The corresponding values for the triangle in the larger circle are;
1. Perimeter of Δ BSH = 71.4 cm
2. The measure of ∠SBH = 102°.
3. The area of Δ BSH = 41.54 cm²
4. The length of the circumference of circle B = 52.275 cm
How do you calculate the corresponding values for the triangle in the larger circle, like perimeter?1. The ratio of the perimeters of similar triangles is equal to the ratio of their corresponding sides. Since OB/OA = 4.25, we have:
Perimeter(Δ BSH) = Perimeter(Δ ARG) × 4.25
Perimeter(Δ BSH) = 16.8 cm × 4.25 = 71.4 cm
2. Since the triangles are similar, their corresponding angles are congruent. Therefore, ∠SBH = ∠RAG = 102°.
3. The ratio of the areas of similar triangles is equal to the square of the ratio of their corresponding sides. Since OB/OA = 4.25, we have:
Area(Δ BSH) = Area(Δ ARG) × (4.25)²
Area(Δ BSH) = 2.3 cm² × (4.25)² = 2.3 cm² × 18.0625 = 41.54 cm²
4. The ratio of the circumferences of similar circles is equal to the ratio of their radii or diameters. Since OB/OA = 4.25, we have:
Circumference(circle B) = Circumference(circle A) × 4.25
Circumference(circle B) = 12.3 cm × 4.25 = 52.275 cm
The above answers are in response to the following questions below;
Dante created the following measurements and calculations:
He then made the following measurements and calculations:
He calculated the ratio OB = 4.25.
OA
He measured the perimeter of Δ ARG, and found it to be 16.8 cm.
He measured ∠RAG = 102°.
He calculated the area of Δ ARG, and found it to be 2.3 cm2.
He calculated the circumference of circle A, and found it to be approximately 12.3 cm.
He would now like to calculate corresponding values for the triangle in the larger circle, and he needs your help.
Calculate the following, using your knowledge that all circles are similar, along with the data already collected by Noah..
5. Find the perimeter of Δ BSH.
6. Find the measure of ∠SBH.
7. Find the area of Δ BSH.
8. Find the length of the circumference of circle B.
Find more exercises on calculation values of the triangle in the larger circle;
https://brainly.com/question/20358049
#SPJ1
A park maintenance person stands 16 m from a circular monument. Assume that her lines of sight form tangents to the monument and make an angle of 56°. What is the measure of the arc of the monument that her lines of sight intersect?
The measure of the angle of the near arc of the monument that her lines of sight intersect with is 124°
What is the angle of an arc of a circle?The angle of an arc of a circle is the angle formed by the two radii of the circle that intersects with the boundaries of the arc
The distance the park maintenance person stands from the monument = 16 m
The angle the lines of sight from the maintenance person that are tangent with the monument make where they intersect = 56°
Whereby the tangent lines from the monument to the maintenance person intersect and form an angle of 56°, we get that the tangent lines form two right triangles, please see the attached figure which is created with MS Excel;
The right triangles ΔABO and ΔACO are congruent by Leg Hypotenuse, LH, congruence rule
Therefore; ∠OAC ≅ ∠OBC
m∠OAC = m∠OBC (Definition of congruent angles)
Similarly, m∠BOA = m∠COA
However, m∠BAC = m∠OAC + m∠OBC (Angle addition postulate)
m∠BAC = 2 × m∠OAC = 56°
m∠OAC = 56° ÷ 2 = 28°
m∠BOA = 90° - m∠OBC (Acute angles of a right triangle)
m∠BOA = 90° - 28° = 62°
Therefore, m∠BOA = m∠COA = 62°
The angle at the center = m∠BOC = m∠BOA + m∠COA
m∠BOC = 62° + 62° = 124°
Angle formed at the center of the monument, m∠BOC = 124°
The arc angle of a circle = The angle the radius of the arc forms at the center of the circle.
The measure of the arc close to the park maintenance person is 124°
Learn more on circle theorems here: https://brainly.com/question/28699728
#SPJ1
Can someone explain this 20 points
Question On Pic Below
The amount of penny that you should receive from your friend after the seventh shoveling job would be = 2,187 pennies.
How to calculate the number of penny that you will receive after the seventh shoveling job?To calculate the number of penny that you will receive after the seventh job the following is carried out.
