select light for the type of wave, adjust the wavelength so that the light is red, and increase the amplitude of the light to the max. then, select the start button at the source location to begin producing the waves. light is a form of electromagnetic wave, containing oscillating electric and magnetic fields. the wave amplitude detector mentioned above shows how the electric field oscillates in time at the location of the probe. the amplitude of the wave at the location of the probe is equal to the maximum electric field measured. how does the amplitude of the wave depend on the distance from the source? select light for the type of wave, adjust the wavelength so that the light is red, and increase the amplitude of the light to the max. then, select the start button at the source location to begin producing the waves. light is a form of electromagnetic wave, containing oscillating electric and magnetic fields. the wave amplitude detector mentioned above shows how the electric field oscillates in time at the location of the probe. the amplitude of the wave at the location of the probe is equal to the maximum electric field measured. how does the amplitude of the wave depend on the distance from the source? the amplitude decreases with distance. the amplitude increases with distance. the amplitude is constant.

Answers

Answer 1

As mentioned, light is a form of electromagnetic wave. The wavelength of light determines its color, with longer wavelengths appearing red and shorter wavelengths appearing blue or violet. The amplitude of the light wave refers to its intensity or brightness. When the amplitude is increased, the light appears brighter.



Now, as for the question of how the amplitude of the wave depends on the distance from the source, it is important to note that in free space, the amplitude of the light wave decreases with distance from the source.

This is because the energy of the wave is spread out over an increasingly larger area as it moves away from the source. Therefore, the further away you are from the source, the less intense the light will appear.

Learn more about amplitude here:

brainly.com/question/8662436

#SPJ11


Related Questions

how would you complete the pivot table design below? match the pivot table fields to the correct drag areas.

Answers

The pivot table interface where you can drag and drop fields to create the table's layout.

What are the drag areas in a pivot table?

The drag areas in a pivot table are the specific sections of the pivot table interface where you can drag and drop fields to create the table's layout. The four main drag areas in a pivot table are:

Rows: Fields dragged into this area become the rows in the pivot table.Columns: Fields dragged into this area become the columns in the pivot table.Values: Fields dragged into this area become the values to be calculated and displayed in the pivot table.Filters: Fields dragged into this area allow you to filter the data displayed in the pivot table based on specific criteria.

Learn more about Pivot table

brainly.com/question/29786915

#SPJ11

a smll airplane leaves a airport over an overast day . it is later sighted 250 km away in a direction making an angle of 22 degrees is of north. how far north is the airplane sighted from the airport?

Answers

The small airplane is sighted approximately 231.8 km north of the airport, Given that the airplane left the airport and was later seen 250 km away, making an angle of 22 degrees east of north, we can treat this situation as a right-angled triangle with the angle between the north direction and the airplane's position being 22 degrees.

To find the distance north, we'll use the cosine function. The formula for cosine is:

cos(angle) = adjacent side / hypotenuse

In this case, the adjacent side represents the distance north, and the hypotenuse is the total distance of 250 km. We want to find the adjacent side, so we'll rearrange the formula as:

adjacent side = hypotenuse * cos(angle)

Plugging in the values:

adjacent side = 250 km * cos(22 degrees)

Ensure your calculator is set to degrees mode, and then compute the cosine value. Multiply it by 250 km:

adjacent side ≈ 250 km * 0.9272 ≈ 231.8 km

The small airplane is sighted approximately 231.8 km north of the airport.

learn more about right-angled triangles here: brainly.com/question/19040476

#SPJ11

observationally, how can we decide which of the four general expansion models best describes the present-day universe?

Answers

We can choose which of the four general expansion models best describes the current universe by observational analysis of precise measurements of the distances between galaxies.

The most effective method of observation is to precisely measure the separations between galaxies. White dwarf supernovae are the ideal standard candles for such observations at such distances.

Everything in the cosmos was compressed into a singularity, a point of infinite heat and density, around 13.7 billion years ago. Our cosmos suddenly began to expand explosively, expanding faster than the speed of light.

Read more about general expansion at

https://brainly.com/question/7451040

#SPJ4

A point source emitting S neutrons/sec is placed at the center of a sphere of moderator of radius R. Show that the flux in the sphere is given by phi (r) = S/4 [I D sin h (R + d/L) sin h(1/L (R + d -r))/r where r is the distance from the source, Show that the number of neutrons leaking per second from the surface of the sphere is given by No.leaking/sec = (R + d)S/L sin h(R + d/L) What is the probability that a neutron emitted by the source escapes from the surface?

Answers

The probability that a neutron emitted by the source escapes from the surface is P = No.leaking/sec / S = (R+d)/L sin h((R+d)/L)

The flux of neutrons in the sphere can be calculated using the diffusion equation and the boundary conditions. The solution is given by:

phi(r) = S/4πD [1 - (r/R) sin h(R/d) sin h((r-d)/L)]

where D is the diffusion coefficient, and d is the thickness of the boundary layer. By simplifying the equation and using trigonometric identities, we can rewrite it as:

phi(r) = S/4 [sin h((R+d)/L) sin h((R+d-r)/L)]/r

This is the desired expression for the flux.

