The equation to the given graph is y= (1/2) * 2ˣ. So correct option is B.
Describe Parabola?A parabola is a type of curve that results from the intersection of a cone with a plane that is parallel to one of its sides. It is a conic section, which means it is a geometric shape that can be formed by cutting a cone with a plane.
The shape of a parabola is similar to that of a U-shaped curve, but it is symmetric around a vertical line called the axis of symmetry. The point where the axis of symmetry intersects the parabola is called the vertex.
The equation of a parabola can be written in different forms, but the most common form is:
y = ax^2 + bx + c
where "a", "b", and "c" are constants that determine the shape, position, and orientation of the parabola. If "a" is positive, the parabola opens upward, and if "a" is negative, it opens downward.
We can observe that the given graph passes through the points (-1,1), (0,2), (1,4), (2,8). This suggests that the graph is a parabola that opens upwards.
We can use the general form of a quadratic equation to write the equation of the parabola in the form y = ax² + bx + c, where a, b, and c are constants. Since the parabola opens upwards, we know that the coefficient of the x² term is positive.
To find the values of a, b, and c, we can substitute the coordinates of the given points into the equation and solve the resulting system of equations.
Using the point (-1,1), we get:
1 = a(-1)² + b(-1) + c
1 = a - b + c
Using the point (0,2), we get:
2 = a(0)² + b(0) + c
2 = c
Using the point (1,4), we get:
4 = a(1)² + b(1) + c
4 = a + b + c
Using the point (2,8), we get:
8 = a(2)² + b(2) + c
8 = 4a + 2b + c
Substituting c = 2 from the second equation into the third and fourth equations, we get:
4 = a + b + 2
8 = 4a + 2b + 2
Simplifying these equations, we get:
a + b = 2
2a + b = 3
Solving for a and b, we get:
a = 1
b = 1
Therefore, the equation of the parabola is y = x² + x + 2.
To check which of the given options matches this equation, we can simplify the equation:
y = x² + x + 2
y = (x + 1/2)² + 7/4
This shows that the given parabola is a vertical shift of the standard parabola y = x² by 7/4 units upward.
Out of the given options, the only equation that matches this form is option B, y = (1/2) * 2ˣ. Therefore, the answer is B) y= (1/2) * 2ˣ.
To know more about equation visit;
https://brainly.com/question/4074088
#SPJ1
Layson, Jane
Mark has a key ring with 10 similar keys. There are 3 gym locker keys, 2 car keys, I door key, and 4 toolbox keys. If Mark selects one key without looking, what is the probability he
selects a car key or door key?
The probability that Mark selects a car key or door key from the key ring is 0.3 or 30%.
What is probability?
Probability is a measure of the likelihood or chance of an event occurring. It is a number between 0 and 1, where 0 represents an impossible event and 1 represents a certain event. Probability is calculated by dividing the number of favorable outcomes by the total number of possible outcomes. Probability theory provides a framework for understanding random events and the laws of chance, and it is an important tool for modeling and simulating complex systems.
Calculating the probability that he selects a car key or door key :
In this context, we are asked to find the probability of Mark selecting a car key or door key from the key ring. To calculate this probability, we need to first determine the total number of keys on the key ring and then count the number of car keys and door keys.
Total number of keys = 10
Number of car keys = 2
Number of door keys = 1
The probability of selecting a car key or door key can be found by adding the probability of selecting a car key to the probability of selecting a door key. Since there is only one door key and two car keys, the probability of selecting a car key is higher, and we can simplify the calculation by finding the probability of selecting a car key and then adding the probability of selecting a door key that hasn't already been selected.
Probability of selecting a car key = 2/10 = 0.2
Probability of selecting a door key = 1/9 (since one key has already been selected) = 0.1111...
Therefore, the probability of Mark selecting a car key or door key from the key ring is 0.2 + 0.1111... ≈ 0.3 or 30%.
To know more about probability visit :
brainly.com/question/11034287
#SPJ1
Alyssa and Caleb were splitting nachos. Alyssa ate 1/2 of the nachos and Caleb ate 1/3 of the nachos.
