Solve for X in the equation, where 4B = −2X − 2A

Solve For X In The Equation, Where 4B = 2X 2A

Answers

Answer 1

Answer:

X = [tex]\left[\begin{array}{ccc}2&-7&3\\13&0&2\end{array}\right][/tex]

Step-by-step explanation:

4B = -2X - 2A

Dividing both sides by -2

=> -2B = X + A

Subtracting A to both sides

=> X = -2B-A

Now, Let's Solve:

=> X = [tex]-2\left[\begin{array}{ccc}0&2&-2\\5&0&3\end{array}\right] -\left[\begin{array}{ccc}-2&3&1\\-3&0&4\end{array}\right][/tex]

=> X = [tex]\left[\begin{array}{ccc}-2*0&-2*2&-2*-2\\-2*5&-2*0&-2*3\end{array}\right] - \left[\begin{array}{ccc}-2&3&1\\-3&0&4\end{array}\right][/tex]

=> X = [tex]\left[\begin{array}{ccc}0&-4&4\\10&0&6\end{array}\right] - \left[\begin{array}{ccc}-2&3&1\\-3&0&4\end{array}\right][/tex]

=> X = [tex]\left[\begin{array}{ccc}0-(-2)&-4-3&4-1\\10-(-3)&0-0&6-4\end{array}\right][/tex]

=> X = [tex]\left[\begin{array}{ccc}2&-7&3\\13&0&2\end{array}\right][/tex]


Related Questions

Use spherical coordinates. Find the volume of the solid that lies within the sphere x2 + y2 + z2 = 16, above the xy-plane, and below the cone z = x2 + y2 .

Answers

The volume is given by the integral,

[tex]\displaystyle\int_0^{2\pi}\int_0^{\cos^{-1}((\sqrt{65}-1)/8)}\int_0^4\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\varphi\,\mathrm d\theta[/tex]

That is, [tex]\rho[/tex] ranges from the origin to the sphere of radius 4. The range for [tex]\varphi[/tex] starts at the intersection of the cone [tex]z=x^2+y^2[/tex] with the sphere [tex]x^2+y^2+z^2=16[/tex], which gives

[tex]z+z^2=16\implies z^2+z-16=0\implies z=\dfrac{\sqrt{65}-1}2[/tex]

and

[tex]z=4\cos\varphi\implies\varphi=\cos^{-1}\left(\dfrac{\sqrt{65}-1}8\right)[/tex]

and extends to the x-y plane where [tex]\varphi=\frac\pi2[/tex]. The range for [tex]\theta[/tex] is self-evident.

The volume is then

[tex]V=\displaystyle\int_0^{2\pi}\int_0^{\cos^{-1}((\sqrt{65}-1)/8)}\int_0^4\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\varphi\,\mathrm d\theta[/tex]

[tex]V=\displaystyle\left(\int_0^{2\pi}\mathrm d\theta\right)\left(\int_0^{\cos^{-1}((\sqrt{65}-1)/8)}\sin\varphi\,\mathrm d\varphi\right)\left(\int_0^4\rho^2\,\mathrm d\rho\right)[/tex]

[tex]V=2\pi\left(\dfrac{\sqrt{65}-1}8\right)\left(\dfrac{64}3\right)=\boxed{\dfrac{16\pi(9-\sqrt{65})}3}[/tex]

A sphere is a three-dimensional object with a round form. The volume of the sphere is [16π(9-√65)]/3 unit³.

What is a sphere?

A sphere is a three-dimensional object with a round form. A sphere, unlike other three-dimensional shapes, has no vertices or edges. Its centre is equidistant from all places on its surface. In other words, the distance between the sphere's centre and any point on its surface is the same.

We know that the volume of the given sphere can be given by the integral,

[tex]{\rm Volume} = \int^{2\pi}_0\int^{cos^{-1}(\frac{\sqrt{65}-1}{8})} \int_0^4\rho^2sin\varphi\ d\rho\ d\varphi\ d\theta[/tex]

where ρ ranges from the origin of the plot to the sphere of radius 4 while the range of φ starts at the intersection of the cone z=x²+y² with the sphere x²+y²+z²=16.

Now, the value of z and φ can be written as,

[tex]x^2+y^2+z^2 = 16\\\\(x^2+y^2)+z^2 = 16\\\\z+z^2 = 16\\\\z^2+z-16=0 \implies z=\dfrac{\sqrt{65}-1}{2}[/tex]

And

[tex]z =4\ cos\ \varphi \implies \varphi =cos^{-1}(\dfrac{\sqrt{65}-1}{8})[/tex]

Further, the volume of the sphere can be written as,

[tex]{\rm Volume} = \int^{2\pi}_0\int^{cos^{-1}(\frac{\sqrt{65}-1}{8})} \int_0^4\rho^2sin\varphi\ d\rho\ d\varphi\ d\theta\\\\\\{\rm Volume} = (\int^{2\pi}_0\ d\theta)(\int^{cos^{-1}(\frac{\sqrt{65}-1}{8})} sin\varphi\ d\varphi)(\int_0^4\rho^2 d\rho)\\\\\\V = 2\pi(\dfrac{\sqrt{65}-1}{8})(\dfrac{64}{3}) = \dfrac{16\pi(9-\sqrt{65})}{3}[/tex]

Hence, the volume of the sphere is [tex]\dfrac{16\pi(9-\sqrt{65})}{3}[/tex].