To calculate the number of neutrons leaking per second from the surface, we integrate the flux over the surface area of the sphere. The result is:

No.leaking/sec = (R+d)S/L sin h((R+d)/L)

This expression gives the rate of leakage of neutrons from the surface.

The probability that a neutron emitted by the source escapes from the surface is the ratio of the leaking neutrons to the total number of neutrons emitted per second. Therefore, the probability is:

P = No.leaking/sec / S = (R+d)/L sin h((R+d)/L)

This gives the probability of a neutron escaping from the surface as a function of the sphere's radius and diffusion length.

For more such answers on neutron

https://brainly.com/question/26952570

#SPJ11

A helicopter moves past several clouds at a velocity of 5 km/h in the north direction. The clouds move past the ground at a velocity of 3.5 hours north how fast is the helicopter going past the ground?

Answers

The helicopter is moving at a velocity of 8.5 km/h in the north direction with respect to the ground.

What is the velocity of the helicopter ?

The velocity of the helicopter with respect to the ground is calculated as follows;

Velocity of helicopter in the north direction = 5 km/h

Velocity of clouds moving past the ground = 3.5 km/h in the north direction

Vr/g = Vn + Vc

where;

Vr/g is the velocity of helicopter with respect to the ground Vn is  the velocity of helicopter in the north Vc is the velocity of clouds moving past the ground

Vr/g = 5 km/h + 3.5 km/h

Vr/g = 8.5 km/h

Learn more about ground velocity here: https://brainly.com/question/24208048

#SPJ1

Work Energy and Power Crossword

Answers

The crosswords based on the information will be:

5. Mechanical energy

Work

Solar radiation

Watts (W)

Wind turbine

Hydroelectric power

Thermal energy

Capacitor

Increase its speed/velocity

Electromagnetic energy

Down

Conservation of energy

Lever

Newtons (N)

Kinetic energy

Foot-pounds (ft-lb) or British Thermal Units (BTUs)

Power

Geothermal energy

Field

Increase its height

Joules (J)

Friction

Radiant energy

Potential energy

Lever

Nuclear energy

Mass

What is mechanical energy?

Mechanical energy (kinetic energy or potential energy) is the energy of either an object in motion or the energy that is stored in objects by their position.

Mechanical energy is also a driver of renewable energy. Many forms of renewable energy rely on mechanical energy to adequately produce power or convert energy.

Learn more about energy on

https://brainly.com/question/30403434

#SPJ1

light trucks have a high center of gravity which increases their susceptibility to_______.

Answers

The answer is that light trucks have a high center of gravity which increases their susceptibility to rollovers.


A high center of gravity means that the mass of the vehicle is concentrated higher above the ground. This causes the vehicle to be less stable during turns or abrupt maneuvers, making it more prone to tipping over or rolling. In the case of light trucks, their design and construction lead to this high center of gravity, which ultimately increases their risk of experiencing rollovers compared to other vehicles with a lower center of gravity. It is essential for drivers of light trucks to be aware of this risk and drive cautiously, especially during turns or on uneven surfaces, to minimize the chances of a rollover accident.

To know more about gravity visit:

brainly.com/question/31321801

#SPJ11

what is ceres? what is ceres? a dwarf planet that orbits the sun in the kuiper belt beyond the orbit of pluto the largest known asteroid the largest moon of pluto the first asteroid to have been visited by a spacecraft

Answers

Ceres is not a dwarf planet that orbits the sun in the Kuiper Belt beyond the orbit of Pluto. Instead, it is the largest known asteroid in our solar system, located in the main asteroid belt between Mars and Jupiter.

Ceres was also the first asteroid to have been visited by a spacecraft, NASA's Dawn mission. It is not the largest moon of Pluto, as Pluto's largest moon is Charon.

It is the largest known asteroid and was the first asteroid to have been visited by a spacecraft, specifically NASA's Dawn mission in 2015. Please note that Ceres is not located in the Kuiper Belt, nor is it the largest moon of Pluto.

To know more about ceres, refer

https://brainly.com/question/23117824

#SPJ11

What is the wave speed of a traveling wave with a period of 2s and a wavelength of 6m?


What is the force exerted by a spring with spring constant 50N/m on a mass that was stretched to the right 2m?


List 5 examples of waves making sure to have at least one electromagnetic wave, 1 longitudinal wave, and 1 transverse wave.


Draw a diagram of the doppler effect. (If you’re completing this electronically, draw a picture and then take a picture of it to put in here)



What is the frequency of a wave traveling at 17m/s with wavelength 51m?


What is the spring constant in a spring that exerts a 50N force after a displacement of -.5m?


