Scattered light in the atmosphere is often partially polarized. The best way to determine whether or not light from a particular direction in the sky shows polarization is to

Answers

Answer 1

Answer:

Rotate a piece of polaroid film about an axis perpendicular to the ray while looking through it in that sky direction.

Explanation:

Polarization involves constraining a transverse wave e.g light waves to vibrate in one phase only. Since unpolarized light vibrates in all direction during propagation. Polarization can be achieved by a polaroid.

A polaroid is a material the make transverse waves to vibrate in one direction after passing through it. It has various applications in sun glasses, wind shield of a car etc.

If the slit of the polaroid is perpendicular to the polarized light from a particular direction in the sky, there would be no propagation of the light. But when it is parallel to the polarized light from the direction, the light would propagate through the polaroid.


Related Questions

A generator rotates at 95 Hz in a magnetic field of 0.025 T. It has 550 turns and produces an rms voltage of 170 V and an rms current of 60.0 A.

Required:
a. What is the peak current produced?
b. What is the area of each turn of the coil?

Answers

Answer:

Peak current= 84.86 A

Area of each turn = 0.029 m^2

Explanation:

The peak value of current can be obtained from Irms= 0.707Io. Where Io is the peak current.

Hence;

Irms= 60.0A

Io= Irms/0.707

Io = 60.0/0.707

Io= 84.86 A

Vrms= 0.707Vo

Vo= Vrms/0.707= 170/0.707 = 240.45 V

From;

V0 = NABω

Where;

Vo= peak voltage

N= number of turns

B= magnetic field

A= area of each coil

ω= angular velocity

But ω= 2πf = 2×π×95= 596.9 rads-1

Substituting values;

A= Vo/NBω

A= 240.45/550×0.025×596.9

A= 0.029 m^2

The Hermes spacecraft is traveling at 0.1c(1/10 the speed of light past Mars and shines a laser in front of the ship. You would see the light traveling at c (the speed of light )away from your ship. According to Einstein's special relativity how fast with a person on Mars observe the light to be traveling?

Answers

Answer:

So, according to Einstein's special relativity a person on Mars observe the light to be traveling at c = 3 x 10⁸ m/s.

Explanation:

The special theory of relativity has two main postulates:

1- VALIDITY OF PHYSICAL LAWS

The laws of physics such as Newton's Laws and Maxwell's Equations are valid in all inertial frame of references.

2- CONSTANCY OF SPEED OF LIGHT

The speed of light in vacuum is the same for all observers in uniform translational relative motion, and it is independent of the motion of the source or the observer. Thus, speed of light is a universal constant and its value is c = 3 x 10⁸ m/s.

So, according to Einstein's special relativity a person on Mars observe the light to be traveling at c = 3 x 10⁸ m/s.

A person is nearsighted with a far point of 75.0 cm. a. What focal length contact lens is needed to give him normal vision

Answers

Complete Question

The  complete question is  shown on the first uploaded image  

Answer:

a

  [tex]f= -75 \ cm = - 0.75 \ m[/tex]

b

  [tex]P = -1.33 \ diopters[/tex]

Explanation:

From the question we are told that

    The  image distance is  [tex]d_i = -75 cm[/tex]

The value of the image is negative because it is on the same side with the corrective glasses

    The  object distance is  [tex]d_o = \infty[/tex]

The  reason object distance  is because the object father than it being picture by the eye

General focal length is mathematically represented as

              [tex]\frac{1}{f} = \frac{1}{d_i} - \frac{1}{d_o}[/tex]

substituting values

             [tex]\frac{1}{f} = \frac{1}{-75} - \frac{1}{\infty}[/tex]

=>         [tex]f= -75 \ cm = - 0.75 \ m[/tex]

Generally the power of the corrective lens is  mathematically represented as

        [tex]P = \frac{1}{f}[/tex]

substituting values

       [tex]P = \frac{1}{-0.75}[/tex]

        [tex]P = -1.33 \ diopters[/tex]

If theta is 30 degrees and there is no friction, what would be the block's acceleration down the incline, in meters per second squared?

