacks sufficient oxygen to support plant growth.
Plant Uptake: Nitrogen is a vital nutrient for plant growth, and plants require it to develop leaves, stems, and roots. When plants absorb the nitrogen from the soil, the nitrates in the soil reduce significantly.In conclusion, several factors could lead to the rapid disappearance of nitrates from the soil. The farmer needs to understand the primary cause of the problem to address it effectively. Leaching, denitrification, and plant uptake are some of the reasons the nitrates could be disappearing rapidly from the soil.
for more such question on fertilizer
https://brainly.com/question/24782241
#SPJ11
tetracyanoethylene has the skeleton shown below: from its lewis structure determine the following: reference: ref 5-2 how many of the atoms are sp 2 hybridized?
All 12 carbon atoms in tetracyanoethylene are sp² hybridized due to the trigonal planar geometry around each carbon atom. Option 1 is correct.
In the Lewis structure of tetracyanoethylene, there are a total of 12 carbon atoms, 4 nitrogen atoms, and 6 double bonds. Each carbon atom has a double bond with a neighboring carbon atom and a triple bond with a neighboring nitrogen atom, while each nitrogen atom has a triple bond with a neighboring carbon atom.
To determine how many of the atoms are sp² hybridized, we can look at the electronic geometry around each atom in the molecule. The carbon atoms in tetracyanoethylene have a trigonal planar geometry, which corresponds to sp² hybridization, due to the three atoms bonded to each carbon atom lying in the same plane.
Therefore, all 12 carbon atoms in tetracyanoethylene are sp² hybridized. In summary, all 12 carbon atoms in tetracyanoethylene are sp² hybridized due to the trigonal planar geometry around each carbon atom. Hence Option 1 is correct.
The complete question is:
Tetracyanoethylene has the skeleton shown below: from its Lewis structure determine the following: Reference: Ref 5-2 (The image attached). How many of the atoms are sp² hybridized?
12141610To know more about the Lewis structure, here
https://brainly.com/question/30247091
#SPJ4
if a solution originally 0.532 m in acid ha is found to have a hydronium concentration of 0.112 m at equilibrium, what is the percent ionization of the acid? remember to use correct significant figures in your answer (round your answer to the nearest tenth).
If a solution originally 0.532 m in acid ha is found to have a hydronium concentration of 0.112 m at equilibrium, what is the percent ionization of the acid is 21.1%.
When an atom, molecule, or other material loses or acquires one or more electrons, the process is known as ionization, which produces charged particles known as ions. Chemical reactions, exposure to ionizing radiation, or other physical processes can all result in this process. Ionization is the process by which an acid molecule contributes a proton (H+) to a water molecule, resulting in the formation of a hydronium ion (H3O+).
The percent ionization of an acid can be calculated using the following formula:
% ionization = [H3O+]eq / [HA]initial × 100%
where [H3O+]eq is the hydronium ion concentration at equilibrium and [HA]initial is the initial concentration of the acid.
In this case, the initial concentration of the acid is 0.532 M, and the hydronium ion concentration at equilibrium is 0.112 M.
Therefore,
% ionization = 0.112 / 0.532 × 100%
= 21.1%
Therefore, the percent ionization of the acid is 21.1% (rounded to the nearest tenth).
To learn more about ionization, refer to:
https://brainly.com/question/1445179
#SPJ4
a lithium atom contains 3 electrons, whereas a fluorine atom contains 9 electrons. which correctly describes the formation of a bond between lithium and fluorine atoms?
When a bond is formed between a lithium atom and a fluorine atom, the electrons are transferred from the lithium atom to the fluorine atom to form an ionic bond.
Lithium has one valence electron in its outermost shell, while fluorine has seven valence electrons in its outermost shell. Lithium can lose its valence electron to achieve a stable configuration similar to that of the noble gas helium, which has a full outermost shell with two electrons.