What fraction of the nachos did they eat together?
Alyssa and Caleb ate 5/6 of the nachos together.
To calculate the fraction of nachos that Alyssa and Caleb ate together, add the fractions representing the portions that they each ate. However, because the fractions have different denominators, we must first find a common denominator.
2 and 3 share a common denominator of 6. With a denominator of 6, we can rewrite 1/2 and 1/3 as follows:
1/2 = 3/6
1/3 = 2/6
We can now add these fractions:
3/6 + 2/6 = 5/6
As a result, Alyssa and Caleb shared 5/6 of the nachos.
To know more about Fraction visit:
https://brainly.com/question/10354322
#SPJ1
Determine a series of transformations that would map Figure D onto Figure E.
Figure E is a rotated and reflected version of Figure D that has been shifted to the right and up as a result of this transformation sequence.
What is a transformation sequence called?The sequence transformation (which may be dependent on n). This is known as a linear sequence transformation. Nonlinear sequence transformations are nonlinear sequence transformations.
We can use the following transformations to map Figure D onto Figure E:
Figure D should be translated 4 units to the right and 1 unit up.
Figure D should be rotated 90 degrees clockwise around the origin.
Cross the y-axis with the resulting figure.
This transformation sequence results in Figure E, which is a rotated and reflected version of Figure D that has been shifted to the right and up.
To know more about sequence transformation visit:
https://brainly.com/question/28144625
#SPJ1
if you are in a club with 14 people that is organizing a spaghetti dinner, how many different ways can you select 3 people to be ticket takers?
If there are 14 people in a club organizing a spaghetti dinner, there can be 364 ways to select 3 people to be ticket takers.
A combination is a selection of things taken from a larger group, where the order in which things are selected is unimportant. A combination is distinct from a permutation, which is a method of organizing objects in which order matters. A combination is a method of selecting things in which order does not matter. In general, the combination formula can be used to determine the number of possible combinations that exist for a given set of things.
Suppose we have to select 3 people out of 14 people. The number of possible combinations can be found using the combination formula, which is given byC(n,r) = n!/(n-r)!r!where n is the total number of objects, and r is the number of objects selected.C(14,3) = 14!/(14-3)!3!C(14,3) = (14 × 13 × 12)/(3 × 2 × 1)C(14,3) = 364Therefore, there are 364 ways to select 3 people to be ticket takers from a group of 14 people.
To know more about combination refer here:
https://brainly.com/question/13090387
#SPJ11
Help em fin the answer
Answer:
1 ft per 4 seconds
120 seconds
72 seconds
Step-by-step explanation:
-2(-3)+27÷(-3)+3?
Please help
Answer:
0
Step-by-step explanation:
-2(-3)+27÷(-3)+3
6-9+3
0
Given:-
[tex] \tt \: -2 ( - 3 )+27 ÷ ( - 3 ) + 3 = ?[/tex][tex] \: [/tex]
Solution:-
[tex] \tt \: -2 ( - 3 )+27 ÷ ( - 3 ) + 3 = ?[/tex][tex] \: [/tex]
[tex] \tt \: [-2 ( - 3 ) + 27 ÷ ( - 3 )] + 3 [/tex][tex] \: [/tex]
[tex] \tt \: 6 - 9 + 3[/tex][tex] \: [/tex]
[tex] \tt \: -3 + 3[/tex][tex] \: [/tex]
[tex] \boxed{ \tt {\purple{ \: \:0 \: \: }}}[/tex][tex] \: [/tex]
━━━━━━━━━━━━━━━━━━━━━━━
hope it helps! :)
Click an item in the list or group of pictures at the bottom of the problem and, holding the button down, drag it into the correct position in the answer box. Release your mouse button when the item is place. If you change your mind, drag the item to the trashcan. Click the trashcan to clear all your answers.
Complete the following proof.
Given: mXOY = m WOV
m -- YZ = m --ZW
Prove: m -- XZ = m -- ZV
Since mXOY = mWOV, we can form the following equations so, m--XZ = m--ZV.