Answers

Answer:

a= 4.9m/s²

Explanation:

Using Fnet= mgsintheta = ma

But a= gsintheta

a= 9.8xsin 30

= 4.9m/s²

A person standing 180m from the foot of a high building claps hi
hand and hears the echo 0.03minutes later. What is the speed
sound in air at that temperature?
A) 331m/s
B) 240m/s C) 200m/s D) 300m/s

Answers

Answer:

C) 200 m/s

Explanation:

The sound travels a total distance of 360 m in 0.03 minutes.

v = (360 m) / (0.03 min × 60 s/min)

v = 200 m/s

Three identical capacitors are connected in series to a battery. If a total charge of Q flows from the battery, how much charge does each capacitor carry?

Answers

Answer:

Each of the capacitor carries the same charge, Q

Explanation:

When capacitors are connected in series, the battery voltage is divided equally across the capacitors. The total voltage across the three identical capacitors is calculated as follows;

[tex]V_T = V_1 + V_2 + V_3[/tex]

We can also calculate this voltage in terms of capacitance and charge;

[tex]V = \frac{Q}{C} \\\\V_T = V_1 + V_2 +V_3 \\\\(given \ total \ charge \ as \ Q, then \ the \ total \ voltage \ V_T \ can \ be \ written \ as)\\\\V_T = \frac{Q}{C_1} + \frac{Q}{C_2} + \frac{Q}{C_3} \\\\V_T = Q(\frac{1}{C_1 } +\frac{1}{C_2} + \frac{1}{C_3 })\\\\[/tex]

Therefore, each of the capacitor carries the same charge, Q

A particle moves in a velocity field V(x, y) = x2, x + y2 . If it is at position (x, y) = (7, 2) at time t = 3, estimate its location at time t = 3.01.

Answers

Answer:

New location at time 3.01 is given by: (7.49, 2.11)

Explanation:

Let's start by understanding what is the particle's velocity (in component form) in that velocity field at time 3:

[tex]V_x=x^2=7^2=49\\V_y=x+y^2=7+2^2=11[/tex]

With such velocities in the x direction and in the y-direction respectively, we can find the displacement in x and y at a time 0.01 units later by using the formula:

[tex]distance=v\,*\, t[/tex]

[tex]distance_x=49\,(0.01)=0.49\\distance_y=11\,(0.01)=0.11[/tex]

Therefore, adding these displacements in component form to the original particle's position, we get:

New position: (7 + 0.49, 2 + 0.11) = (7.49, 2.11)

what help in reversing direction of current of current​

Answers

Answer:

To reverse the direction of an electric current, we simply reverse the voltage either automatically with the help of some switching circuitry or manually by changing the voltage source terminals connection.  

Explanation:

For electric current to flow, there must be a potential difference, usually referred to as the voltage. The electric current flow is analogous to the flow of water under the action of a pump, through a series of pipe connections. The voltage is similar to the driving action of the pump, and current flows the same way water flows. The resistance due to drag on the pipe wall is equivalent to electric resistance. For current to flow in the reverse direction, the voltage or rather, the potential difference is changed, causing the current to flow in the opposite direction. This can be done by switching the terminals of the voltage source, or by automatic means. The automatic switching can be done with a transistor based circuitry.

10. A manufacturer knows from experience that the resistance of resistors she produces is normal with mean µ = 150Ω and the standard deviation σ = 5Ω. What percentage of the resistors will have resistance between 148 Ω and 152 Ω? Between 140 Ω and 160 Ω?

Answers

Answer:

Explanation:

Using the formula for finding the Z score

Z = x-µ/σ

x is the sample size

µ is the sample mean

σ is the standard deviation

For percentage of the resistors will have resistance between 148 Ω and 152 Ω, or is calculated as shown

P(148≤x152) = Z(152-150/5) - Z(148-150/5)

P(148≤x152) = Z(0.4)-Z( - 0.4)

P(148≤x152) = 0.6554-0.3446

The Z values are from the normal distribution table.

P(148≤x152) = 0.3108

The percentage of resistor that will have between 148 and 152 ohms is 0.3108×100% = 31.08%

Similarly for resistances between 140 Ω and 160 Ω

P(140≤x160) = Z(160-150/5) - Z(140-150/5)

P(140≤x160) = Z(2.0)-Z( - 2.0)

P(140≤x160) = 0.9775-0.02275

The Z values are from the normal distribution table.