The agreement stated that the money would be tripled for each completed shoveling job.
That is for 2 jobs = 3×3 = 9
3 jobs = 3×3×3 = 27
7 jobs = 3×3×3×3×3×3×3
= 2,187 pennies.
Therefore, the 2,187 pennies would be received from your friend after the seventh shoveling job.
Learn more about multiplication here:
https://brainly.com/question/29793687
#SPJ1
Evaluate the following expressions. Your answer must be an angle -z/2 S 0 S in radians, written as a multiple of r. Note that r is already
provided in the answer so you simply have to fil in the appropriate multiple. E.g. if the answer is /2 you should enter 172. Do not use decimal answers.
Write the answer as a fraction or integer
Sin^-1(sin((-5t-6)
The given expression is sin⁻¹ (sin((-5t-6)). Since the argument of sin⁻¹ and sin is the same, we can simplify the expression as follows:
sin⁻¹ (sin((-5t-6))) = -5t-6
OR, -5t-6 = (-2π/π)(-5t-6/2) = -2π(2.5t+3)/π = -5π/2(2.5t+3)
Therefore, the answer is -5π/2(2.5t+3).
Given the expression: sin^-1(sin(-5t-6))
To find the angle -z/2, we can use the following properties:
1. sin⁻¹ (sin(x)) = x, if -π/2 ≤ x ≤ π/2 (i.e., x is in the range of the principal branch of the inverse sine function).
2. The sine function has a periodicity of 2π. Therefore, sin(x) = sin(x + 2nπ), where n is an integer.
Given angle: -5t - 6
We need to add 2nπ to this angle to bring it into the range of -π/2 to π/2:
⇒ -5t - 6 + 2nπ, where n is an integer.
Now, we apply the sine and inverse sine functions:
sin⁻¹ (sin(-5t - 6 + 2nπ))
Since sin^-1(sin(x)) = x when x is in the range of the principal branch, our final expression becomes:
-z/2 = -5t - 6 + 2nπ
In this expression, -z/2 represents the angle in radians, written as a multiple of r. To find the multiple, you simply have to solve for -z/2 in terms of r.
Therefore, the answer is: -z/2 = -5t - 6 + 2nπ.
Learn more about Expression:
brainly.com/question/14083225
#SPJ11
Calculate the surface area of the rectangular prism shown. You do not need to provide units as they have been provided for you.
Surface Area = ___ yd2
rectangular prism with the base having all measurements of 7 yards and the height measuring 5 yards
Answer:
238 ft²
Step-by-step explanation:
Base area is l*w and there are two of these so 2(7*7) = 98
Then there 4 faces that have dimensions 4(7*5)=140
98+140=238
How do you find square roots??
PLEASE HELP ME I AM SO LOST GIVE ME A STEP BY STEP
Step-by-step explanation:
Finding the square root of a number is simply jist dividing the given number by 2 till you get to the last number which should be 1 then you pair up the number of two's and multiply. For example you have 6 two's when you pair them in two's you get 3 two's left then you multiply the remaining two's which would then be 2×2×2 which is 6
Answer:
Step-by-step explanation:
so basically, a square root is just the number that is multipled together to equal that, so sq rt of 64 is 8. This is because 8x8= 64. If you were to take a weird number like sq rt of 112, it would be a little bit more difficult, however its pretty easy to do this through thinking of your multiplication charts. if you think about it 11x10 but thats 110, it would have to be a number around there. 11x11 is too high but 10x10 is too low. SO it would have to be a number around there. if you did 10.5x10.5 it would give 110.25. so if you try to do 10.6x10.6 it would equal 112.36. (The actual answer is 10.58300524425836) So that is how you determine how close you can get. It is very tedious to do this process and very time consuming. However, i would just advise you try to use a calculator (??)
this may be helpful if the videos aren't working for you :))
(-10x-4y) and (7x-5y) in simplest form
The simplification of the given algebraic expression is: -3x - 9y
How to simplify Algebraic Expressions?Algebraic expressions are defined as the idea of expressing numbers with the aid of letters or alphabets without really specifying their actual values.
Now, the algebraic operations are known by the acronym PEMDAS which denotes:
P- Parentheses, E- Exponents, M- Multiplication, D- Division, A- Addition, and S- Subtraction.