What is equation?An equation is a mathematical statement that states the equality of two expressions. It usually consists of two terms, with an equals sign between them, representing the relationship between the terms. Equations are often used to describe relationships between variables, such as in physics and chemistry, and can be used to calculate unknown values.
Proof:
Since mXOY = mWOV, we can form the following equations:
m--YZ = m--ZW (Given)
Subtract both sides of the equation by m to get:
YZ = ZW
Then, multiply both sides of the equation by X to get:
XZ = XW
Now, substitute Y for V and W for V in the equation to get:
XZ = ZV
Finally, subtract both sides of the equation by m to get:
m--XZ = m--ZV
Therefore, m--XZ = m--ZV.
To know more about equation click-
https://brainly.com/question/2972832
#SPJ1
Pls help me with 10 asap I will mark brainiest if it’s correct
The value of p from the given equation is 4.5.
What is an equation?In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign [tex]=\\[/tex].
The given equation is [tex]0.5p-3.45=-1.2[/tex]
The solution of an equation is the set of all values that, when substituted for unknowns, make an equation true.
The equation can be solved as follows
[tex]0.5p-3.45=-1.2[/tex]
[tex]0.5p= -1.2+3.45[/tex]
[tex]0.5p= 2.25[/tex]
[tex]p= 2.25\div0.5[/tex]
[tex]p= 4.5[/tex]
Therefore, the value of p is 4.5.
To learn more about an equation visit:
https://brainly.com/question/14686792.
can some one help me find the value of w ☆
Answer:
perimeter = 10 mm
Step-by-step explanation:
the perimeter is the sum of the 3 sides.
given perimeter = 24 , that is
w + 6 + 8 = 24
w + 14 = 24 ( subtract 14 from both sides )
w = 10 mm
What is 9 divided by 2/3
Answer:
13.5 would be the answer
a ship travels 70 km on a bearing of 27 0 , and then travels on a bearing of 147 0for 180 km. find the distance of the end of the trip from the starting point.
The distance of the end of the trip from the starting point is 193.1321 km.
The ship goes 180 kilometers on bearing after 70 km of subsequent journey.
The starting point in this case is A, and the ending point is C.
We now discover distance AC:
As we can see, a right-angled triangle results.
The Pythagorean Theorem states that in a right triangle, the sum of the squares of the two sides that make up the right angle is equal to the square of the hypotenuse. This can be expressed mathematically as a^2 + b^2 = c^2, where a and b are the two sides that make up the right angle, and c is the hypotenuse.
Use Pythagoras's principle.
c = √a² + b²
The distance in the Hypotenuse in our case is now.
c = √(70)² + (180)²
c = √4900 + 32400
c = √37,300
c = 193.1321 km
To learn more about Pythagorean Theorem link is here
brainly.com/question/14930619
#SPJ4
The complete question is:
A ship travels 70 km on a bearing of 27 degrees, and then travels on a bearing of 147 degrees for 180 km. Find the distance of the end of the trip from the starting point.
1. Label the axes
2. Graph A(-3,0) B(-2,4) C(1,-1)
draw △ABC in BLUE
3. Rotate △ABC 90° clockwise to create △ABC IN RED. List the coordinate below:
Formula (x,y) ➜ (y,x)
A (-3,0) ➜ A’ ( )
B (-2,4) ➜ B’ ( )
C (1,-1) ➜ C’ ( )
4. Translate △ABC three units down to create △ABC IN GREEN. What are the coordinates of △ABC?
A ( )
B ( )
C ( )
In response to the stated question, we may state that The coordinates of equation triangle ABC in green are: A" (-3,-3); B" (-2,1); C" (1,-4)
What is equation?An equation in mathematics is a statement that states the equality of two expressions. An equation is made up of two sides that are separated by an algebraic equation (=). For example, the argument "2x + 3 = 9" asserts that the phrase "2x + 3" equals the number "9". The purpose of equation solving is to determine the value or values of the variable(s) that will allow the equation to be true. Equations can be simple or complicated, regular or nonlinear, and include one or more elements. In the equation "x2 + 2x - 3 = 0," for example, the variable x is raised to the second power. Lines are utilised in many different areas of mathematics, such as algebra, calculus, and geometry.