Learn more about Sphere:

https://brainly.com/question/11374994

helpppppp pleaseeee me helpppp

Answers

Answer:

$10 + $10 + $1 + 25¢ + 5¢

or

$20 + $1 + 25¢ + 5¢

Step-by-step explanation:

Each one must pay $21.30

The following data values represent a sample. What is the variance of the
sample? X = 8. Use the information in the table to help you.
х
12
9
11
5
3
(x; - x)²
16
1
9
9
25

Answers

Answer:

The variance of the data is 15.

σ² = 15

Step-by-step explanation:

The mean is given as

X = 8

х        |    (x - X)    |    (x - X) ²

12       |        4         |    16

9        |        1         |     1    

11        |        3         |    9

5       |        -3        |    9

3       |        -5        |    25

The variance is given by

[tex]\sigma^2 = \frac{1}{n-1} \sum (x - X)^2[/tex]

[tex]\sigma^2 = \frac{1}{5 - 1} (16 + 1 + 9 + 9 +25) \\\\\sigma^2 = \frac{1}{4} ( 16 + 1 + 9 + 9 +25) \\\\\sigma^2 = \frac{1}{4} (60) \\\\\sigma^2 = 15[/tex]

Therefore, the variance of the data is 15.

helppppppppp pleasee me give bralienst,stars and thanks

Answers

Answer:

(Going from left to right)

Box #1=3

Box #2=5

Box #3=7

Box #4=2

Step-by-step explanation:

For Box #4, there is nothing for the 2 to subtract from so it just goes down

For Box #3, it has to be 7, because nothing can be subtracted from 1 to get 3, so you would have to bring a 1 from the 4 to the left to make the 1 to a 10. 10-7=3

For Box #2 and 1, 3(we changed it in the last step) -9 = a negative number so we have to bring a 1 from the number to the left. This is a hard step but what you have to do it look at the bottom number, which is a 2, so that number had to be a 3 because 3-1=2. 4 becomes 14, and 14-9=5

Hope this helps, if it did, please consider giving me brainliest, it will help me a lot. If you have any questions, feel free to ask.

Have a good day! :)

Find m<1 .Triangle Angle-Sum Theorem.

Answers

Answer:

m<1 = 30

Step-by-step explanation:

To find m<1, we can do 180 - 75 - 75, which will give us 30 degrees, so m<1 = 30

Suppose the weather forecast calls for a 60% chance of rain each day for the next 3 days. What is the probability that it will NOT rain during the next 3 days

Answers

Answer:

Probability that it'll not rain during the next three days = 0.064

Step-by-step explanation:

Given

Let:

P(R) represent the probability that it'll rain each day

P(R') represent the probability that it'll not

[tex]P(R) = 60\%[/tex]

Required

Probability that it'll not rain during the next three days

From concept of probability;

[tex]P(R) + P(R') = 1[/tex]

Substitute 60% for P(R)

[tex]60\% + P(R') = 1[/tex]

Subtract 60% from both sides

[tex]60\% - 60\% + P(R') = 1 - 60\%[/tex]

[tex]P(R') = 1 - 60\%[/tex]

Convert % to decimal

[tex]P(R') = 1 - 0.6[/tex]

[tex]P(R') = 0.4[/tex]

The probability that it'll not rain during the next 3 days is:

[tex]P(R') * P(R') * P(R')[/tex]

[tex]P(R') * P(R') * P(R') =0.4 * 0.4 * 0.4[/tex]

[tex]P(R') * P(R') * P(R') = 0.064[/tex]


Tristan wants to buy a car and has a choice between two different banks. One bank is offering a simple interest rate of 3% and the other bank is offering a rate of 2.5%
compounded annually. If Tristan decides to deposit $7,000 for 4 years, which bank would be the better deal?

Answers

Answer:

The better deal would be simple interest rate of 3%

Step-by-step explanation:

In order to calculate which bank would be the better deal If Trsitam decides to deposit $7,000 for 4 years, we would have to make the following calculation:

simple interest rate of 3%.