What is the wavelength of a wave traveling at 5m/s with a frequency of 40 Hz?



If frequency and period are inverses, what is the period of a wave with frequency of .1 Hz?



Eli and Bryce watch a pendulum swing back and forth 10 total times in 35 seconds. What is the period of the pendulum?



What is the period of the Earth making revolutions around the Sun in seconds? What is the frequency in Hz?





Is this wave mechanical or electromagnetic? Can you tell?
Is this wave transverse or longitudinal? Can you tell?
What is the amplitude?
What is the period?
What is the frequency?
If the wavelength is 7m, what is the wave speed?

Answers

Wavelength of the wave, λ = 6 m

Time period of the wave, T = 2s

1) Force exerted by the spring,

F = -kx

F = -50 x 2

F = -100 N    the -ve sign indicates the restoring force.

2) Frequency of the wave,

f = v/λ

f = 17/51

f = 0.33 Hz

3) Spring constant in the spring,

k = - F/x

k = -50/-5

k = 10 N/m

4) Wavelength of the wave,

λ = v/f

λ = 5/40

λ = 0.125 m

5) Time period of the wave,

T = 1/f

T = 1/0.1

T = 10 s

6) Period of the pendulum,

T = t/n

T = 35/10

T = 3.5 s

To learn more about time period, click:

https://brainly.com/question/15780863

#SPJ1

As the diameter of the wire increases, the AWG number_____, and the resistance of the conductor_____.

Answers

As the diameter of the wire increases, the AWG number decreases, and the resistance of the conductor decreases.

AWG (American Wire Gauge) is a standard used to measure the diameter of wires, with smaller numbers indicating larger wire diameters.

Resistance is a measure of how difficult it is for an electric current to flow through a wire, with higher resistance causing a reduction in the amount of current that can pass through the wire.

When the wire diameter increases, the cross-sectional area of the wire also increases, which means there is more space for the electric current to flow through, resulting in lower resistance.

Therefore, a larger diameter wire has a lower AWG number and lower resistance, making it a more efficient conductor of electric current.

To learn more about conductor, click here:

https://brainly.com/question/18084972

#SPJ11

consider the photoproduction of kaons in the center of mass. what is the minimum momentum required for this reaction to go in the center of mass?

Answers

The minimum momentum of the photon required for the photoproduction of kaons in the center of mass is approximately 570 MeV/c.

The minimum momentum required for the photoproduction of kaons in the center of mass can be determined using the conservation of energy and momentum. In this reaction, a photon collides with a proton to produce a kaon and a residual nucleus. Assuming that the proton is initially at rest, the minimum momentum of the photon required for this reaction to go in the center of mass can be calculated using the energy-momentum relation: E^2 = p^2c^2 + m^2c^4

where E is the energy of the photon, p is its momentum, c is the speed of light, and m is the rest mass of the proton. The energy of the photon required to produce a kaon with a mass of approximately 500 MeV/c^2 can be estimated as follows: E = m(K) + m(p) - m(nucleus)
Assuming that the residual nucleus has a mass equal to that of the original proton, we get:
E = 500 + 938 - 938 = 500 MeV

Substituting this value of E into the energy-momentum relation and solving for p, we get:
p = sqrt(E^2/c^2 - m^2c^2) = 570 MeV/c

To know more about momentum visit:-

https://brainly.com/question/30677308

#SPJ11

Is it speed, velocity, or acceleration of a football just after being kicked?

Answers

It is velocity of a football just after being kicked. Velocity is the speed and direction of an object, and it is a vector quantity, meaning it has both magnitude and direction.

When a football is kicked, it has a certain velocity in a particular direction, which can be measured using a speedometer or other measuring device. Acceleration, on the other hand, refers to the rate of change of velocity, so it would only be relevant if the football's velocity was changing after being kicked (for example, if it were slowing down due to air resistance or gravity).

Learn more about Velocity ,

https://brainly.com/question/17127206

#SPJ4

A ray of 610 nm light goes from air into fused quartz at an incident angle of 55.0 degrees. At what incident angle must 470nm light enter flint glass to have the same angle of refraction?

Answers

The incident angle of 470 nm light in flint glass that would result in the same angle of refraction as the 610 nm light in fused quartz is approximately 46.8 degrees.

The incident angle of the 610 nm light ray in fused quartz can be calculated using Snell's law:

n_air * sin(theta_air) = n_quartz * sin(theta_quartz)

where n_air is the refractive index of air (approximately 1), n_quartz is the refractive index of fused quartz for 610 nm light (approximately 1.46), theta_air is the incident angle in air (55.0 degrees), and theta_quartz is the angle of refraction in fused quartz.

Solving for theta_quartz, we get:

theta_quartz = sin^-1((n_air/n_quartz) * sin(theta_air))

theta_quartz = sin^-1((1/1.46) * sin(55.0))

theta_quartz = 36.1 degrees

Now, to find the incident angle of 470 nm light in flint glass that would result in the same angle of refraction, we use Snell's law again:

n_air * sin(theta_air) = n_flint * sin(theta_flint)

where n_flint is the refractive index of flint glass for 470 nm light (approximately 1.62) and theta_flint is the incident angle in flint glass.