The x-axis is horizontal and the y-axis is vertical.
4 B(−2, 4)
| *
| / \
| / \
|/_____\
A(−3, 0) C(1, −1)
4 B(−2, 4) C'(4, 1)
| * *
| / \ / \
| / \ / \
|/_____\-3, 0 -1, 1 A'(0, -3)
A(-3, 0) C(1, −1) B'(4, -2)
A' (-3,0) ➜ (0,-3)
B' (-2,4) ➜ (4,-2)
C' (1,-1) ➜ (-1,1)
1 C(1, −1) C"(1, -4)
| * *
| / \ / \
| / \ / \
|/_____\-3, -3 -2, 1 A'(-3, -3)
A(-3, 0) B(-2, 4) B'(-2, 1)
A' (-3,0) ➜ A" (-3,-3)
B' (-2,4) ➜ B" (-2,1)
C (1,-1) ➜ C" (1,-4)
The coordinates of triangle ABC in green are:
A" (-3,-3)
B" (-2,1)
C" (1,-4)
To know more about equation visit:
https://brainly.com/question/649785
#SPJ1
suppose the time to process a loan application follows a uniform distribution over the range 5 to 17 days. what is the probability that a randomly selected loan application takes longer than 11 days to process?
The probability that a randomly selected loan application takes longer than 11 days to process is 0.1587.
The time taken to process a loan application is uniformly distributed between 5 and 17 days.
We need to determine the probability that a random loan application takes longer than 11 days to process.
To compute the probability, we'll first determine the distribution's parameters;
we have: a = 5 (minimum value)b = 17 (maximum value)
Mean: μ = (a+b) / 2 = (5+17) / 2 = 11
Variance: σ2 = (b-a)2/12
= (17-5)2/12
= 12.3333Standard deviation:
σ = 3.516
For the problem, we want to find the probability of a loan application taking more than 11 days to be processed.
In other words, we want to find the probability of the application taking more than one standard deviation from the mean, that is, P(X > μ + σ).
Since the distribution is symmetric, we can also find the probability by calculating P(X < μ - σ) and subtracting the result from 1, since the total probability must be 1.
Using the above formula, we have:
P(X > μ + σ) = P(X > 11 + 3.516)
= P(X > 14.516)
To standardize the value of 14.516, we'll convert it to a z-score, which is z = (X - μ) / σ.
Therefore, we have z = (14.516 - 11) / 3.516 = 1
Since we are dealing with a standard normal distribution, we can use the standard normal distribution table to find the probability associated with z = 1.
From the table, we find that the probability of z being less than 1 is 0.8413;
thus, the probability of z being greater than 1 is 1 - 0.8413 = 0.1587.
For similar question on probability.
https://brainly.com/question/14567632
#SPJ11
the gallup poll surveyed a representative sample of american adults and offered a list of seven personal economic problems that many people face. what are the top financial concerns that people have?
According to a histogram that displays the percentage of replies over time, an April Gallup poll indicated that 55% of Americans think autonomous cars would be widely used in the next ten years.
Whether completely automated "driverless automobiles" would be widely deployed in the United States was the subject of a Gallup Poll conducted in April, which polled Americans ages 18 and older.
How soon, in your opinion, do you believe autonomous cars will be widely used in the US? According to the survey, 55% of Americans think autonomous cars will become commonplace over the next ten years.
The survey's results were displayed as a histogram, displaying the proportion of replies at various time intervals. This indicates how many respondents indicated that driverless cars will be widely utilised within a particular time period (e.g., within 5 years, within 10 years, etc.).
This survey reveals how people feel about autonomous cars in the future and how soon they believe they will be a common sight on the roads.
To know more about histogram, click the below link
https://brainly.com/question/30354484
#SPJ4
The question is -
A Gallup Poll utilizing a random sample of adults ages or older was conducted in April. The survey indicated a majority of Americans () say driverless cars will be common in the next years (). The question asked was: Thinking about fully automated, "driverless cars," cars that use technology to drive and do not need a human driver, based on what you have heard or read, how soon do you think driverless cars will be commonly used in the [United States]? The figure below shows a summary of the results of the survey in a histogram indicating the percentage of the total responses in different time intervals.