On the other hand, fluorine can gain one electron to achieve a stable configuration similar to that of the noble gas neon, which has a full outermost shell with eight electrons.
Thus, when a bond is formed between a lithium atom and a fluorine atom, the lithium atom loses its one valence electron to become a positively charged ion ([tex]Li^+[/tex]), while the fluorine atom gains one electron to become a negatively charged ion ([tex]F^-[/tex]).
The opposite charges of these ions attract each other, resulting in the formation of an ionic bond between them. The resulting compound is lithium fluoride (LiF), a solid with high melting and boiling points due to the strong electrostatic forces between the positively charged lithium ions and negatively charged fluoride ions.
For more question on ionic bond click on
https://brainly.com/question/13526463
#SPJ11
a particular atom has a charge of -3.2 x 10^-19 c. how many electrons has it gained or lost as compared to its neutral state? remember that the charge on each electron is -1.6 x 10^-19 c.
the atom gained 2 electrons to become negatively charged.
The neutral state of an atom is the state in which the atom has an equal number of protons and electrons. Protons are positively charged particles found in the nucleus of an atom, while electrons are negatively charged particles that orbit the nucleus in shells or energy levels.
In a neutral atom, the number of positive charges (protons) is equal to the number of negative charges (electrons), resulting in a net charge of zero. This means that the atom is neither positively nor negatively charged.
Most elements in their natural state are neutral, and they only gain or lose electrons to become ions when they interact with other atoms or molecules.
If an atom has a charge of -3.2 x [tex]10^{-19} C[/tex], then it has gained 2 electrons compared to its neutral state.
This is because the charge on each electron is -1.6 x [tex]10^{-19} C[/tex], so dividing the overall charge by the charge on each electron gives:
-3.2 x [tex]10^{-19}[/tex] C / (-1.6 x [tex]10^{-19}[/tex] C/electron) = 2 electrons gained
Therefore, the atom gained 2 electrons to become negatively charged.
To know more about atom go through:-
https://brainly.com/question/17545314
#SPJ4
Select the best claim
Responses
The storm happened because cold low pressure air mass meets a warmer, higher pressure air mass.
The storm happened because cold low pressure air mass meets a warmer, higher pressure air mass.
The storm happened because a cold air mass was colliding with a warm air mass creating a front.
The storm happened because a cold air mass was colliding with a warm air mass creating a front.
The storm happened because a cold air mass was colliding with a cold air mass reaching equilibrium quickly.
The storm happened because a cold air mass was colliding with a cold air mass reaching equilibrium quickly.
The storm happened because a warm air mass was colliding with a warm air mass reaching equilibrium slowly.
The best claim is: The storm happened because a cold air mass was colliding with a warm air mass creating a front.
The best explanation is "The storm occurred as a result of a front being formed by the collision of a cold air mass and a warm air mass." This assertion is confirmed by the observation that cold and warm air don't mix right away when they come into contact. Instead, the two air masses form a boundary known as a front when the colder, denser air mass passes beneath the warmer one. Storms may arise as a result of the movement and interaction of these air masses at the front. In contrast to the other possibilities, this assertion provides a more thorough description of the atmospheric circumstances that can result in the genesis of a storm.
Learn more about storm here:
https://brainly.com/question/11163773
#SPJ1
predict how changing the partial pressure of carbon dioxide will affect the ph and concentration of bicarbonate ions in the plasma
The concentration of bicarbonate ions in the plasma is dependent on the partial pressure of carbon dioxide (pCO2) according to the below equilibrium reaction and a mechanism that helps regulate the acid-base balance of the body.
The equation is CO2 + H2O ⇌ H2CO3 ⇌ HCO3- + H+
This reaction is catalyzed by the enzyme carbonic anhydrase, which is present in red blood cells. An increase in pCO2 will shift the equilibrium to the right, increasing the concentration of carbonic acid (H2CO3), which will increase the concentration of bicarbonate ions (HCO3-) and hydrogen ions (H+) in order to maintain the equilibrium.