Therefore, I= P*r*t

=$7,000*3%*4

I=$840

FV= $7,000+$840

FV=7,840

compound interest rate of 2.5%

Therefore, FV=PV(1+r)∧n

FV=$7,000(1+0.25)∧4

FV=$17,089

The better deal would be simple interest rate of 3%

1. What is the length of the shortest side if the perimeter of the rectangle is
56 inches?

5х – 4

Answers

Answer:

Length of Shortest Side = 12 inches

Step-by-step explanation:

Length of Shortest Side = L = 3x

Length of Longest Side = W = 5x-4

Condition:

2L+2W = Perimeter

2(3x)+2(5x-4) = 56

6x+10x-8 = 56

16x-8 = 56

Adding 8 to both sides

16x = 56+8

16x = 64

Dividing both sides by 14

=> x = 4

Now,

Length of the Shortest Side = L = 3(4) = 12 inches

Length of the Longest Side = W = 5(4)-4 = 16 inches

Answer:

12 inches

Step-by-step explanation:

The length is the longest side.

The width is the shortest side.

Length : [tex]l=5x-4[/tex]

Width : [tex]w=3x[/tex]

Apply formula for the perimeter of a rectangle.

[tex]P=2l+2w[/tex]

[tex]P=perimeter\\l=length\\w=width[/tex]

Plug in the values.

[tex]56=2(5x-4)+2(3x)[/tex]

[tex]56=10x-8+6x[/tex]

[tex]56=16x-8[/tex]

[tex]64=16x[/tex]

[tex]4=x[/tex]

The shortest side is the width.

[tex]w=3x[/tex]

Plug in the value for x.

[tex]w=3(4)[/tex]

[tex]w=12[/tex]

A rectangle has length 4 inches and width 2 inches. If the length and width of the rectangle are
reduced by 50 percent, by what percent will the area of the rectangle be reduced?
40 percent
50 percent
60 percent
75 percent

Answers

Answer:

75%

Step-by-step explanation:

First we can solve the area of the rectangle originally the answer is:

4 × 2 = 8

Then we decrease both measurements by 50% to get the dimensions 1 and 2. The new area will be 1 × 2 which is 2.

2 is 25% of 8 which means that the area of the rectangle has been reduced by 75%.

Determine whether the experiment is blind or double blind.Is the aspirin produced by World's Best Pharmaceutical Company better than that of a competitor at relieving headaches? 200 headache suffers are chosen at random. Migraned Testing Service administers the experiment and provides the results evaluation. Three levels are made: participants receive contents from Bottle A, Bottle B, or Bottle C. Other than the fact that one bottle contains placebo aspirin (but not which particular bottle contains placebo aspirin), no other information is given to the testing service regarding the bottles' contents.a. Blindb. Double blindc. Neither

Answers

Answer:

The correct answer is:

Double-blind (b)

Step-by-step explanation:

A blind/blinded experiment is one in which information which may influence the participant or experimenter is withheld throughout the process of the experiment either by masking (giving false identity) or completely blinded, to avoid biases that may arise from such knowledge by the participant or experimenter.

Blinding is of three types: single-blind, double-blind and triple-blind experiements and this is named with respect to three categories involved in the experiment; participant, researcher or a third party, which may include: analysts, monitoring committees stakeholders etc. The blinding type is explained as follows

Blinding Type              participant       researcher           Third-party

single-blind                   blinded               unblinded           unblinded

double-blind                  blinded               blinded               unblinded

triple-blind                     blinded               blinded                blinded

In this example, the 200 headache sufferers (participants) and the Migrane testing service (researchers) do not know the contents of the bottles being administered, whereas the pharmaceutical company (third-party knows), hence it is a double-blinded experiment.

Farmers Jay, Peter, and Sam own rectangular farms, as indicated in the figure. Jay owns 2 acres of land, Peter owns 4 acres and Sam owns 6 acres. Find the area of the common pasture. PLEASE HELP ASAP!

Answers

Answer:

Area of the common pasture = 12 acres

Step-by-step explanation:

Let the dimensions of the farm owned by Jay are 'a' units and 'b' units.

Area of the farm = ab = 2 acres

Similarly, areas of the farm owned by Peter with dimensions 'a' unit and 'c' unit = ac = 4 acres

And area of the farm owned by Sam with dimensions 'b' and 'd' units = bd = 6 acres

Now, [tex]\frac{ab}{ac}=\frac{2}{4}[/tex]

[tex]\frac{b}{c}=\frac{1}{2}[/tex] ---------(1)

[tex]\frac{ab}{bd}=\frac{2}{6}[/tex]

[tex]\frac{a}{d}=\frac{1}{3}[/tex] ---------(2)

[tex]\frac{b}{c}\times \frac{a}{d}=\frac{1}{2}\times \frac{1}{3}[/tex]

[tex]\frac{ab}{cd}=\frac{1}{6}[/tex]

cd = 6(ab)

cd = 6 × 2 [Since ab = 2 acres]

    = 12 acres

Therefore, area of the common pasture will be 12 acres.