We want theta_flint to be the same as theta_quartz, so we set them equal to each other:

theta_flint = theta_quartz

sin(theta_air) / sin(theta_flint) = n_flint / n_quartz

sin(55.0) / sin(theta_flint) = 1.62 / 1.46

sin(theta_flint) = sin(55.0) * 1.46 / 1.62

theta_flint = sin^-1(sin(55.0) * 1.46 / 1.62)

theta_flint = 46.8 degrees

To know more about incident angle click here

brainly.com/question/13200721

#SPJ11

the table below shows latent heat of fusion values for 5 objects. all 5 objects have the same mass and are at their respective melting points. which one of the objects will require the greatest amount of heat to melt?

Answers

The latent heat of fusion is the amount of heat required to change a substance from a solid to a liquid at its melting point. The greater the value of latent heat of fusion, the more energy is required to melt the substance. Therefore, the object with the highest value of latent heat of fusion will require the greatest amount of heat to melt. Looking at the table, we can see that Object D has the highest value of latent heat of fusion, which means it will require the greatest amount of heat to melt compared to the other objects. It is important to note that all objects have the same mass and are at their respective melting points, so the difference in latent heat of fusion is the only factor affecting the amount of heat required for melting.
Hi there! To determine which object requires the greatest amount of heat to melt, you'll need to look for the highest "latent heat of fusion" value in the table. The latent heat of fusion represents the amount of heat needed to change a substance from a solid to a liquid at its melting point without changing its temperature. Since all 5 objects have the same mass and are at their respective melting points, the object with the highest latent heat of fusion value will require the most heat to melt. Simply identify the highest value in the table and that will be your answer.

To know more about latent heat of fusion visit:

brainly.com/question/30762921

#SPJ11

Two objects X and Y move directly towards each other. The objects have the same mass.

Object X has a velocity of 5. 0m/s to the right. Object Y has a velocity of 3. 0m/s to the left

Answers

The velocity of the combined object after the collision is 2.0 m/s to the right.

X and Y are two things that travel in the same direction. The mass of the things is the same. 5.0 m/s is the velocity of object x as it moves to the right. The velocity of object y to the left is 3.0 m/s. Objects x and y collide and adhere to one another. Following their collision, they both move at a speed of 1.0 m/s to the right.

Their velocity after colliding is 2.0 m / s to the right

What is the velocity during the collision?In a collision, the velocity change is always computed by subtracting the initial value from the final value.If an object is moving in one direction before a collision and rebounds or somehow changes direction, then its velocity after the collision has the opposite direction as before.Inelastic collisions occur when only the momentum is conserved but not the system's kinetic energy. Perfectly inelastic collisions happen when objects stick together and have a common velocity after collision.To solve for the final velocity in perfectly inelastic collisions, use v' = (m1v1 + m2v2)/m1 + m2.The magnitude of the relative velocity is the same before and after the collision.

To learn more about velocity, refer to:

brainly.com/question/25749514

#SPJ4

Full Question: Two objects X and Y move directly towards each other. The objects have the same mass.

Object X has a velocity of 5.0 m/s to the right. Object Y has a velocity of 3.0 m/s to the left.

Object X and object Y collide and stick together.

What is their velocity after colliding?

for every __________ degree drop in temperature, your tires lose one pound of air pressure.

Answers

For every 10-degree drop in temperature, your tires lose one pound of air pressure.

This is because as the temperature drops, the air inside the tire contracts, causing the pressure to decrease. It is important to regularly check your tire pressure, especially during colder months, as underinflated tires can lead to decreased fuel efficiency, poor handling, and even increased risk of accidents.

You can check your tire pressure using a tire pressure gauge, which can be purchased at most auto stores. It is also important to note that tire pressure should be checked when the tires are cold, as driving even a short distance can cause the tires to heat up and the pressure to increase, giving an inaccurate reading. Maintaining proper tire pressure can not only improve safety but also extend the lifespan of your tires.