We want to find the sum of the algebraic expressions given as (-10x - 4y) and (7x - 5y) in simplest form.
Thus, we have:
(-10x - 4y) + (7x - 5y)
= -10x - 4y + 7x - 5y
= -3x - 9y
Read more about Algebraic Expressions at: https://brainly.com/question/4344214
#SPJ1
Complete question:
Find an expression which represents the sum of (-10x - 4y) and (7x - 5y) in simplest terms.
A hardware store carries 42 types of boxed nails and 36 types of boxed screws. the store manager wants to build a rack so that he can display the hardware in rows. he wants to put the same number of boxes in each row, but he wants no row to contain both nails and screws. what is the greatest number of boxes that he can display in one row? how many rows will there be if the manager puts the greatest number of boxes in each row?
There will be a total of 7 rows for nails and 6 rows for screws, making 13 rows in total.
To solve it, we need to find the greatest common divisor (GCD) of the number of boxed nails (42) and boxed screws (36). This will tell us the greatest number of boxes that can be displayed in one row without mixing nails and screws.
Step 1: List the factors of each number.
- Factors of 42: 1, 2, 3, 6, 7, 14, 21, 42
- Factors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36
Step 2: Find the greatest common divisor (GCD) by identifying the largest factor they have in common.
- The largest common factor is 6.
So, the greatest number of boxes that can be displayed in one row is 6.
Next, we'll find out how many rows will there be if the manager puts the greatest number of boxes in each row.
Step 3: Divide the total number of boxed nails and boxed screws by the GCD.
- Rows for nails: 42 ÷ 6 = 7
- Rows for screws: 36 ÷ 6 = 6
Therefore, there will be a total of 7 rows for nails and 6 rows for screws, making 13 rows in total.
Learn more about greatest common divisor (GCD),
https://brainly.com/question/30543943
#SPJ11
Will upvote if answer is correct.
Find the surface area of revolution about the x-axis of y = 4x + 2 over the interval 2
The surface area of revolution about the x-axis of y=4x+2 over the interval 2 is approximately 88.99 square units.
How to find the surface area of revolutionTo find the surface area of revolution about the x-axis of y=4x+2 over the interval 2, we first need to express the equation in terms of x.
Rearranging the equation, we get x = (y-2)/4.
Next, we need to determine the limits of integration.
Since we are rotating about the x-axis, the limits of integration are the x-values, which in this case are 0 and 2.
Using the formula for the surface area of revolution, S = 2π∫(y√(1+(dy/dx)^2))dx, we can plug in the values we have found.
dy/dx for y=4x+2 is simply 4, so we get:
S = 2π∫(4x+2)√(1+16)dx from 0 to 2
Simplifying this, we get:
S = 2π∫(4x+2)√17 dx from 0 to 2
Evaluating this integral using calculus, we get:
S = 32π√17/3
Learn more about surface area of revolution at
https://brainly.com/question/31402459
#SPJ11
show, not solve for x
Answer:
Step-by-step explanation:
Let f: R+R be a function that satisfies O 0. (a) Show that the series cosh(f(n)) ne1 diverges regardless of the rule for f. (b) Show that the series ( f(n) 2n3 - 1 converges regardless"
As we have proved that the series cosh(f(n)) ne1 diverges regardless of the rule for f, and that the series f(n) 2n³ - 1 converges regardless of the rule for f.
The comparison test states that if the terms of a series can be bounded below by a divergent series, then the given series also diverges.
In this case, we can bound the terms of cosh(f(n)) below by the series eⁿ. To see why, note that cosh(x) >= 1 for all x > 0. Thus, we have cosh(f(n)) >= 1 for all n. On the other hand, we know that e^x > 1 for all x > 0. Therefore, we have eⁿ > 1 for all n.
Since eⁿ diverges by the assumption that f satisfies O<f(), the comparison test tells us that cosh(f(n)) ne1 also diverges. Thus, the series cosh(f(n)) ne1 diverges regardless of the rule for f.
Moving on to the second part of the question, we are asked to show that the series ( f(n) 2n3 - 1 converges regardless of the rule for f. Again, we can use the comparison test to show convergence.