P(140≤x160) = 0.9547

The percentage of resistor that will have between 140 and 160ohms is 0.9547×100% = 95.47%

The percentage of the resistors will have resistance between 148 Ω and 152 Ω is 31.08%

The percentage of the resistors will have resistance between 140 Ω and 160 Ω is  95.47%

Percentage of resistors:

To solve for the probability we will use the standard score of the Z score, which is given by:

Z = (x - µ)/σ

where x is the sample size

µ is the sample mean = 150Ω

σ is the standard deviation =

The probability of the resistors with resistance between 148 Ω and 152 Ω, will be:

P(148 ≤ 152) = Z((152-150)/5) - Z((148-150)/5)

P(148 ≤ 152) = Z(0.4)-Z( - 0.4)

P(148 ≤ 152) = 0.6554-0.3446

P(148 ≤ 152) = 0.3108

So, the percentage will be:

0.3108×100% = 31.08%

Similarly for resistances between 140 Ω and 160 Ω

P(140 ≤ 160) = Z((160-150)/5) - Z((140-150)/5)

P(140 ≤ 160) = Z(2.0)-Z( - 2.0)

P(140 ≤ 160) = 0.9775-0.02275

P(140 ≤ 160) = 0.9547

The percentage of resistor that will have between 140 and 160ohms is 0.9547×100% = 95.47%

Learn more about standard score:

https://brainly.com/question/25875323?referrer=searchResults


a cylindrical jar is 10cm long and has a cross sectional area of 36cm. if it is completely filled with a fluid of relative density 0.2, calculate the mass of the fluid in the jar​

Answers

Answer:

The mass of the fluid is 72 g.

Explanation:

The following data were obtained from the question:

Height (h) = 10 cm

Area of cross section (A) = 36cm²

Relative density = 0.2

Mass =..?

Next, we shall determine the volume of the cylinder. This can be achieved by doing the following:

Volume = Area x Height

Volume = 36 x 10

Volume = 360 cm³

Next, we shall determine the density of the liquid.

This can be obtained as follow:

Relative density = density of substance/density of water.

Relative density = 0.2

Density of water = 1 g/cm³

Density of fluid =...?

Relative density = density of substance/density of water.

0.2 = density of fluid / 1 g/cm³

Cross multiply

Density of fluid = 0.2 x 1 g/cm³

Density of fluid = 0.2 g/cm³

Finally, we shall determine the mass of fluid as follow:

Volume = 360 cm³

Density of fluid = 0.2 g/cm³

Mass of fluid =...?

Density = mass /volume.

0.2 g/cm³ = mass of fluid /360 cm³

Cross multiply

Mass of fluid = 0.2 g/cm³ x 360 cm³

Mass of fluid = 72 g

Therefore, the mass of the fluid in the jar is 72 g.

7.00 kg piece of solid copper metal at an initial temperature T is placed with 2.00 kg of ice that is initially at -20.0°C. The ice is in an insulated container of negligible mass and no heat is exchanged with the surroundings. After thermal equilibrium is reached, there is 0.90 kg of ice and 1.10 kg of liquid water.

Required:
What was the initial temperature of the piece of copper?

Answers

Answer:

122°C

Explanation:

From the data Final temperature is 0 deg C since there is 0.9kg of ice and 1.10kg of liquid water.

That means that 1.10kg of the ice undergoes Heat of Fusion which is 3.34x10^5 J/kg...

Heat lost by copper = Heat gained by ice + Heat of fusion

-> (7.0kg)(390J/kg*C)(0-T) = (2.00kg)(2100J/kg*C)(0 - (-20) + (1.10kg)(3.34x10^5 J/kg)

-> T(2730) = 334001

-> T = 122°C

An inductor is connected to the terminals of a battery that has an emf of 12.0 V and negligible internal resistance. The current is 4.86 mA at 0.700 ms after the connection is completed. After a long time the current is 6.80 mA.
What are
(a) the resistance R of the inductor and
(b) the inductance L of the inductor?

Answers

Answer:

a) 1764.71 ohms

b) 1.73 H

Explanation:

From the question, we can identify the following parameters;

Vo =12 V , i = 4.86 mA, t =0.700 ms, io =6.80 mA

(a) Indcued emf V = L di/dt =0

From ohms law Vo = ioR

R = 12/6.80*0.001

R=1764.71 ohms

(b) For LR circuit

i =io (1-e^-t/T)

Time constant T = L/R

4.86 = 6.80 (1-e^-0.7*10^-3/T)

divide both side by 6.8

0.715 = 0.0007/T

L/R = 0.0007/0.715

L/R = 0.000979020979

Substitute R from above

L = 0.000979020979 * 1764.71

L =1.73 H

At t=0 a 2150kg rocketship in outer space fires the engine which exerts a force=At2, and F(1.25s)=781.25N in the x direction. Find the impulse J during the interval t=2.00s and t=3.5s

Answers

Answer:

5.81 X 10^3 Ns

Explanation:

Given that

F = At² and F at t = 1.25 s is 781.25 N ?