To know more about air pressure click here:

https://brainly.com/question/15189000

#SPJ11

A 2 Kg Particle Is Given A Displacement Of

F=(3 M)I+ (3 M)J - (2 M)K
During The Displacement, A Constant Force F = (2 N)I - (1 N)I + (1 N) Acts On The Particle.

a. Find The Work Done By F For This Displacement
b. Find The Component Of F In The Direction Of This Displacement

Answers

The work done by F for this displacement is 1 N·M. The component of F in the direction of this displacement is (3/4) N·M.

a. The work done by a force F over a displacement d is given by the dot product of the force and displacement vectors: W = F · d. Here, F = (2 N)I - (1 N)J + (1 N)K and d = (3 M)I + (3 M)J - (2 M)K. So, the work done by F is:

W = F · d = (2 N)(3 M) + (-1 N)(3 M) + (1 N)(-2 M) = 6 N·M - 3 N·M - 2 N·M = 1 N·M

Therefore, the work done by F for this displacement is 1 N·M.

b. To find the component of F in the direction of this displacement, we need to project F onto the direction of d. The projection of a vector F onto a direction vector d is given by the dot product of F and the unit vector in the direction of d, which is given by d/|d|. Here, d/|d| = (1/4) [(3 M)I + (3 M)J - (2 M)K]. So, the component of F in the direction of d is:

F || d = F · (d/|d|) = [(2 N)I - (1 N)J + (1 N)K] · [(1/4)(3 M)I + (1/4)(3 M)J - (1/4)(2 M)K]

= (3/2) N·M - (3/4) N·M - (1/4) N·M = (3/4) N·M

Therefore, the component of F in the direction of this displacement is (3/4) N·M.

To know more about work done refer to-

https://brainly.com/question/31655489

#SPJ11

at what frequencies (in radians per second) is the magnitude of the transfer function equal to unity? express your answers in radians per second to three significant figures. enter your answers in ascending order separated by a comma.

Answers

The magnitude of the transfer function is equal to unity when the gain of the system is equal to 1 or 0dB. This occurs at the system's resonant frequency or cutoff frequency depending on the type of system.

The resonant frequency is the frequency at which the system's response is maximum and occurs in systems with a natural frequency such as RLC circuits. The cutoff frequency is the frequency at which the system's response begins to roll off and occurs in systems with a bandwidth such as filters.

Therefore, to find the frequencies at which the magnitude of the transfer function is equal to unity, we need to determine the resonant or cutoff frequencies of the system. This can be done by analyzing the transfer function and identifying the frequency-dependent terms.

Once the resonant or cutoff frequencies have been determined, we can convert them to radians per second by multiplying by 2π. We express our answers in ascending order separated by a comma and to three significant figures.

In summary, the frequencies at which the magnitude of the transfer function is equal to unity depend on the resonant or cutoff frequencies of the system and can be found by analyzing the transfer function. We then convert these frequencies to radians per second to express our answers.

Learn more about bandwidth here:

brainly.com/question/28436786

#SPJ11

what is the electric field amplitude of an electromagnetic wave whose magnetic field amplitude is 1.3 mt ?

Answers

The answer is that the electric field amplitude of an electromagnetic wave can be calculated using the formula:

E = c * B

Where E is the electric field amplitude, B is the magnetic field amplitude, and c is the speed of light.

Using this formula and plugging in the given magnetic field amplitude of 1.3 mt, we get:

E = (3 x 10⁸ m/s) * (1.3 x 10⁻³ T)

Simplifying this equation, we get:

E = 3.9 x 10⁵ V/m

Therefore, the electric field amplitude of an electromagnetic wave whose magnetic field amplitude is 1.3 mt is 3.9 x 10⁵V/m.

This formula relates the electric and magnetic fields of an electromagnetic wave, stating that they are proportional to each other and are both perpendicular to the direction of wave propagation. By knowing the magnetic field amplitude and using the speed of light as a constant, we can easily calculate the electric field amplitude of the wave.

To know more about  electromagnetic wave  visit:

brainly.com/question/3101711

#SPJ11

Lab Report
Energy
It’s time to complete your Lab Report. Save the lab to your computer with the correct unit number, lab name, and your name at the end of the file name (e.g., U1_ Lab_Energy_Alice_Jones.doc).
Introduction
1. What was the purpose of the experiment?
Type your answer here:
2. What were the independent, dependent, and control variables in your investigation? Describe the variables for the first part of the experiment.
Type your answer here:

Answers

The purpose of the experiment conducted in Lab Report 1 was to investigate the effects of different levels of light on plant growth. Specifically, the experiment aimed to determine if plants exposed to different levels of light will grow at different rates.

In terms of variables, the independent variable in the investigation was the amount of light exposure, which was manipulated by placing the plants under different levels of light.

The dependent variable was the growth of the plants, which was measured by recording the height of each plant at specific intervals throughout the experiment. The control variable in this investigation was the type of plant used and the conditions under which they were grown, such as the amount of water and soil used.

In the first part of the experiment, the variables remained the same as described above. However, the independent variable was divided into three levels: low light, moderate light, and high light. The plants were randomly assigned to one of the three groups and placed under the corresponding light conditions.

The growth of the plants in each group was then recorded and compared to determine if there was a significant difference in growth rates between the groups.

For more such questions on the experiment:

https://brainly.com/question/30055326

#SPJ11

a tire’s ______ grade represents the tire’s ability to cool itself or withstand heat.

Answers

A tire's temperature grade represents its ability to cool itself or withstand heat.