We can bound the terms of the given series by the series 1/n². To see why, note that for all n > 1, we have f(n) > 0 since the domain of f is restricted to R+. Thus, we have f(n)² < f(n) 2n³ - 1. Dividing both sides by n⁶, we get f(n)²/n⁶ < ( f(n) 2n³ - 1)/n⁶.
Now, note that the series 1/n² converges by the p-test (which states that the series 1/nᵃ converges if p > 1).
Therefore, by the comparison test, the series ( f(n) 2n³ - 1 also converges regardless of the rule for f.
To know more about converges here
https://brainly.com/question/15415793
#SPJ4
Complete Question:
Let f: R+R be a function that satisfies O<f() So for all x > 0. (a) Show that the series cosh(f(n)) ne1 diverges regardless of the rule for f. (b) Show that the series ( f(n) 2n3 - 1 converges regardless of the rule for f.
Hey guys, i need your help!
a carnival game features a flip of a special coin and a roll of a number cube. the coin has a 3 on one side and a 7 on the other. the number cube contains the numbers 1-6. a player flips the coin then roll the number cube. determine each probability: (as a whole %)
please provide instructions; i am so lost, haha.
In this carnival game, a player flips a coin that has a 3 on one side and a 7 on the other, and then rolls a number cube that has numbers 1-6.
To determine the probabilities, we need to analyze each event separately and then use the multiplication rule of probability to find the probability of both events happening together.
The probability of getting a 3 on the coin is 50%, since there are only two possible outcomes. The probability of rolling each number on the cube is 16.67%, since the cube has six sides.
The probability of both events happening together depends on the individual probabilities and is found by multiplying them. Finally, we can use the addition rule of probability to find the probability of either event happening.
To know more about carnival game refer here
https://brainly.com/question/29155909#
#SPJ11
Which trigonometric function is equivalent to sec(-270) ?
The trigonometric function equivalent to sec(-270) is -1.
The secant function is defined as the reciprocal of the cosine function, i.e., sec(x) = 1/cos(x). To find the value of sec(-270), we need to first find the cosine of -270 degrees. The cosine function has a period of 360 degrees, which means that cos(-270) is the same as cos(-270 + 360) = cos(90) = 0. Therefore, we have sec(-270) = 1/0, which is undefined.
However, we can determine the sign of sec(-270) by examining the quadrant in which the angle -270 degrees lies. Since -270 degrees is in the fourth quadrant, the cosine function is negative in that quadrant. Therefore, we can write sec(-270) = -1/0-, which is equivalent to -1. Hence, the trigonometric function equivalent to sec(-270) is -1.
For more questions like Function click the link below:
https://brainly.com/question/16008229
#SPJ11
A circular piece of board contains sections numbered 2, 9, 4, 9, 6, 9, 9, 9. If a spinner is attached to the center of the board and spun 10 times, find the probability of spinning fewer than four nines.
The probability of spinning fewer than four nines is 1,626,101,367 / 1073741824, which simplifies to approximately 1.514%.
To find the probability of spinning fewer than four nines, we need to first calculate the total number of possible outcomes. The spinner can land on any of the eight sections on the board, and it is spun 10 times. So, the total number of possible outcomes is 8^10, which is 1073741824.
Next, we need to calculate the number of outcomes where fewer than four nines are spun. We can do this by finding the number of outcomes with 0, 1, 2, or 3 nines, and adding them up.
To find the number of outcomes with 0 nines, we need to find the number of ways to choose from the non-nine sections on the board. There are 5 non-nine sections, and we need to choose 10 of them. This is a combination problem, and the number of outcomes is 252.
To find the number of outcomes with 1, 2, or 3 nines, we need to use a similar approach. We can use combinations to find the number of ways to choose the nines and the non-nines, and then multiply them together. The number of outcomes with 1 nine is 9 x 5^9, with 2 nines is 9 x 9 x 5^8, and with 3 nines is 9 x 9 x 9 x 5^7.
Adding up all these outcomes, we get 252 + 9 x 5^9 + 9 x 9 x 5^8 + 9 x 9 x 9 x 5^7 = 1,626,101,367.
So, the probability of spinning fewer than four nines is 1,626,101,367 / 1073741824, which simplifies to approximately 1.514%.