A = F/t² at t = 1.25 s => F = 781.25/(1.25)² = 500 N/s²

d(Impulse) = Fdt

Impulse = ∫Fdt =∫At²dt evaluated in the interval 2.00 s ≤ t ≤ 3.50 s

Impulse = At³/3 = (500/3)(t³) = 166.7t³ between t = 2.00 s and t = 3.50 s

Impulse = 166.7[3.5³ - 2³] = 166.7[42.875 - 8] = 166.7[34.875] = 5813.7 Ns

5.81 X 10^3 N.s

A blue train of mass 50 kg moves at 4 m/s toward a green train of 30 kg initially at rest. What is the initial momentum of the green train?

Answers

Answer:

I think answer is zero

bcz momentum=mass×velocity

body was initially at rest it means its velocity is zero

30×0=0

Which of the following is true about a planet orbiting a star in the uniform circular motion? B. The speed of the plant is always changing. C. The velocity of the plant is constant. D. The acceleration vector of the plant points towards the center of the circle.

Answers

Explanation:

If an object moves in a circular path, this type of motion is called uniform circular motion. The speed of the object is constant in this type of motion.As velocity is a vector quantity, it keeps on changing. It can be given by drawing tangent to the circle.Acceleration acts towards the center of circle. Hence, out of the given four options, the correct statement about a planet orbiting a star in uniform circular motion is (d) i.e. The acceleration vector of the plant points towards the center of the circle.

Answer:

D. The acceleration vector of the plant points towards the center of the circle. (Works for Apex)

Explanation:

Velocity is always changing because to have velocity you require direction and the direction is always changing when orbiting therefore A and C are not true. And B is not true because the speed of the planet is not accelerating when orbiting around a star.

A long, current-carrying solenoid with an air core has 1800 turns per meter of length and a radius of 0.0165 m. A coil of 210 turns is wrapped tightly around the outside of the solenoid, so it has virtually the same radius as the solenoid. What is the mutual inductance of this system

Answers

Answer:

The mutual inductance is  [tex]M = 0.000406 \ H[/tex]

Explanation:

From the question we  are told that

    The  number of turns per unit length  is  [tex]N = 1800[/tex]

    The radius is  [tex]r = 0.0165 \ m[/tex]

     The  number of turns of the solenoid is  [tex]N_s = 210 \ turns[/tex]

   

Generally the mutual inductance of the  system is mathematically represented as

       [tex]M = \mu_o * N * N_s * A[/tex]

Where A is the cross-sectional area of the system which is mathematically represented as

       [tex]A = \pi * r^2[/tex]

substituting values

      [tex]A = 3.142 * (0.0165)^2[/tex]

       [tex]A = 0.0008554 \ m^2[/tex]

also   [tex]\mu_o[/tex] is the permeability of free space with the value  [tex]\mu_o = 4\pi * 10^{-7} N/A^2[/tex]

So  

      [tex]M = 4\pi * 10^{-7} *1800 * 210 * 0.0008554[/tex]

      [tex]M = 0.000406 \ H[/tex]

what is electric field strength​

Answers

Answer:

Electric field strengh is a measure of the strength of an electric field at a given point in space, equal to the field would induce on a unit electric charge at that point.

Electric field strength is also known as Electric Field Intensity .

Explanation:

Electric Field is also defined as force per charge. The unit will be force unit divided by charge unit. In this case, it will be Newton/Coulomb or N/C.

Please mark me as the brainliest!!!

Thanks!!!

what is transmission of heat?​

Answers

Answer:

Heat transfer is the transmission of heat energy from a body at higher temperature to lower temperature. The three mechanisms of heat transfer are

Conduction ConvectionRadiation.

Example of Conduction:

Heating a metal

Example of Convection:

Sea Breeze

Example of Radiation:

Sun

Hope this helps ;) ❤❤❤

Answer:

Transmission of heat is the movement of thermal energy from one thing to another thing of different temperature.

There are three(3) different ways heat can transfer and they are:

a) Conduction (through direct contact).

b) Convection (through fluid movement).

c) Radiation (through electromagnetic waves).