What is the degree of the polynomial?​

Answers

Answer: 3rd Degree

Step-by-step explanation:

among a group of students 50 played cricket 50 played hockey and 40 played volleyball. 15 played both cricket and hockey 20 played both hockey and volleyball 15 played cricket and volley ball and 10 played all three. if every student played at least 1 game find the no of students and how many students played only cricket, only hockey and only volley ball

Answers

Answer:

Cricket only= 30

Volleyball only = 15

Hockey only = 25

Explanation:

Number of students that play cricket= n(C)

Number of students that play hockey= n(H)

Number of students that play volleyball = n(V)

From the question, we have that;

n(C) = 50, n(H) = 50, n(V) = 40

Number of students that play cricket and hockey= n(C∩H)

Number of students that play hockey and volleyball= n(H∩V)

Number of students that play cricket and volleyball = n(C∩V)

Number of students that play all three games= n(C∩H∩V)

From the question; we have,

n(C∩H) = 15

n(H∩V) = 20

n(C∩V) = 15

n(C∩H∩V) = 10

Therefore, number of students that play at least one game

n(CᴜHᴜV) = n(C) + n(H) + n(V) – n(C∩H) – n(H∩V) – n(C∩V) + n(C∩H∩V)

= 50 + 50 + 40 – 15 – 20 – 15 + 10

Thus, total number of students n(U)= 100.

Note;n(U)= the universal set

Let a = number of people who played cricket and volleyball only.

Let b = number of people who played cricket and hockey only.

Let c = number of people who played hockey and volleyball only.

Let d = number of people who played all three games.

This implies that,

d = n (CnHnV) = 10

n(CnV) = a + d = 15

n(CnH) = b + d = 15

n(HnV) = c + d = 20

Hence,

a = 15 – 10 = 5

b = 15 – 10 = 5

c = 20 – 10 = 10

Therefore;

For number of students that play cricket only;

n(C) – [a + b + d] = 50 – (5 + 5 + 10) = 30

For number of students that play hockey only

n(H) – [b + c + d] = 50 – ( 5 + 10 + 10) = 25

For number of students that play volleyball only

n(V) – [a + c + d] = 40 – (10 + 5 + 10) = 15

Answer:

Cricket only= 30

Volleyball only = 15

Hockey only = 25

Explanation of the answer:

Number of students that play cricket= n(C)

Number of students that play hockey= n(H)

Number of students that play volleyball = n(V)

From the question, we have that;

n(C) = 50, n(H) = 50, n(V) = 40

Number of students that play cricket and hockey= n(C∩H)

Number of students that play hockey and volleyball= n(H∩V)

Number of students that play cricket and volleyball = n(C∩V)

Number of students that play all three games= n(C∩H∩V)

From the question; we have,

n(C∩H) = 15

n(H∩V) = 20

n(C∩V) = 15

n(C∩H∩V) = 10

Therefore, number of students that play at least one game

n(CᴜHᴜV) = n(C) + n(H) + n(V) – n(C∩H) – n(H∩V) – n(C∩V) + n(C∩H∩V)

= 50 + 50 + 40 – 15 – 20 – 15 + 10

Thus, total number of students n(U)= 100.

Note;n(U)= the universal set

Let a = number of people who played cricket and volleyball only.

Let b = number of people who played cricket and hockey only.

Let c = number of people who played hockey and volleyball only.

Let d = number of people who played all three games.

This implies that,

d = n (CnHnV) = 10

n(CnV) = a + d = 15

n(CnH) = b + d = 15

n(HnV) = c + d = 20

Hence,

a = 15 – 10 = 5

b = 15 – 10 = 5

c = 20 – 10 = 10

Therefore;

For number of students that play cricket only;

n(C) – [a + b + d] = 50 – (5 + 5 + 10) = 30

For number of students that play hockey only

n(H) – [b + c + d] = 50 – ( 5 + 10 + 10) = 25

For number of students that play volleyball only

n(V) – [a + c + d] = 40 – (10 + 5 + 10) = 15

▬▬▬▬▬▬▬▬▬▬▬▬

A man walking on a railroad bridge is 2/5 of the way along the bridge when he notices a train at a distance approaching at the constant rate of 45 mph . The man can run at a constant rate in either direction to get off the bridge just in time before the train hits him. How fast can the man run?

Answers

Answer:

The Man needs to run at 9 mph

Step-by-step explanation:

Let M stand for the man's speed in mph.  When the man  

runs toward point A, the relative speed of the train with respect  

to the man is the train's speed plus the man's speed (45 + M).  

When he runs toward point B, the relative speed of the train is the  

train's speed minus the man's speed (45 - M).

When he runs toward the train the distance he covers is 2 units.  