As hydrogen ions increase, the pH of the plasma will decrease. Therefore, an increase in pCO2 will lead to a decrease in pH and an increase in the concentration of bicarbonate ions in the plasma. Conversely, a decrease in pCO2 will shift the equilibrium to the left, decreasing the concentration of bicarbonate ions and increasing the pH of the plasma.
Learn more about Carbon dioxide here:
https://brainly.com/question/3049557
#SPJ4
are the bonds in each of the following substances ionic, nonpolar covalent, or polar covalent? select the single best answer for each substance.
The bonds in each of the following substances are Ionic bond ,Polar covalent bond , Nonpolar covalent bond.
NaCl: Ionic bond. In this substance, sodium (Na) loses one electron to form a positively charged ion (Na+), while chlorine (Cl) gains one electron to form a negatively charged ion (Cl-). The oppositely charged ions attract each other, forming an ionic bond.
[tex]H_{2} O[/tex]: Polar covalent bond. Oxygen (O) is more electronegative than hydrogen (H), meaning it has a greater ability to attract electrons. As a result, the electrons are shared unevenly between O and H, creating a partial negative charge on O and a partial positive charge on H.
[tex]CH_{4}[/tex]: Nonpolar covalent bond. Carbon (C) and hydrogen (H) have similar electronegativities, so the electrons are shared evenly between the atoms. This results in a nonpolar covalent bond, where there is no significant charge separation.
Know more about bonds here :
brainly.com/question/26712131
#SPJ11
How many grams of magnesium chloride (MgCl2) solution would contain 13.5 grams of solute?
Please show work
Answer:
To solve this problem, we need to know the concentration of the magnesium chloride solution. Without this information, we cannot determine how many grams of the solution would contain 13.5 grams of solute.
The concentration of a solution is typically expressed in terms of the number of moles of solute dissolved in a liter (or other volume) of solution. We would need this information to calculate the mass of the solution that would contain 13.5 grams of solute.
If you have any additional information or context, please let me know and I will be happy to try to help further.
100 points
What is a limitation of the Arrhenius model of acids and bases?
All bases produce hydroxide ions when dissolved in water.
All bases and acids form water and hydroxide ions when dissolved.
All acids donate hydrogen ions to bases that accept hydrogen ions.
All acids and bases form conjugates when dissolved in water.
The Arrhenius model of acids and bases is limited in that it only considers substances that produce hydrogen ions (acids) or hydroxide ions (bases) when dissolved in water. This model does not account for the behavior of substances that do not produce these ions when dissolved in water, such as ammonia (NH3) or hydrogen fluoride (HF).
Therefore, the limitation of the Arrhenius model is that it cannot explain the basicity of ammonia or the acidity of hydrogen fluoride, which do not produce hydroxide or hydrogen ions, respectively, when dissolved in water.
So, the correct option is:
B).All bases and acids form water and hydroxide ions when dissolved.correct option is not listed
A limitation of the Arrhenius model of acids and bases is that it only considers substances that produce hydrogen or hydroxide ions in aqueous solutions as acids or bases, respectively¹. The Arrhenius theory is limited in that it can only describe acid-base chemistry in aqueous solutions. Similar reactions can also occur in non-aqueous solvents, however, as well as between molecules in the gas phase³. Arrhenius could not explain why certain compounds do not contain hydroxide ions, despite displaying basic properties. For example, metal oxides and metal carbonates².
calculate the maximum mass of the sodium soap that can be prepared from 195 g of glyceryl trimyristate.
We must ascertain the molar mass of glyceryl trimyristate and the stoichiometric ratio of the reactants and products in the saponification reaction in order to calculate the maximum mass of sodium soap that may be produced from 195 g of glyceryl trimyristate.