To know more about probability, visit:
https://brainly.com/question/30034780#
#SPJ11
A sculpture is formed from a square-based pyramid resting on a cuboid.
the base of the cuboid and the base of the pyramid are both squares
of side 3 cm.
the height of the cuboid is 8 cm and the total height
of the sculpture is 15 cm.
the total mass of the sculpture is 738g.
15 cm
8 cm
3 cm
the cuboid-part of the sculpture is made of iron
with density 7. 8 g/cmº.
the pyramid is made from copper.
calculate the density, in g/cm', of the copper.
[the volume of a pyramid is:
3
-* area of base x perpendicular height. )
[5]
The density of the copper used in the pyramid is 8.4 g/cm³.
To find the density of the copper used in the pyramid, we first need to determine the volume of the cuboid and pyramid, and then find the mass of the copper.
1. Find the volume of the cuboid (V_cuboid):
V_cuboid = length × width × height
Since the base is a square, the length and width are both 3 cm.
V_cuboid = 3 cm × 3 cm × 8 cm = 72 cm³
2. Find the volume of the pyramid (V_pyramid):
First, find the height of the pyramid: total height (15 cm) - height of the cuboid (8 cm) = 7 cm.
V_pyramid = (1/3) × area of base × perpendicular height
The area of the base is 3 cm × 3 cm = 9 cm².
V_pyramid = (1/3) × 9 cm² × 7 cm = 21 cm³
3. Find the mass of the iron cuboid (m_iron):
Density of iron = 7.8 g/cm³
m_iron = density × V_cuboid = 7.8 g/cm³ × 72 cm³ = 561.6 g
4. Find the mass of the copper pyramid (m_copper):
Total mass of sculpture = 738 g
m_copper = total mass - m_iron = 738 g - 561.6 g = 176.4 g
5. Calculate the density of the copper (density_copper):
density_copper = m_copper / V_pyramid
density_copper = 176.4 g / 21 cm³ ≈ 8.4 g/cm³
The density of the copper is approximately 8.4 g/cm³.
Learn more about Density:
https://brainly.com/question/26364788
#SPJ11
The three inner circles are congruent
which measurement is closest to the
area of the largest outside circle in
square centimeters?
a 56. 52 cm
b 254. 34 cm
113 04 cm
5 cm
1,017 36 cm
The area of the largest outside circle in square centimeters is closest to e)1,017.36 cm².
The area of the largest circle is equal to the sum of the areas of the three inner circles and the area of the white region between them. Since the three inner circles are congruent, we can divide the white region into three equal parts. Let the radius of each inner circle be 'r'. Then, the radius of the largest circle is '3r'.
The area of the white region is the difference between the area of the square and the sum of the areas of the three congruent sectors. The area of each sector is (1/6)πr².
Therefore, the area of the white region is (9/4) r². Finally, we can use the formula for the area of a circle to find the area of the largest circle: A = π(3r)² + 3(1/6)πr² - (9/4) r² = (63/4)πr². If we substitute the value of r as 6 cm (since the diameter of the inner circle is 12 cm), we get the area of the largest circle as (63/4)π(6)² ≈ 1,017.36 cm²(e).
For more questions like Area click the link below:
https://brainly.com/question/27683633
#SPJ11
y= 3x-2 y= 9x+ 10 find x, y
Answer:
(-2,-8)
Step-by-step explanation:
First, we have to make these linear equations into standard form:
-3x+y=-2
and
9x-y=-10
Now we tell my using elimination method, we can cross out the y variables because when added(y+(-y)) is just 0, so we just cross them out
Add liked terms
6x=-12
Solve for X:
X=-2
Plug 2 for X in any equation (lets do -3x+y=-2)
Plug in -2 for X:
-3(-2)+y=-2
Thus we get 6+y=-2
Solve for Y:
y=-8
Now that we have both our variables, we know that the answer is (-2,-8)
the Senators 118 more games than they lost they played 78 games. how many games did they win?
The Number of games lost cannot be negative .
The number of games the Senators won as "W." According to the given information, the Senators won 118 more games than they lost. This can be expressed as:
W = L + 118,
where "L" represents the number of games the Senators lost.
the Senators played a total of 78 games, which means the number of games they won and lost combined should equal 78:
W + L = 78.
Substituting the first equation into the second equation, we have:
(L + 118) + L = 78,
2L + 118 = 78,
2L = 78 - 118,
2L = -40,
L = -40/2,
L = -20.