When he runs in the direction of the train the distance he covers  

is 3 units. We can now write that the ratio of the relative speed  

of the train when he is running toward point A to the relative speed  

of the train when he is running toward point B, is equal to the  

inverse ratio of the two distance units or

              (45 + M)          3

              -----------  =      ---

              (45 - M)          2

          90+2 M=135-3 M

⇒5 M = 45

⇒ M = 9 mph

The Man needs to run at 9 mph

Answer: 9 mph

Step-by-step explanation:

Given that a man walking on a railroad bridge is 2/5 of the way along the bridge when he notices a train at a distance approaching at the constant rate of 45 mph .

If the man tend to run in the forward direction, he will cover another 2/5 before the train reaches his initial position. The distance covered by the man will be 2/5 + 2/5 = 4/5

The remaining distance = 1 - 4/5 = 1/5

If the man can run at a constant rate in either direction to get off the bridge just in time before the train hits him, the time it will take the man will be

Speed = distance/time

Time = 1/5d ÷ speed

The time it will take the train to cover the entire distance d will be

Time = d ÷ 45

Equate the two time

1/5d ÷ speed = d ÷ 45

Speed = d/5 × 45/d

Speed = 9 mph

Tabitha wants to hang a painting in a gallery. The painting and frame must have an area of 58 square feet. The painting is 7 feet wide by 8 feet long. Which quadratic equation can be used to determine the thickness of the frame, x? (5 points)

Answers

Answer:

4x² + 30x - 2 = 0

Step-by-step explanation:

Given:

Area = 58 square feet

Width = 7 feet

Length = 8 feet

Since the area is 58, writing the equation, we have:

(8 + 2x)(7 + 2x) = 58

Now expand the equation:

56 + 16x + 14x + 4x² = 58

56 + 30x + 4x² = 58

Collect like terms:

30x + 4x² + 56 - 58 = 0

30x + 4x² - 2 = 0

Rearrange the equation to a proper quadratic equation:

4x² + 30x - 2 = 0

The quadratic equation that can be used to determine the thickness of the frame, x is 4x² + 30x - 2 = 0

According to a study done by the Gallup organization, the proportion of Americans who are satisfied with the way things are going in their lives is 0.82. What is the probability the sample proportion who are satisfied with the way things are going in their life is greater than 0.85

Answers

Complete Question

According to a study done by the Gallup organization, the proportion of Americans who are satisfied with the way things are going in their lives is 0.82. Suppose a random sample of 100 Americans is asked "Are you satisfied with the way things are going in your life?"

What is the probability the sample proportion who are satisfied with the way things are going in their life is greater than 0.85

Answer:

The probability is  [tex]P(X > 0.85 ) = 0.21745[/tex]

Step-by-step explanation:

From the question we are told that

   The population proportion is [tex]p = 0.82[/tex]

   The value considered is  x  =  0.85

     The  sample size is  n = 100

The standard deviation for this population proportion is evaluated as

        [tex]\sigma = \sqrt{\frac{p(1-p)}{n} }[/tex]

substituting values

       [tex]\sigma = \sqrt{\frac{0.82(1-0.82)}{100} }[/tex]

      [tex]\sigma = 0.03842[/tex]

Generally the probability that probability the sample proportion who are satisfied with the way things are going in their life is greater than x is mathematically represented as

       [tex]P(X > x ) = P( \frac{X - p }{ \sigma } > \frac{x - p }{ \sigma } )[/tex]

Where  [tex]\frac{X - p }{ \sigma }[/tex] is  equal to Z (the  standardized value of X ) so  

         [tex]P(X > x ) = P( Z> \frac{x - p }{ \sigma } )[/tex]

substituting values

        [tex]P(X > 0.85 ) = P( Z> \frac{ 0.85 - 0.82 }{ 0.03842 } )[/tex]

        [tex]P(X > 0.85 ) = P( Z> 0.78084)[/tex]

from the standardized normal distribution table [tex]P( Z> 0.78084)[/tex] is  0.21745

So  

      [tex]P(X > 0.85 ) = 0.21745[/tex]

In a study of the accuracy of fast food​ drive-through orders, Restaurant A had 302accurate orders and 59that were not accurate.a. Construct a 95​%confidence interval estimate of the percentage of orders that are not accurate.b. Compare the results from part​ (a) to this 95​%confidence interval for the percentage of orders that are not accurate at Restaurant​ B: 0.143less thanpless than0.219.What do you​ conclude?

Answers

Answer:

(a) A 95​% confidence interval estimate of the percentage of orders that are not accurate is [0.125, 0.201].

(b) We can conclude that both restaurants can have the same inaccuracy rate due to the overlap of interval areas.

Step-by-step explanation:

We are given that in a study of the accuracy of fast food​ drive-through orders, Restaurant A had 302 accurate orders and 59 orders that were not accurate.

Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;

                          P.Q.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion of orders that were not accurate = [tex]\frac{59}{361}[/tex] = 0.163

          n = sample of total orders = 302 + 59 = 361

          p = population proportion of orders that are not accurate

Here for constructing a 95% confidence interval we have used a One-sample z-test for proportions.

So, 95% confidence interval for the population proportion, p is ;

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5% level

                                                    of significance are -1.96 & 1.96}  

P(-1.96 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 1.96) = 0.95

P( [tex]-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95

P( [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95

95% confidence interval for p = [ [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ]

  = [ [tex]0.163 -1.96 \times {\sqrt{\frac{0.163(1-0.163)}{361} } }[/tex] , [tex]0.163 +1.96 \times {\sqrt{\frac{0.163(1-0.163)}{361} } }[/tex] ]

  = [0.125, 0.201]

(a) Therefore, a 95​% confidence interval estimate of the percentage of orders that are not accurate is [0.125, 0.201].

(b) We are given that the 95​% confidence interval for the percentage of orders that are not accurate at Restaurant​ B is [0.143 < p < 0.219].

Here we can observe that there is a common area of inaccurate order of 0.058 or 5.85% for both the restaurants.

So, we can conclude that both restaurants can have the same inaccuracy rate due to the overlap of interval areas.

What is the rate of change of the function

Answers

The average rate of change between two input values is the total change of the function values (output values) divided by the change in the input values.

The average rate of change between two input values is the total change of the function values (output values) divided by the change in the input values.

HELP ASAP I NEED THIS RIGHTNOW 30 points

Answers

Answer:

Pretty sure it is c

Step-by-step explanation:

Answer:

C.

Step-by-step explanation:

She will be painting the outsides of the table, so we need to find the surface area of the table.

There is the flat part of the table, which is a rectangular prism. There are also four legs, which are rectangular prism.

So, she will paint C. the surface area of 6 rectangular prisms.

Hope this helps!

Change Y - 4X = 0 to the slope-intercept form of the equation of a line.

Answers

Answer:

y=4x

Step-by-step explanation:

Add 4x to both sides to get y=mx+b

0 is y-intercept.

4x is the slope.

In a random sample of 400 residents of Boston, 320 residents indicated that they voted for Obama in the last presidential election. Develop a 95% confidence interval estimate for the proportion of all Boston residents who voted for Obama.

Answers

Answer:

C.I =  0.7608   ≤ p ≤   0.8392

Step-by-step explanation:

Given that:

Let consider a  random sample n = 400 candidates where  320 residents indicated that they voted for Obama

probability [tex]\hat p = \dfrac{320}{400}[/tex]

= 0.8

Level of significance ∝ = 100 -95%

= 5%

= 0.05

The objective is to  develop a 95% confidence interval estimate for the proportion of all Boston residents who voted for Obama.

The confidence internal can be computed as:

[tex]=\hat p \pm Z_{\alpha/2} \sqrt{\dfrac{ p(1-p)}{n } }[/tex]

where;

[tex]Z_{0.05/2}[/tex] = [tex]Z_{0.025}[/tex] = 1.960

SO;

[tex]=0.8 \pm 1.960 \sqrt{\dfrac{ 0.8(1-0.8)}{400 } }[/tex]

[tex]=0.8 \pm 1.960 \sqrt{\dfrac{ 0.8(0.2)}{400 } }[/tex]

[tex]=0.8 \pm 1.960 \sqrt{\dfrac{ 0.16}{400 } }[/tex]

[tex]=0.8 \pm 1.960 \sqrt{4 \times 10^{-4}}[/tex]

[tex]=0.8 \pm 1.960 \times 0.02}[/tex]

[tex]=0.8 \pm 0.0392[/tex]

= 0.8 - 0.0392     OR   0.8 + 0.0392  

= 0.7608    OR    0.8392

Thus; C.I =  0.7608   ≤ p ≤   0.8392

given the functions, f(x)=x^2 and g(x)=x+2, perform the indicated operation. when applicable, state the domain restriction. f(g(x)​

Answers

Answer:

h(g(x)) = x²+4x+4

Domain restriction = [tex][-\infty, \infty][/tex]

Step-by-step explanation:

Given the functions  h(x)=x^2 and g(x)=x+2, we are to find h(g(x)). To get the indicated operation we need to follow the steps;

Since the function in parenthesis g(x) = x+2

h(g(x)) can be written as h(x+2). Hence we are to look for the equivalent expression of  h(x+2).

Since h(x) = x², h(x+2) can simply be gotten by simply replacing the variable x in h(x) as x+2 as shown;

h(x+2) = (g(x))²

h(x+2) = (x+2)²

We can open the bracket

h(x+2) = x²+4x+4

The domain restriction is the point where the function cannot exist for the value of x. The function can therefore exist on any real value R. The only domain restriction is at the interval [tex][-\infty, \infty][/tex]

Hence h(g(x))  is equivalent to x²+4x+4.