The saponification of glyceryl trimyristate with sodium hydroxide (NaOH) produces three molecules of sodium soap and one molecule of glycerol:
Glyceryl trimyristate + 3 NaOH → 3 sodium soap + glycerol
The molar mass of glyceryl trimyristate is calculated as:
3 (myristic acid molar mass) + (glycerol molar mass) = 3 (228.39 g/mol) + 92.09 g/mol = 913.26 g/mol
The stoichiometric ratio of the reactants and products is 1:3, which means that for every one mole of glyceryl trimyristate, three moles of sodium soap are produced.
To calculate the maximum mass of sodium soap that can be prepared, we need to convert the given mass of glyceryl trimyristate to moles using its molar mass and then use the stoichiometric ratio to determine the maximum mass of sodium soap that can be produced:
Number of moles of glyceryl trimyristate = 195 g / 913.26 g/mol = 0.214 moles
Number of moles of sodium soap produced = 3 × 0.214 moles = 0.642 moles
Mass of sodium soap produced = number of moles × molar mass of sodium soap = 0.642 moles × 278.38 g/mol = 178.46 g
Therefore the correct answer is the maximum mass of the sodium soap that can be prepared from 195 g of glyceryl trimyristate is 178.46 g.
For more questions on: trimyristate
https://brainly.com/question/14673025
#SPJ11
use dimensional analysis and solve for: how many grams of Argon (Ar) are present in 2.35 x 1024 atoms of argon?
We can use dimensional analysis to solve this problem. First, we need to find the molar mass of argon from the periodic table, which is approximately 39.95 g/mol.
Next, we can set up a conversion factor using Avogadro's number, which is 6.022 x 10^23 atoms/mol.
1 mol Ar = 6.022 x 10^23 atoms Ar
From this conversion factor, we can derive another conversion factor:
1 atom Ar = 1 mol Ar/6.022 x 10^23 atoms Ar
Now we can use these conversion factors to convert atoms of argon to grams of argon:
2.35 x 10^24 atoms Ar * (1 mol Ar/6.022 x 10^23 atoms Ar) * (39.95 g Ar/1 mol Ar)
= 9.39 x 10^2 g Ar
Therefore, there are approximately 939 grams of argon present in 2.35 x 10^24 atoms of argon.
what is the ph of a buffer solution that is 0.211 m in hypochlorous acid (hclo) and 0.111 m in sodium hypochlorite? the ka of hypochlorous acid is 3.8
The pH of the solution calculated is 7.14. This is calculated using the Henderson-Hassel Bach equation.
A buffer solution is defined as a solution which can resist the pH change when the addition of an acidic or basic components to the solution. Buffer solution is able to neutralizing the small amounts of added acid or base to the solution by maintaining the pH of the solution relatively stable. This solution is formed by a weak acid that is hypochlorous acid and its conjugate base that is hypochlorite which is coming from sodium hypochlorite.
To calculate the pH of the solution we can use the Henderson-Hassel Bach equation.
pH = pKa + Log [base]/[acid]
pH = - Log 3.8 × 10⁻⁸ + log 0.111 / 0.211
pH = 7.14
To learn more about Henderson-Hassel Bach equation.
https://brainly.com/question/29735541
#SPJ4
Which phrase describes a situation in which all the forces are balanced
Answer:
The phrase that describes a situation in which all the forces are balanced is "equilibrium"
kingsley then adds 47.17 ml of naoh to 250.00 ml of the hcooh solution. the neutralization reaction resulted in 0.09 moles of hcooh and 0.026 moles of hcoo- left in solution. determine the ph of the resulting solution.
The pH of the resulting solution is approximately 2.46.
To determine the pH of the resulting solution after Kingsley adds 47.17 mL of NaOH to 250.00 mL of the HCOOH solution, and the neutralization reaction results in 0.09 moles of HCOOH and 0.026 moles of HCOO- left in solution, follow these steps:
1. Calculate the concentrations of HCOOH and HCOO- in the solution by dividing their moles by the total volume of the solution (in liters). The total volume is the sum of the initial HCOOH solution (250 mL) and the added NaOH (47.17 mL), which equals 297.17 mL or 0.29717 L.