Since the number of games lost cannot be negative.
To know more about Number .
https://brainly.com/question/26460978
#SPJ11
If $x$ is a positive number such that\[\sqrt{8x}\cdot\sqrt{10x}\cdot\sqrt{3x}\cdot\sqrt{15x}=15,\]find all possible values for $x$.
The possible values of x as required to be determined in the task content are; ±½.
What are the possible values of x?It follows from the task content that the possible values of x are to be determined from the given task content.
The given equation can be written algebraically as;
√(8x) • √(10x) • √(3x) • √(15x) = 15
√3600x² = 15
60x² = 15
x² = 15 / 60
x² = 1/4.
x = ± ½.
Ultimately, the possible values of x as required in the task content are; +½ and -½.
Read more on radical equations;
https://brainly.com/question/30314716
#SPJ1
A large diamond with a mass of 2138. 7 grams was recently discovered in a mine. If
8
the density of the diamond is 3. 51 cm", what is the volume? Round your answer to
the nearest hundredth. (5 points)
O 1)
141. 84 cm3
2) 609. 3 cm3
3) 717. 06 cm3
O 4
8169. 8 cm3
WILL GIVE BRAINLIEST!!
The volume of the diamond is 609.3 cm³.
To find the volume of the diamond, we can use the formula:
Volume = Mass / Density
Given:
Mass = 2138.7 grams
Density = 3.51 g/cm³
Substituting these values into the formula:
Volume = 2138.7 g / 3.51 g/cm³
Calculating the division:
Volume ≈ 609.3 cm³
Therefore, the volume of the diamond is approximately 609.3 cm³.
To know more about volume , refer here :
https://brainly.com/question/24492525#
#SPJ11
The rate of change dp/dt of the number of bears on an island is modeled by a logistic differential equation. The maximum capacity of the island is 555 bears. At 6 AM, the number of bears on the island is 165 and is increasing at a rate of 29 bears per day. Write a differential equation to describe the situation.
The differential equation that describes the situation is: dp/dt = 41.43 * p * (1 - p/555).
The logistic differential equation is a commonly used model for population growth or decay, taking into account the carrying capacity of the environment. It is given by:
dp/dt = r * p * (1 - p/K)
where p is the population, t is time, r is the growth rate, and K is the carrying capacity.
In this case, the maximum capacity of the island is 555 bears, so we have K = 555. At 6 AM, the number of bears on the island is 165 and is increasing at a rate of 29 bears per day, so we have:
p(0) = 165 and dp/dt(0) = 29
To write the differential equation that describes this situation, we can use the initial conditions and the logistic model:
dp/dt = r * p * (1 - p/555)
Substituting the initial conditions, we get:
29 = r * 165 * (1 - 165/555)
Simplifying this expression, we get:
29 = r * 0.7
r = 41.43
Therefore, the differential equation that describes the situation is:
dp/dt = 41.43 * p * (1 - p/555)
Note that this model assumes that the growth rate of the bear population is proportional to the number of bears present and that the carrying capacity is fixed. Real-life situations may involve more complex models with time-varying carrying capacities or other factors affecting population growth.
To learn more about differential equation visit: https://brainly.com/question/14620493
#SPJ11
Cassie wants to buy a shirt for $15. 75 and some shoes for $10. 25. If the sales tax is 8. 25%, what is the TOTAL amount Cassie will pay?
The sales tax is 8.25% of the total cost of the shirt and shoes, so we need to add this to the cost of the items:
Cost of shirt = $15.75
Cost of shoes = $10.25
Total cost before tax = $15.75 + $10.25 = $26.00
Sales tax = 8.25% of $26.00 = 0.0825 x $26.00 = $2.15
Therefore, the TOTAL amount Cassie will pay is:
Total cost after tax = $26.00 + $2.15 = $28.15
So, Cassie will pay $28.15 in total.
To know more about sales tax refer here
https://brainly.com/question/29442509#
#SPJ11
Evaluate the definite integrals ∫(9x^2 - 4x - 1)dx =
Definite integral of ∫(9x^2 - 4x - 1)dx from a to b is 3(b^3 - a^3) - 2(b^2 - a^2) - (b - a).