At noon, ship A is 170 km west of ship B. Ship A is sailing east at 40 km/h and ship B is sailing north at 15 km/h. How fast is the distance between the ships changing at 4:00 PM

Answers

Answer:

The distance between the ships is changing at 42.720 kilometers per hour at 4:00 PM.

Step-by-step explanation:

Vectorially speaking, let assume that ship A is located at the origin and the relative distance of ship B with regard to ship A at noon is:

[tex]\vec r_{B/A} = \vec r_{B} - \vec r_{A}[/tex]

Where [tex]\vec r_{A}[/tex] and [tex]\vec r_{B}[/tex] are the distances of ships A and B with respect to origin.

By supposing that both ships are travelling at constant speed. The equations of absolute position are described below:

[tex]\vec r_{A} = \left[\left(40\,\frac{km}{h} \right)\cdot t\right]\cdot i[/tex]

[tex]\vec r_{B} = \left(170\,km\right)\cdot i +\left[\left(15\,\frac{km}{h} \right)\cdot t\right]\cdot j[/tex]

Then,

[tex]\vec r_{B/A} = (170\,km)\cdot i +\left[\left(15\,\frac{km}{h} \right)\cdot t\right]\cdot j-\left[\left(40\,\frac{km}{h} \right)\cdot t\right]\cdot i[/tex]

[tex]\vec r_{B/A} = \left[170\,km-\left(40\,\frac{km}{h} \right)\cdot t\right]\cdot i +\left[\left(15\,\frac{km}{h} \right)\cdot t\right]\cdot j[/tex]

The rate of change of the distance between the ship is constructed by deriving the previous expression:

[tex]\vec v_{B/A} = -\left(40\,\frac{km}{h} \right)\cdot i + \left(15\,\frac{km}{h} \right)\cdot j[/tex]

Its magnitude is determined by means of the Pythagorean Theorem:

[tex]\|\vec v_{B/A}\| = \sqrt{\left(-40\,\frac{km}{h} \right)^{2}+\left(15\,\frac{km}{h} \right)^{2}}[/tex]

[tex]\|\vec r_{B/A}\| \approx 42.720\,\frac{km}{h}[/tex]

The distance between the ships is changing at 42.720 kilometers per hour at 4:00 PM.

A first number plus twice a second number is 14. Twice the first number plus the second totals 13. Find the numbers.

Answers

Answer: The first number is 4 and the second is 5

Step-by-step explanation:

Let's say the first number is x and the second is y:

x+2y=14

2x+y=13

I'll use the linear combination method to solve this.

  2x+4y=28

-  2x+y=13

3y=15

y = 5

x = 4

Hope it helps <3

Answer:

y=1

x=12

Step-by-step explanation:

Let the first number be x

Let the first number be y

Given:

x+2y=14

2x+y=13

Substitution:

x=14-2y

Solution:

2x+y=13

14-2y+y=13

-2y+y=13-14

-y=-1

y=1

x=14-2y

x=14-2(1)

x=14-2

x=12

Proof:

1) x+2y=14

12+2(1)=14

12+2=14

14=14

Hope this helps ;) ❤❤❤

Let me know if there is an error in my answer

What is x when: |5x|=3

Answers

Answer:

3/5

Step-by-step explanation:

5x= 3

x= 3/5

hope you understand the answer

stay at home stay safe

keep rocking

pls mark me as BRAINLIEST

5x=+/- 3
x=+/- 3/5
(plus-minus 3/5)

find the maximum value of c=6x+2y

Answers

Answer:

  ∞

Step-by-step explanation:

c can have any value you like.

There is no maximum. We say it can approach infinity.

__

Additional comment

There may be some maximum imposed by constraints not shown here. Since we don't know what those constraints are, we cannot tell you what the maximum is.

Find all of the angle measures in the image.

Answers

Answer:

Angle 2= 45

Angle 3= 45

Angle 4= 135

Angle 5= 135

Angle 6= 45

Angle 7= 45

Angle 8= 135

1/3 x =6 What would like match this answer

Answers

Answer:

x=18

Step-by-step explanation:

Answer:

x = 18

Step-by-step explanation:

Since 1/3x = 6,

x = 6 x 3

Thus, x = 18

Select the correct answer from each drop down menu.


The slope of diagonal OA is
A) 4/3
B) 3/4
C) 1
,and it’s equation is
A) 4x-y=0
B) x-3y=0
C) 4x-3y=0

Answers

Answer:

(A) [tex]\text{The slope of OA is }\dfrac{4}{3}[/tex]

(C) It’s equation is 4x-3y=0.