- [HCOOH] = 0.09 moles / 0.29717 L = 0.303 M
- [HCOO-] = 0.026 moles / 0.29717 L = 0.087 M
2. Use the Henderson-Hasselbalch equation to calculate the pH:
- pH = pKa + log ([HCOO-] / [HCOOH])
- The pKa value for HCOOH (formic acid) is approximately 3.75.
- pH = 3.75 + log (0.087 / 0.303) = 3.75 - 1.29 = 2.46
You can learn more about neutralization reactions at: brainly.com/question/28970253
#SPJ11
we get x = 0.000882 MTherefore, the pH of the solution will be:`pH = -log[H+]``pH = -log(0.000882) = 3.055`Therefore, the pH of the resulting solution is 3.055.
Determine the pH of the resulting solution?
To determine the pH of the resulting solution, first, we need to calculate the concentration of HCOO- and HCOOH using the number of moles and volume of the solution given. Then, we can use the dissociation constant of HCOOH to calculate the concentration of H+ ions and thus the pH of the solution. Let's solve it step by step.Volume of HCOOH solution = 250.00 mlVolume of NaOH solution = 47.17 mlNumber of moles of HCOOH = 0.09 molesNumber of moles of HCOO- = 0.026 molesLet's calculate the molar concentration of HCOOH and HCOO-.
Molar concentration of HCOOH= 0.09 mol/0.250 L = 0.36 MMolar concentration of HCOO-= 0.026 mol/0.250 L = 0.104 M Now, let's calculate the concentration of H+ ions using the dissociation constant of HCOOH.`HCOOH ⇌ H+ + HCOO-``Ka = [H+][HCOO-]/[HCOOH]`Let x be the concentration of H+ ions. Then, the concentration of HCOO- ions will be x and the concentration of HCOOH ions will be 0.36 - x. Now, substituting the values in the above equation, we get:`1.8 × 10 ⁻⁴ = x(0.104)/(0.36 - x)`Solving the above equation.
Learn more about Determine the pH of the resulting solution?
brainly.com/question/30737303
#SPJ11
PLEASE HELP!!
Consider the equations below
H2>2H
The rest of the questions on the image
The total equation is C2H4 + C2H5 + H2 → C2H5 + C2H6 when these equations are combined together.
How are two chemical equations added?By placing all of the reactants on the left side of the equation and all of the products on the right side, you can integrate numerous reactions into a single equation. Chemical species that are present on both sides of the equation will be eliminated without change if the overall equation is simplified.
What are some instances of chemical reactions involving addition?Only chemical compounds with numerous bonds—such as molecules with carbon-carbon double bonds (alkenes), carbon-carbon triple bonds (alkynes), or molecules with carbonyl (C=O) groups—can conduct addition reactions. Consider the formula CH2=CH2 + Cl2 CH2Cl → CH2Cl.
To learn more about chemical equation visit:
brainly.com/question/30087623
#SPJ1
when an acid reacts with a metal like al, the products are . group of answer choices water and a salt water and a base a salt and carbon dioxide a salt and hydrogen water and carbon dioxide
When an acid reacts with a metal like Al (aluminum), the products formed are a salt and hydrogen gas.
The reaction can be represented by the following chemical equation:
2Al(s) + 6HCl(aq) → 2AlCl3(aq) + 3H2(g)
In this equation, HCl represents hydrochloric acid, Al represents aluminum, AlCl3 represents aluminum chloride, and H2 represents hydrogen gas.
The reaction between an acid and a metal produces salt and hydrogen gas, but not water and salt, water and a base, a salt and carbon dioxide, or water and carbon dioxide.
For more such questions on Acid reactions
https://brainly.com/question/15334816
#SPJ11