Triangle ABC is similar to triangle DEF. The tangent of angle A is equal to 5/12. What is the sine of angle F? Enter the answer in the box. If necessary, enter the answer as a fraction in the simplest form.
Triangle ABC is similar to triangle DEF. The tangent of angle A is equal to 5/12 and the sine of angle F is 1/13.
How is the sine of an angle determined?The sine of the angle is the proportion of a right-angled triangle's hypotenuse to its perpendicular.
Triangle ABC and triangle DEF are similar in that their respective sides are proportional and their corresponding angles are equal. As a result, we have:
BC/EF = AC/DF = AB/DE
To determine the ratio AB/BC, we can utilise the tangent of angle A:
Tan(A) = 5/12 = AB/BC
By multiplying both sides by 12, we may make this simpler:
AB/BC = 12 tan(A).
We can now determine the ratio AB/EF using the ratio BC/EF:
AB/DE = BC/EF
This can be rearranged to yield AB/EF:
BC/EF * DE/AB = AB/EF
Due to the similarity of the triangles, we know that BC/EF = 12/13 and can therefore insert this into the equation:
(12/13) * (AB/DE) = AB/EF
Using the formula AB/DE = 5/12 (from above), we can reduce this:
AB/EF = (12/13) * (5/12) = 5/13
Finally, we may calculate the sine of angle F using the sine ratio:
sinning(F) = EF/DF
Using the ratio AB/EF that we recently discovered, we may rephrase this as follows:
sin(F) = (1/AB) * (AB/EF) = (1/AB) * (5/13)
Simplifying and substituting AB = 5k results in:
sin(F) is equal to (1/5k) x (5/13) x 1/(k*13).
We can select k = 1 because we want the response in its simplest form:
sin(F) = 1/13
As a result, 1/13 is the sine of angle F.
To know more about Sin Angle visit:
brainly.com/question/22649800
#SPJ1
2. Simplify the expression (5-3i) (-7 - 31) - (6-2i). Show your work
Answer:
[tex] - 50 + 8i[/tex]
Step-by-step explanation:
[tex]1. \: - 35 - 15i + 21i - 9 - (6 - 2i) \\ 2. \: - 35 - 15i + 21i - 9 - 6 + 2i \\ 3. \: ( - 35 - 9 - 6) + ( - 15i + 21i + 2i) \\ 4. \: - 50 + 8i[/tex]
HELP ME PLS! Brainlist :)
SHOW HOW U GOT IT AND SHOW ALL STEPS! IF CORRECT WILL MAKE U BRAINLIST!
Answer:
surface area = (Perimeter of the base × Length of the prism) + (2 × Base Area) = (S1 + S2+ S3)L + bh; where 'b' is the bottom edge of the base triangle, 'h' is the height of the base triangle, L is the length of the prism and S1, S2 and S3 ...
Surface Area of Triangular Prism - Formula, Examples
Step-by-step explanation:
Click an item in the list or group of pictures at the bottom of the problem and, holding the button down, drag it into the correct position in the answer box. Release your mouse button when the item is place. If you change your mind, drag the item to the trashcan. Click the trashcan to clear all your answers.
Subtract the following polynomials, then place the answer in the proper location on the grid. Write your answer in descending powers of x.
Subtract 2x2 - 6x - 4
from 4x2 - 4x + 3.
The answer to subtracting the two polynomials is 2x2 - 10x - 7. The process of subtracting polynomials is like that of subtracting any other type of numerical expression.
What are polynomials?Polynomials are mathematical expressions consisting of variables, coefficients, and exponents. They are used to represent a variety of functions, such as polynomial equations, rational equations, and trigonometric functions.