Carbon and tungsten are the most common heat-resistant elements known. Their melting points are approximately 3400 to 3800 degrees Celsius. Ceramic materials as well are known to be heat-resistant inorganic solids. Ceramics are made up of metallic and nonmetallic elements.

Equipment that is designed to withstand high heat and hot temperatures during the cooking process.

From the given options A) Saute pans (also called frying pans) is cooking equipment designed to withstand high heat.

It's used for cooking over high heat, so it should be thick enough not to warp and be able to conduct heat evenly,A tire's temperature grade represents the tire's ability to cool itself or withstand heat.

learn more about withstand heat.

https://brainly.com/question/4912952

#SPJ11

as rotating winds pull into a tighter and tighter spiral, wind speeds increase due to the conservation of

Answers

As rotating winds pull into a tighter and tighter spiral, wind speeds increase due to the conservation of angular momentum.

When no external torques are acting on the system, the physical attribute of angular momentum, which describes the rotational motion of an item, is preserved. When air travels inward towards the centre of rotation in rotating winds, such as those in a tornado or cyclone, the angular momentum is conserved, spiralling the winds and tightening the storm system.

The circular path's radius reduces as the air moves in closer proximity to the centre of rotation, which lowers the moment of inertia. The conservation of angular momentum states that in order to preserve the same amount of angular momentum as the moment of inertia falls, the angular velocity must rise.

Read more about angular momentum on:

https://brainly.com/question/4126751

#SPJ4

what is the peak current if the inductance l is doubled? express your answer with the appropriate units.

Answers

The peak current will decrease if the inductance is doubled. This is because of the equation V = L di/dt, where V is the voltage applied to the inductor, L is the inductance, di/dt is the rate of change of current. If L is doubled, then the rate of change of current will be halved for a given voltage, which means that the peak current will also be halved. Therefore, the peak current is inversely proportional to the inductance. The units for peak current are amperes (A).

We need to consider the equation for the current in an inductor:

I = V * t / L

where I is the current, V is the voltage, t is time, and L is the inductance.

Now, let's double the inductance, making it 2L:

I' = V * t / (2L)

Comparing the two equations, we can see that the new current (I') will be half of the original current:

I' = I / 2

So, the peak current when the inductance is doubled will be half of the original peak current. Make sure to use the appropriate units for current, which is typically Amperes (A).

To know more about inductance visit:

https://brainly.com/question/29981117

#SPJ11

A 400-w computer (computer plus monitor) is turned on 8.0 hours per day. if electricity costs 10 cents per kwh, how much does it cost to run the computer annually?

Answers

It would cost $116.80 per year to run the computer and 1168 kWh/year energy consumed annually.

First, we need to calculate the energy consumed by the computer in 8 hours:

Power (in kilowatts) = 400 W / 1000 = 0.4 kW

Energy consumed in 8 hours = Power x Time = 0.4 kW x 8 hours = 3.2 kWh

Next, we can calculate the energy consumed annually:

Energy consumed annually = Energy consumed in 8 hours x Number of 8-hour periods in a year

Energy consumed annually = 3.2 kWh/day x 365 days/year = 1168 kWh/year

Finally, we can calculate the cost to run the computer annually:

Cost = Energy consumed x Cost per kWh

Cost = 1168 kWh/year x $0.10/kWh = $116.80/year

Know more about energy here:

https://brainly.com/question/1932868

#SPJ11

you ride your bike at 10.5 m/s directly away from your neighbor's trumpet sound and toward the sound of another neighbor's trombone and find that you hear both instruments at exactly the same pitch. the trumpeter is practicing her middle c at a frequency of 262 hz . what frequency is the trombonist producing? the speed of sound in air is 339 m/s .

Answers

The trombonist is producing a sound wave with a frequency of 262 Hz.

The first thing we need to do is to find the frequency of the sound wave that is reaching you from your neighbor's trumpet. We can use the formula:

f = v / λ

where f is the frequency of the sound wave, v is the speed of sound in air, and λ is the wavelength of the sound wave. Since you are moving away from the trumpet, the frequency of the sound wave that you hear is lower than the frequency that the trumpeter is producing. This is because the sound waves are getting stretched out as they travel through the air, similar to the way that a spring would stretch out if you pulled on it.

To calculate the wavelength of the sound wave, we can use the formula:

λ = v / f

where λ is the wavelength, v is the speed of sound in air, and f is the frequency of the sound wave. We know that the frequency of the sound wave from the trumpet is 262 Hz, so we can plug that into the formula to get:

λ = 339 m/s / 262 Hz
λ = 1.29 m

Now that we know the wavelength of the sound wave from the trumpet, we can use that to find the frequency of the sound wave from the trombone. The two sound waves are in phase, which means that they are at the same point in their cycles at the same time. This is why they sound like they are at the same pitch. To be in phase, the sound waves must have the same wavelength. Since we know the wavelength of the sound wave from the trumpet, we can set that equal to the wavelength of the sound wave from the trombone:

λ trumpet = λ trombone

Using the formula for wavelength, we can rearrange this to:

f trumpet / v = f trombone / v

which simplifies to:

f trumpet = f trombone

This means that the frequency of the sound wave from the trombone is also 262 Hz. We can confirm this by using the formula for frequency with the wavelength that we found for the trumpet:

f = v / λ
f = 339 m/s / 1.29 m
f = 262 Hz

The trombonist is producing a sound wave with a frequency of 262 Hz.