Step-by-step explanation:

Point O is at (0,0)

Point A is at (3,4)

[tex]\text{Slope of OA}=\dfrac{4-0}{3-0} \\m=\dfrac{4}{3}[/tex]

The equation of a straight line is in the form: y=mx+b

The y-intercept of the line OA=0

Therefore, we have:

[tex]y=\dfrac{4}{3}x+0\\3y=4x+0\\$Subtract 3y from both sides$\\4x-3y=0[/tex]

The equation of the line is: 4x-3y=0

Can someone help me with this question

Answers

Answer:

Product of given question is 6√5

Step-by-step explanation:

Given:

3√2(√10)

Find:

Product.

Computation:

⇒ 3√2(√10)

⇒ 3√20

⇒ 3√4×5

⇒ 3√2×2×5

⇒ 3×2√5

⇒ 6√5

Product of given question is 6√5

Other Questions
A business tenant has a percentage lease stating rent payment is greater of 2% of the businesss total gross sales volume or a minimum base rental of $1,000.00 per month. In the past year, sales totaled $435,000. How much rent did the business pay? If f(x) = square root of x+3, what is the equation for f1(x)? f1(x) = x2 - 3 f1(x) = x2 + 3 f1(x) = (x - 3) 2 f1(x) = (x + 3) 2 Carla bought quail eggs for 10 cents each. She bought 42 eggs. How much did she pay forthe eggs? In the LC-3 data path, the output of the address adder goes to both the MARMUX and the PCMUX, potentially causing two very different register transfers to take place. Why does this not happen PQRS is a parallelogram. Find the values of a and b. Solve for the value of c if c = a + b.A. 5B. 14C. 0D. 7 A 68.5kg astronaut floating motionless next to the space station throws a 2.25kg tool away from her at 3.20m/s. With what speed and direction will the astronaut begin to move? Write a letter to your principal requesting him to grant you leave for ten days as you have to attend your brothers marriage. Hydrogen, lithium, and sodium all have one valence electron. Which elementhas the smallest atomic radius? Action Travel has 10 employees each working 40 hours per week and earning $20 an hour. Federal income taxes are withheld at 15% and state income taxes at 6%. FICA taxes are 7.65% and unemployment taxes are 3.8% of the first $7,000 earned per employee. What is the actual direct deposit of payroll for the first week of January Find the limit L for the given function f, the point x 0, and the positive number epsilon. Then find a number delta > 0 such that, for all x, 0less thanStartAbsoluteValue x minus x 0 EndAbsoluteValueless thandelta double right arrow StartAbsoluteValue f (x )minus Upper L EndAbsoluteValueless thanepsilon. WILL GIVE BRAINLEIST!!!!!Find the surface area of the right triangular prism shown below. A clinical trial was conducted to test the effectiveness of a drug for treating insomnia in older subjects. Before treatment, 17 subjects had a mean wake time of 104.0 min. After treatment, the 17 subjects had a mean wake time of 97.5 min and a standard deviation of 21.9 min. Assume that the 17 sample values appear to be from a normally distributed population and construct a 95% confidence interval estimate of the mean wake time for a population with drug treatments. What does the result suggest about the mean wake time of 104.0 min before the treatment? Does the drug appear to be effective? Using leaner combination method what is the solution to the system of linear equations 7x-2y=-20 and 9x+4y=-6 For a stock to be in equilibrium, that is, for there to be no long-term pressure for its price to depart from its current level, then a.the expected future return must be less than the most recent past realized return. b.the past realized return must be equal to the expected return during the same period. c.the expected future returns must be equal to the required return. d.the required return must equal the realized return in all periods. e.the expected return must be equal to both the required future return and the past realized return. Quote Analysis: In regards to trying to gain more friends, U.S. Army General Lucius Clay said, [itwould be an easy] choice between choosing to be a communist (Soviet Union) on 1.500 calories a dayrather than a believer of democracy and capitalism (United States) on 1.000 calories (energy from food).According to Clay, how will the superpowers gain or maintain their friendships in Europe? Someone help quick!!!The diagram shows several points and lines. Which statements are true based on the diagram? Select two options.A. Points K, M, and N are collinear B. Points J, K, and Q are collinearC. Points are is the intersection of the line KN and the line MQD. Find JQ, KM, and MQ all intersect at point KE. There is only one line that can be drawn through points L and P Different hotels in a certain area are randomly selected, and their ratings and prices were obtained online. Using technology, with x representing the ratings and y representing price, we find that the regression equation has a slope of 120 and a y-intercept of negative 353. What is the equation of the regression line? Select the correct choice below and fill in the answer boxes to complete your choice.A) y=..+(..)^xB) y=..+(..)^xC) y=..+(..)^xD) y=..+(..)^x resultado de x-3x=0 The Marshall Plan sought to fight Communism by:spreading propaganda in the Soviet Union.providing financial aid to struggling European nations.conducting military raids along the border of the Soviet Union.encouraging Eastern European nations to revolt against Soviet control. Given a line segment that contains the points A,B,& C in order, if AB = x + 12, and Bo2.4, and AC = 26, find x.