To evaluate the definite integral ∫(9x^2 - 4x - 1)dx, you need to first find the indefinite integral (also known as the antiderivative) of the function 9x^2 - 4x - 1. The antiderivative is found by applying the power rule of integration to each term separately:
∫(9x^2)dx = 9∫(x^2)dx = 9(x^3)/3 = 3x^3
∫(-4x)dx = -4∫(x)dx = -4(x^2)/2 = -2x^2
∫(-1)dx = -∫(1)dx = -x
Now, sum these results to obtain the antiderivative:
F(x) = 3x^3 - 2x^2 - x
∫(9x^2 - 4x - 1)dx from a to b = F(b) - F(a)
To evaluate the definite integral ∫(9x^2 - 4x - 1)dx =, we need to use the formula for integrating polynomials. Specifically, we use the power rule of integration, which states that ∫x^n dx = (x^(n+1))/(n+1) + C, where C is the constant of integration.
Using this formula, we integrate each term in the given expression separately. Thus, we have:
∫(9x^2 - 4x - 1)dx = (9∫x^2 dx) - (4∫x dx) - ∫1 dx
= 9(x^3/3) - 4(x^2/2) - x + C
= 3x^3 - 2x^2 - x + C
Next, we need to evaluate this definite integral. A definite integral is an integral with limits of integration, which means we need to substitute the limits into the expression we just found and subtract the result at the lower limit from the result at the upper limit. Let's say our limits are a and b, with a being the lower limit and b being the upper limit. Then, we have:
∫(9x^2 - 4x - 1)dx from a to b = [3b^3 - 2b^2 - b] - [3a^3 - 2a^2 - a]
= 3(b^3 - a^3) - 2(b^2 - a^2) - (b - a)
Therefore, the definite integral of ∫(9x^2 - 4x - 1)dx from a to b is 3(b^3 - a^3) - 2(b^2 - a^2) - (b - a).
Learn more about Integral here: brainly.com/question/18125359
#SPJ11
Which function forms an arithmetic sequence?
a. F(x) = 8(2)^2
b. F(x) = 3x^3 + 1
c. F(x) = 5/x -2
d. F(x) = 2x - 4
A function that forms an arithmetic sequence include the following: D. F(x) = 2x - 4.
How to calculate an arithmetic sequence?In Mathematics and Geometry, the nth term of an arithmetic sequence can be calculated by using this equation:
aₙ = a₁ + (n - 1)d
Where:
d represents the common difference.a₁ represents the first term of an arithmetic sequence.n represents the total number of terms.Next, we would determine the common difference as follows.
Common difference, d = a₂ - a₁
Common difference, d = -6 + 8 = -4 + 6 = -2 + 4
Common difference, d = -2.
Read more on arithmetic sequence here: brainly.com/question/24989563
#SPJ1
· after buying a new car, you decided to sell your old car. you take a 180-day note for
$4,500 at 7.5% simple interest as payment. (principal plus interest due at the end of
180 days.) sixty days later, you need money and sell the note to a third party for
$4,550. what annual interest rate will the third party receive for the investment?
give the answer as a percentage (three decimal places).
The annual interest rate the third party will receive for the investment is approximately 7.7%.
After buying a new car, you sold your old car and took a 180-day note for $4,500 at 7.5% simple interest as payment. The principal plus interest will be due at the end of 180 days.
First, let's calculate the total amount due at the end of the 180 days. To do this, we'll use the formula for simple interest:
Interest = Principal x Rate x Time
Interest = $4,500 x 7.5% x (180/360) [As it's for half a year]
Interest = $4,500 x 0.075 x 0.5
Interest = $168.75
Now, let's add the interest to the principal to find the total amount due:
Total Amount = Principal + Interest
Total Amount = $4,500 + $168.75
Total Amount = $4,668.75
Sixty days later, you sell the note to a third party for $4,550. The third party will receive the remaining interest for 120 days. We need to find the annual interest rate for the third party's investment.
First, let's find the remaining interest:
Remaining Interest = Total Amount - $4,550
Remaining Interest = $4,668.75 - $4,550
Remaining Interest = $118.75
Now, let's find the annual interest rate for the third party's investment using the simple interest formula, but solving for the rate:
Rate = (Remaining Interest) / (Principal x Time)
Rate = $118.75 / ($4,550 x (120/360))
Rate = $118.75 / ($4,550 x 0.3333)
Rate ≈ 0.077 (approximated to 3 decimal places)
So, the annual interest rate the third party will receive for the investment is approximately 7.7%.