Examples: 1.Heating a saucepan of water using a coalpot.(conduction&convection).

2. Baking a pie in an oven(radiation).

Hope it helps!!Please mark me as the brainliest!!!

Thanks!!!!

A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string

Answers

Answer:

The time interval is [tex]t = 5.48 *10^{-3} \ s[/tex]

Explanation:

From the question we are told that

   The length of the string is  [tex]l = 3.00 \ m[/tex]

    The  mass of the string is [tex]m = 5.00 \ g = 5.0 *10^{-3}\ kg[/tex]

     The  tension on the string is  [tex]T = 500 \ N[/tex]

   

The  velocity of the pulse is mathematically represented as

      [tex]v = \sqrt{ \frac{T}{\mu } }[/tex]

Where [tex]\mu[/tex] is the linear density which is mathematically evaluated as

       [tex]\mu = \frac{m}{l}[/tex]

substituting values

     [tex]\mu = \frac{5.0 *10^{-3}}{3}[/tex]

     [tex]\mu = 1.67 *10^{-3} \ kg /m[/tex]

Thus  

     [tex]v = \sqrt{\frac{500}{1.67 *10^{-3}} }[/tex]

    [tex]v = 547.7 m/s[/tex]

The time taken is evaluated as

    [tex]t = \frac{d}{v}[/tex]

substituting values

      [tex]t = \frac{3}{547.7}[/tex]

      [tex]t = 5.48 *10^{-3} \ s[/tex]

6. How would the measurements for potential difference and current change if a 200 Ω resistor was used in Circuit 1 instead of the 100 Ω resistor? Explain your answer.

Answers

Answer:

Explanation:

Resistance is defined as the opposition to the flow of an electric current in a circuit. This means that a higher amount of resistance tends to reduce the amount of current flowing through the resistance. The lower the current, the greater the possibility for the resistor to allow current to pass through it.  if a 200 Ω resistor was used in Circuit 1 instead of the 100 Ω resistor, then the current in the circuit will tends to increase since we are replacing the load with a lesser resistor and a smaller resistance tends to allow more current to flow through it

For the potential difference, a decrease in the resistance value will onl decrease the potential difference flowing in the circuit according to ohm's law. According to the law the pd in a circuit is directly proportional to the current which means an increase in the resistance value will cause an increase in the corresponding pd and vice versa.

A uniform electric field is created by two parallel plates separated by a distance of 0.04 m. What is the magnitude of the electric field established between the plates

Answers

Complete question:

A uniform electric field is created by two parallel plates separated by a

distance of 0.04 m. What is the magnitude of the electric field established

between the plates if the potential of the first plate is +40V and the second

one is -40V?

Answer:

The magnitude of the electric field established between the plates is 2,000 V/m

Explanation:

Given;

distance between two parallel plates, d = 0.04 m

potential between first and second plate, = +40V and -40V respectively

The magnitude of the electric field established between the plates is calculated as;

E = ΔV / d

where;

ΔV is change in potential between two parallel plates;

d is the distance between the plates

ΔV = V₁ -V₂

ΔV = 40 - (-40)

ΔV = 40 + 40

ΔV = 80 V

E = ΔV / d

E = 80 / 0.04

E = 2,000 V/m

Therefore, the magnitude of the electric field established between the plates is 2,000 V/m

The magnitude of the electric field developed that lies between the plates should be considered as the 2,000 V/m.

Calculation of the Electric Field:

Since

The distance that lies between 2 parallel plates should be d = 0.04 m

The potential that lies between first and second plate should be like +40V and -40V

So, The magnitude of the electric field should be

E = ΔV / d

here,

ΔV represents the change in potential that lies between 2 parallel plates.

d represents the distance between the plates.

So,

ΔV = V₁ -V₂

ΔV = 40 - (-40)

ΔV = 40 + 40

ΔV = 80 V

And,

E = ΔV / d

E = 80 / 0.04

E = 2,000 V/m

Therefore, the magnitude of the electric field established between the plates is 2,000 V/m.

learn more about Electric field here: https://brainly.com/question/13266812?referrer=searchResults

A cylindrical shell of radius 7.00 cm and length 2.59 m has its charge uniformly distributed on its curved surface. The magnitude of the electric field at a point 20.1 cm radially outward from its axis (measured from the midpoint of the shell) is 36.0 kN/C.
A) Use approximate relationships to find the net charge on the shell.
B) Use approximate relationships to find the electric field at a point 4.00 cm from the axis, measured radially outward from the midpoint of the shell.