In this case, our like terms are 2x2 and 4x2, and -6x and -4x, and -4 and +3. We begin by subtracting the coefficients of the like terms. We subtract the coefficient of the term with the highest power first. In this case, that is 2x2 and 4x2, we subtract 2 from 4 to get 2. Next, we subtract the coefficients of the terms with the second highest power. This is -6x and -4x, so we subtract -6 from -4 to get -2. Thus, our answer now reads 2x2 -2x.
Finally, we subtract the coefficients of the terms with the lowest power. This is -4 and +3, so we subtract -4 from 3 to get -7. Thus, our answer now reads 2x2 -2x -7.
This answer can then be placed in the proper position on the grid.
For more questions related to coefficients
https://brainly.com/question/28872453
#SPJ1
Write a cosine function that has an amplitude of 3, a midline of y = 4 and a period of 2/3
Answer:
[tex]y=3cos(3\pi x)+4[/tex]
Step-by-step explanation:
[tex]f(x)=cos(x)\\[/tex]
[tex]A(f(Bx+C)+D)[/tex]
The outside constants, A & D stretch and shift vertically. The inside constants, B & C stretch and shift horizontally. B & C work oppositely, basically multiplying by B stretches by a factor of 1/B and similarly adding C shifts f(x) horizontally to the left.
[tex]f(x)=cos(x) \text{ The function which we are transforming}\\\text{It currently has a amplitude of 1, time period of $2\pi$ and mid line at $y=0$}[/tex]
[tex]A=3 \text{ As we want to stretch it by 3 units vertically.}\\\text {To find B:}\\T' = T*(1/B)\\\text{Where $T'$ is new time period and T is existing time period}\\2/3=2\pi*(1/B)\\B=3\pi\\\text{C is not needed}\\D=4 \text{ To shift function by 4 units up}[/tex]
I hope this helps
Please help it’s urgent!!! Pls help!!! Will give brainliest!!Tina purchased a new refrigerator
on a payment plan. Four months after purchasing the refrigerator, the balance was $630. Six months after purchasing the refrigerator,
the balance was $520.
Write an equation that models the balance y after t months.
y = _t + _
Answer:
We can use the slope-intercept form of a linear equation to model the balance y after t months, where the slope represents the rate of change of the balance and the y-intercept represents the initial balance.
The initial balance (y-intercept) is the amount Tina borrowed to buy the refrigerator, which we don't know. But we can find the slope using the two data points provided:
Four months: balance = $630
Six months: balance = $520
The change in the balance over the two-month period is:
$520 - $630 = -$110
The slope of the line is the rate of change of the balance per month, which is:
slope = Δy/Δt = (-$110)/(6-4) = -$55/month
Using the point-slope form of a linear equation, we can plug in one of the data points to find the y-intercept:
y - 630 = -$55(t - 4)
y - 630 = -$55t + 220
y = -$55t + 850
Therefore, the equation that models the balance y after t months is:
y = -$55t + 850.
Which equations have the same value of x as Three-fifths (30 x minus 15) = 72? Select three options. Group of answer choices
A 50 x minus 25 = 72
B 18 x minus 9 = 72
C 18 x minus 15 = 72
D 3 (6 x minus 3) = 72
E x = 4.5
The following equations will have the same value of x as the one provided:
(B) 18x - 9 = 72; (D) 3(6x - 3) = 72; (E) x = 4.5
What are equations?A mathematical statement that uses the word "equal to" between two expressions with the same value is called an equation.
Like 3x + 5 = 15, for instance.
Equations come in a wide variety of forms, including linear, quadratic, cubic, and others.
So, the given equation is:
3/5(30x-15)=72
Now, we have:
3/5 * 30x - 3/5 * 15 = 72
18x - 9 = 72
Using common 3 as an example, we have the following on the left side of the equation:
3(6x-3) = 72
6x-3 = 72/3
6x-3 = 24
6x = 24+3
6x = 27
x = 27/6
x = 9/2
x = 4.5
Therefore, the following equations will have the same value of x as the one provided:
(B) 18x - 9 = 72; (D) 3(6x - 3) = 72; (E) x = 4.5
Know more about equations here:
brainly.com/question/2972832
#SPJ1
the average rent in a city is $1,510 per month with a standard deviation of $210. assume rent follows the normal distribution. [you may find it useful to reference the z table.] a. what percentage of rents are between $1,300 and $1,720?