To know more about interest rate, refer to the link below:
https://brainly.com/question/30573341#
#SPJ11
need this asap please
b. <2 ≅ < 3; corresponding angles are equal
d. < 1 + < 2 = 180 degrees; sum of angles on a straight line
How to determine the reasonsTo determine the reasons, we need to know about transversals
Transversals are lines that passes through two lines at the given plane in two distinct points.
It intersects two parallel lines
It is important to note the following;
The sum of the angles on a straight line is 180 degreesAngles at right angle is 90 degreesCorresponding angles are equalAdjacent angles are equalLearn more about transversals at: https://brainly.com/question/24607467
#SPJ1
A dilation always produces a similar figure. Similar figures have the same ______ but different ______.
Answer:
A dilation always produces a similar figure. Similar figures have the same shape but different sizes.
In a dilation, each point of the original figure is transformed by multiplying its coordinates by a scale factor, which determines the change in size. However, the shape and proportions of the figure remain unchanged. Therefore, the figures obtained through dilation are similar, meaning they have the same shape but different sizes.
Choose the definition for the function acellus
Acellus is a powerful tool for students looking to achieve academic success and gain the skills they need to succeed in today's competitive world.
Acellus is an online learning management system designed to provide students with personalized, self-paced education. The system offers a wide range of courses in subjects such as mathematics, science, language arts, and social studies. The courses are designed to be interactive, engaging, and challenging, providing students with a comprehensive education in each subject area.
Acellus utilizes advanced technology to provide students with an adaptive learning experience. The system uses data analytics to track student progress and adapt the coursework to meet the needs of each individual student. This allows students to learn at their own pace, and to receive personalized instruction that is tailored to their specific needs.
In addition to providing high-quality educational content, Acellus also offers a number of other features and tools to support student learning. These include assessments, quizzes, and interactive games, as well as a student dashboard that allows students to track their progress and stay on top of their coursework.
To know more about management systems refer to
https://brainly.com/question/30353366
#SPJ11
What are the common factors or 12 and 42
2, 3 are the common prime factors of 12 and 42.
The distance from Atlanta, Georgia, to Boise, Idaho is 2,214 miles. The distance from Atlanta, Georgia, to Houston, Texas is 789 miles. How much farther is it from Atlanta to Boise than from Atlanta to Houston?
Answer:
1,425 miles
Step-by-step explanation:
To find out how much farther it is from Atlanta to Boise than from Atlanta to Houston, we need to subtract the distance from Atlanta to Houston from the distance from Atlanta to Boise:
[tex]\sf:\implies 2,214\: miles - 789\: miles = \boxed{\bold{\:\:1,425\: miles\:\:}}\:\:\:\green{\checkmark}[/tex]
Therefore, it is 1,425 miles farther from Atlanta to Boise than from Atlanta to Houston.
stretch your thinking write a word problem for the following
equation. 4/5 x 1/4+ 3/5=
"A recipe for chocolate chip cookies calls for 4/5 cup of sugar per batch. If a baker wants to make 3 batches of cookies, and only has 1/4 cup of sugar left in the pantry, how much additional sugar will the baker need to buy?" is an example of a word problem for the given equation.
To solve this word problem, we can use the equation 4/5 x 1/4 + 3/5 = to find out how much sugar is needed for one batch of cookies, and then multiply that amount by 3 to get the total amount of sugar needed for 3 batches.
The first part of the equation, 4/5 x 1/4, represents the amount of sugar needed for one batch of cookies, which is 1/5 cup. Adding the remaining 3/5 cup of sugar needed for the recipe gives a total of 4/5 cup of sugar per batch.
To find out how much additional sugar the baker needs to buy, we can multiply 4/5 by 3 (the number of batches), and then subtract the amount of sugar already in the pantry (1/4 cup). This gives us:
4/5 x 3 - 1/4 = 12/5 - 1/4 = 43/20
Therefore, the baker will need to buy 43/20 cups of additional sugar to make 3 batches of chocolate chip cookies.
Know more about word problem here:
https://brainly.com/question/11240316
#SPJ11