To know more about sound waves, refer

https://brainly.com/question/1199084

#SPJ11

Congratulations!! You have just been selected as prospective commander of the Mars Orbital Mission (MOM). Your task is to place your spacecraft in circular orbit about Mars with an orbital period of 8 hours and 40 minutes. The mass of Mars is 6.45 x 1023 kg, and the radius of Mars is 3394 km. What will be the radius of your circular orbit?

Answers

The radius of the circular orbit should be approximately 11,582 km.

To place the spacecraft in a circular orbit about Mars with an orbital period of 8 hours and 40 minutes, the radius of the circular orbit should be approximately 11,582 km.

The radius of the circular orbit can be calculated using the formula for the orbital period of a satellite:

T = 2π√(r^3/GM)

where T is the orbital period, r is the radius of the orbit, G is the gravitational constant, and M is the mass of the central body (in this case, Mars).

Solving for r, we get:

r = (GMT^2/4π^2)^(1/3)

Substituting the given values, we get:

r = [(6.6743 × 10^-11 m^3/(kg s^2)) × (6.45 × 10^23 kg) × ((8 hours + 40 minutes) × 60 × 60 s/hour)^2 / (4π^2)]^(1/3)

Converting the time to seconds and performing the calculations, we get:

r = 11,582 km

Know more about circular orbit here;

https://brainly.com/question/29679142

#SPJ11

consider a wheatstone bridge circuit that has all resistances equal to 100 w. the resistance r1 is a strain gauge that cannot sustain a power dissipation of more than 0.25 w. what is the maximum applied voltage that can be used for the bridge circuit? at this level of bridge excitation, what is the bridge sensitivity?

Answers

The maximum applied voltage of the Wheatstone bridge is approximately 15.8 volts.  The bridge sensitivity is approximately 0.0004 V/V or 0.04%.

In order to determine the maximum applied voltage that can be used for the bridge circuit, we need to calculate the maximum current that can pass through the strain gauge (r1) without exceeding its power dissipation limit. Using the formula P = I^2*R, we can solve for the maximum current, which is approximately 0.158 amps. Then, using Ohm's Law (V = I*R), we can calculate the maximum applied voltage, which is approximately 15.8 volts.

At this level of bridge excitation, the bridge sensitivity can be determined by taking the ratio of the change in output voltage to the change in input voltage. Since all resistances in the circuit are equal, the sensitivity can be expressed as 2*deltaR/R, where deltaR is the change in resistance in the strain gauge due to the applied strain. Assuming a typical strain gauge has a sensitivity of 2 mV/V, we can calculate the bridge sensitivity to be approximately 0.0004 V/V or 0.04%. This means that for every 1 volt of applied voltage, the output voltage will change by 0.0004 volts or 0.04%.

Learn more about Wheatstone bridge here:

https://brainly.com/question/31431181

#SPJ11

Which of these vary for satellites in circular orbits?
kinetic energy.
momentum.
speed.
(none of the above)

Answers

For satellites in circular orbits, the term that varies is kinetic energy. The kinetic energy of a satellite depends on its mass and speed, which can differ for various satellites. However, the momentum and speed remain constant for a satellite in a circular orbit, as they maintain a consistent orbital velocity.

The variable term for satellites in circular orbits is kinetic energy. A satellite's mass and speed, which might vary for different satellites, are what determine how much kinetic energy it has. However, because a satellite in a circular orbit keeps a constant orbital velocity, its momentum and speed remain constant.

To know more about satellites click here:

https://brainly.com/question/2522613

#SPJ11

what are the three types of radiation as discovered by ernest rutherford? give in alphabetical order.

Answers

The three types of radiation discovered by Ernest Rutherford are alpha, beta, and gamma radiation.

In alphabetical order, the three types of radiation are:

1. Alpha radiation: These are helium nuclei consisting of 2 protons and 2 neutrons. They have a positive charge and are relatively large compared to other types of radiation. Alpha particles have low penetration power and can be stopped by a sheet of paper or the outer layer of human skin.

2. Beta radiation: These are high-energy electrons or positrons emitted by certain radioactive nuclei. Beta particles have a negative charge (for electrons) or positive charge (for positrons) and are smaller and more penetrating than alpha particles. They can be stopped by a sheet of aluminum or plastic.

3. Gamma radiation: These are electromagnetic waves with high energy and no charge. Gamma rays are the most penetrating form of radiation and can pass through several centimeters of lead or concrete. They require thick shielding to protect against exposure.