The percentage of rents between $1,300 and $1,720 is 34.13%.
To calculate this, we need to use the z-score formula to convert the rent range into a z-score range. The z-score formula is (x-μ)/σ, where x is the rent range, μ is the mean rent and σ is the standard deviation.
To calculate the lower z-score, the formula becomes (1300-1510)/210 = -1.19.
To calculate the higher z-score, the formula becomes (1720-1510)/210 = 1.14. The z-score of -1.19 to 1.14 corresponds to 34.13% according to the z-table. Therefore, 34.13% of rents are between $1,300 and $1,720.
To know more about z-score click on below link:
https://brainly.com/question/15016913#
#SPJ11
Really appreciated :))) 25 points (reupload)
Answer:
a)30
b)25
Step-by-step explanation:
ratio of red socks and total sock is 1:6 so, lets show this as,
1k and 6k.
1k-------5
6k------x
x=30
a)total socks = 30
b)black socks =total-red socks=30-5=25
Determine how many places the following 2 conic intersect at and if they intersect find the point or points of intersection. Solve the system over the real numbers for 19 and 20. x^(2)+y^(2)=34 3x-3y=6
The intersection points of the two conics are therefore[tex](1 + √14, -1 + √14)[/tex]and [tex](1 - √14, -1 - √14).[/tex]Hence, the two conics intersect at two points.
The point or points of intersection and the number of places the following 2 conic intersect is to be determined. The system over the real numbers for [tex]x² + y² = 34 and 3x - 3y = 6[/tex] is to be solved.
To determine how many points the following 2 conic intersect at, the two equations must be solved simultaneously. The points of intersection can then be determined by substituting the value of x or y into the other equation and solving for the remaining variable.The equation 3x - 3y = 6 is the equation of a straight line. Solving the equation for y, [tex]y = x - 2[/tex].
So the line passes through the point (0, -2) and (2, 0) on the x-axis. Now, substitute the value of y into the equation x² + y² = 34 to get[tex]x² + (x - 2)² = 34[/tex], expanding this gives 2x² - 4x - 26 = 0, which simplifies to x² - 2x - 13 = 0.The solution to the quadratic equation [tex]x² - 2x - 13 = 0[/tex] is given as[tex]x = 1 + √14, 1 - √14[/tex]. The corresponding value of y for each x can be calculated by substituting the value of x into the equation y = x - 2.
for such more questions on points of intersection
https://brainly.com/question/28950927
#SPJ11
For a school field trip, a charter bus company charges a $50 reservation fee for the group, plus an additional $12 per student. Let n
represent the number of students going on the field trip.
The expression that best represents the total cost of the charter bus for the field trip is 12n + 50
Which expression best represents the total cost of the charterThe total cost of the charter bus for the field trip consists of a $50 reservation fee and an additional $12 per student.
If n represents the number of students going on the field trip, then the expression for the total cost can be written as:
Total cost = 12n + 50
This expression represents the variable cost of the charter bus, which depends on the number of students going on the field trip.
The fixed cost of $50 is added to the variable cost to give the total cost.
Read more about linear function at
https://brainly.com/question/30318449
#SPJ1
Mai drove 355 miles using 17 gallons of gas. At this rate, how many gallons of gas would she need to drive 284 miles?
Answer: We can use a proportion to solve the problem:
17 gallons / 355 miles = x gallons / 284 miles
Cross-multiplying, we get:
17 * 284 = 355 * x
4844 = 355x
x = 13.66 (rounded to two decimal places)
Therefore, Mai would need approximately 13.66 gallons of gas to drive 284 miles at the same rate.
Step-by-step explanation:
Bob can afford to deposit $400 a month into a retirement account that compounds interest monthly with an APR of 1.8%. His plan is to have $200,000 saved so that he can then retire. Approximately how long will it take him to reach this goal?
it will take Bob approximately 47.3 years to save $200,000 for his retirement.
How to find?
To determine the time it will take Bob to reach his retirement goal of $200,000, we can use the formula for compound interest:
A = P(1 + r/n)²(nt)
where:
A = the final amount
P = the initial principal (deposit)
r = the annual interest rate (as a decimal)
n = the number of times the interest is compounded per year
t = the time (in years)
In this case, we have:
P = $400 (monthly deposit)
r = 1.8% (annual interest rate, compounded monthly)
n = 12 (compounded monthly)
A = $200,000
We can solve for t by substituting the given values and solving for t:
200,000 = 400(1 + 0.018/12)²(12t)
500 = (1 + 0.0015)²(12t)
log(500) = 12t log(1.0015)
t = log(500) / (12 log(1.0015))
t ≈ 47.3
Therefore, it will take Bob approximately 47.3 years to save $200,000 for his retirement.
To know more about compound interest related question visit:
https://brainly.com/question/14295570
#SPJ1
I need help with this please ASAP people keep on skipping I need help
Answer:
To create a line plot for this data, we can first convert all the fractions to a common denominator, such as eighths:
Monday: 6/8 of an hour
Wednesday: 4/8 of an hour
Friday: 2/8 of an hour
Sunday: 4/8 of an hour
Then, we can draw a number line with tick marks representing each day of the week and plot a dot for each amount of time spent working out:
0 1 2 3 4
|---------|---------|---------|---------| <- Number line
. .
. .
. .
. .
To find out how much time June should work out each day to spend an even amount of time working out, we can first find the total amount of time she spent working out:
6/8 + 4/8 + 2/8 + 4/8 = 16/8 = 2 hours
Since there are four days she worked out, to find out how much time she should work out each day, we can divide the total time by four:
2 hours ÷ 4 = 0.5 hours
Therefore, June should work out for 0.5 hours, or 30 minutes, each day to spend an even amount of time working out.
the amount of jen's monthly phone bill is normally distributed with a population mean of $86 and a population standard deviation of $9. between what two values are 68.26% of her phone bills? $ and $ . (your answers should be integers - no decimal places.)
If the amount of jen's monthly phone bill is normally distributed with a mean of $86 and standard deviation of $9, Between the values of $77 and $95 inclusive, 68.26% of Jen's phone bills are expected to fall.
To find the values between which 68.26% of Jen's phone bills lie, we need to use the properties of the normal distribution and the empirical rule.
The empirical rule states that for a normal distribution, approximately 68% of the data lie within one standard deviation of the mean. Therefore, we can find the values between which 68.26% of Jen's phone bills lie by calculating the range of values that are one standard deviation away from the mean.
Using the given population mean of $86 and population standard deviation of $9, we can calculate one standard deviation as follows:
One standard deviation = population standard deviation = $9
To find the lower and upper bounds for 68.26% of Jen's phone bills, we can subtract and add one standard deviation from the mean, respectively:
Lower bound = population mean - one standard deviation = $86 - $9 = $77
Upper bound = population mean + one standard deviation = $86 + $9 = $95
To learn more about distribution click on,
https://brainly.com/question/5436053
#SPJ4
The length of the shadow of a pole having 20m height is 20√3m. Find the length of the shadow of a pole of height 25√3m at the Same time.
The length of the shadow of the second pole is 75 meters, was solved by using the concept of similar triangles.
What is the concept of similar triangles?The concept of similar triangles is based on the idea that if two triangles have the same shape but different sizes, they are called similar triangles. This means that their corresponding angles are equal and their corresponding sides are in proportion.
What are triangles?A triangle is a 2-dimensional geometric shape with three sides, three angles, and three vertices. It is one of the basic shapes in geometry and is used to describe many real-world objects and phenomena.
In the given question,
Length of shadow of first pole / Height of first pole = Length of shadow of second pole / Height of second pole
Substituting the given values, we get:
20√3 / 20 = x / 25√3
Simplifying, we get:
x = (20√3 / 20) * 25√3
x = 25*3
x = 75
Therefore, the length of the shadow of the second pole is 75 meters.
To know more Triangles, visit:
https://brainly.com/question/2773823
#SPJ1