To know more about Ernest Rutherford  visit:

brainly.com/question/13934832

#SPJ11

If you heat a gas so that collisions are continually bumping electrons to higher energy levels, when the electrons fall back to lower energy levels the gas produces
an emission line spectrum.
emits a photon of a specific frequency.
an absorption line spectrum.

Answers

The type of spectrum that a gas produces when heated depends on whether it emits or absorbs photons. In the case of continually bumping electrons to higher energy levels, the gas produces an emission line spectrum.

When a gas is heated, its atoms and molecules gain kinetic energy and collide with each other, which can result in the excitation of electrons to higher energy levels. If these excited electrons subsequently return to lower energy levels, they emit photons of specific frequencies, producing an emission line spectrum. This process is known as emission spectroscopy.

On the other hand, if a gas is exposed to a continuous spectrum of light, such as white light, and the gas atoms or molecules absorb photons of specific frequencies that correspond to the energy differences between their energy levels, they can become excited. This results in an absorption line spectrum, where certain frequencies of the continuous spectrum are missing due to the absorbed photons. This process is known as absorption spectroscopy.

For more such questions on photons

https://brainly.com/question/30130156

#SPJ11

Other Questions
a kamikaze is the name of a fierce storm. from what language was this name derived? chinese taiwanese japanese korean find the vectors t, n, and b at the given point. r(t) = 8 cos t, 8 sin t, 8 ln cos t , (8, 0, 0) the results of grill-spector et al.s (2004) ""harrison ford"" study demonstrated that A student ran a distance of 3 1/2 miles each day for five days the student ran a distance of 4 1/4 miles each day for the next five days what was the total distance in miles the student ran darrion is five days In PYTHON, you are creating a guest list for a dinner party. Write a program that performs the tasks in (A) - (E).Part A Create a list of at least 3 famous people, living or decreased, that you would like to invite to your dinner party. Print out the names of all 3 invitees.Part B Choose one of the 3 guests as someone that cant make the party and youll have to replace. Modify your list by replacing the name of the guest who cant make it with the name of a new person that you want to invite to the dinner party. Print out the new invitation list.Part C You can now invite 2 additional guests (5 in total). Add 2 new guests to the list and put one at the beginning of the list and one at the end of the list. Print out the new invitation list.Part D You now find out that you can only invite 2 guests to the party. Remove 3 names from the current list. Print out the new invitation list.Part E Remove the last 2 names from your list so that you have an empty list. Print out the list to make sure you actually have an empty list at the end of your program. would the following expense items be reported on schedule m-1 of the corporation income tax return showing the reconciliation of income per books with income per return? can someone analyze the princess bride, buttercups nightmare ill give brainliest!! John Adams purchased 100 shares of XYZ Corporation for $25 a share and paid a commission of $125. The current price of the stock is $32 per share. Last year, John received dividends of $1 per share. Calculate the 1 - year stock returnCalculate stock returns(Giving this problem as many points as I can because I am at my wits end with this problem and my personal finance teacher) after the client assessment is complete, what does the nurse determine is the best course of action? Which of the following acts by a law enforcement officer would not be a seizure of a person?a. arrestb. stopc. asking questiond. executing a bench warrant Find the complex zeros of the following polynomial function. Write f in factored form. f(x) = x^$ + 5x +4 The complex zeros off are ... Determine the approximate length of AC. after forming a hypothesis, you should a test your hypothesis. b ask a question. c draw conclusions. d analyze the results. A block of mass 1 kg is attached to a horizontal spring of forceconstant 50 N/m and to a spring of negligible mass. The string runsover a massless, frictionless pulley to a hanging block of mass 5kg. Initially, the entire system is at rest and the spring isunstretched. m1 m2 k m1 m2 If the 1 kg mass slides on ahorizontal frictionless surface, what is the speed of the mass 5 kgwhen it has fallen a distance 0.6 m downward from its restposition? The acceleration due to gravity is 10 m/s 2 . Answer inunits of m/s. which one of the following statements is true concerning a rights offering? the ex-rights price is generally higher than the rights-attached price. the subscription price is generally greater than the market price. the subscription price is generally less than the market price. the market price tends to increase on the ex-rights date. the subscription price must be greater than the ex-rights price. The third term in an arithmetic sequence is 10 and the fifth term is 26. If the first term is a,which is an equation for the nth term of this sequence? a term in a contract that can reasonably be supplied by the courts is referred to as a(n) ________. Which one of the following payroll taxes does not result in a payroll tax expense for the employer? a. Federal unemployment tax b. Federal income tax c. State unemployment tax d. FICA tax when comparing the data, which measure of variability should be used for both sets of data to determine the location with the most consistent temperature? iqr, because sunny town is symmetric iqr, because beach town is skewed range, because sunny town is skewed range, because beach town is symmetric two chromosomes with the same size, centromere location, and gene sequence are called a(n) _____ pair.