Answers

the answer is c yw :D

An insulated beaker with negligible mass contains liquid water with a mass of 0.285 kg and a temperature of 75.2 ∘C How much ice at a temperature of -22.8 ∘C must be dropped into the water so that the final temperature of the system will be 32.0 ∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to be 3.34×105 J/kg

Answers

Answer:

Explanation:

We shall apply the theory of

heat lost = heat gained .

heat lost by water = mass x specific heat x temperature diff

= .285 x 4190 x ( 75.2 - 32 ) = 51587.28 J  

heat gained by ice to attain temperature of zero

= m x 2100 x 22.8 = 47880 m

heat gained by ice in melting = latent heat x mass

= 334000m

heat gained by water at zero to become warm at 32 degree

= m x 4190 x 32 = 134080 m

Total heat gained = 515960 m

So

515960 m = 51587.28

m = .1 kg

= 100 gm

A 20 g bullet strikes a 1.5 kg wood block and becomes embedded in it (all horizontal motion). The coefficient of friction between the block and the surface is 0.3 and the impact makes the block move a distance of 7 m before it comes to rest. What was the muzzle speed (in m/s) of the bullet? Report your answer with two significant figures.

Answers

Answer:

Explanation:

Kinetic frictional force acting on the block = μ mg

where μ is coefficient of friction , m is mass of block.

.3 x 1.5 x 9.8 = 4.41 N .

Let v be the velocity of bullet + block after collision

kinetic energy of composite mass after the strike

= 1 /2 x 1.52 x v²

this will be equal to work done by friction .

.76 v² = 4.41 x 7

v² = 40.62

v = 6.37 m /s

Now we can obtain muzzle speed of bullet by applying conservation of momentum .

Let this speed be u

initial momentum of bullet

= .02 x u

final momentum of composite mass

= 1.52 x 6.37

.02 u = 1.52 x 6.37

u = 484.12 m /s .

= 480 m /s ( in two significant figures )

An air bubble has a volume of 1.3 cm3 when it is released by a submarine 160 m below the surface of a freshwater lake. What is the volume of the bubble when it reaches the surface? Assume that the temperature and the number of air molecules in the bubble remain constant during the ascent.

Answers

Answer:

V2 = 21.44cm^3

Explanation:

Given that: the initial volume of the bubble = 1.3 cm^3

Depth = h = 160m

Where P2 is the atmospheric pressure = Patm

P1 is the pressure at depth 'h'

Density of water = ρ = 10^3kg/m^3

Patm = 1.013×10^5 Pa.

Patm = 101300Pa

g = 9.81m/s^2

P1 = P2+ρgh

P1 = Patm +ρgh

P1 = 1.013×10^5+10^3×9.81×160.

P1 = 101300+1569600

P1 = 1670900 Pa

For an ideal gas law

PV =nRT

P1V1/P2V2 = 1

V2 = ( P1/P2)V1

V2 = (P1/Patm)V1

V2 = ( 1670900 /101300 Pa) × 1.3

V2 = 1670900/101300

V2 = 16.494×1.3

V2 = 21.44cm^3

The volume of the bubble can be determined using ideal gas law. The volume of the bubble when it reaches surface is 21.44 [tex]\bold {cm^3}[/tex].

 

The formula of the pressure of the static fluid

P1 = P2+ρgh

Where,

P1 -  pressure at depth 'h'

P2 -  atmospheric pressure = [tex]\bold {1.013x10^5 }[/tex] =  1670900 Pa

h - Depth = 160m  

ρ - Density of water = [tex]\bold {10^3\ kg/m^3}[/tex]

g- gravitational acceleration = [tex]\bold {9.81\ m/s^2}[/tex]

The initial volume of the bubble = [tex]\bold {1.3\ cm^3}[/tex]  

 

[tex]\bold {P1 = 1.013x10^5+10^3\times 9.81\times 160}\\\\\bold {P1 = 101300+1569600}\\\\\bold {P1 = 1670900\ Pa}[/tex]  

 

 For an ideal gas,  

PV =nRT  

[tex]\bold {\dfrac {P_1V_1}{P_2V_2 }= 1}[/tex]  

[tex]\bold {V2 = \dfrac { P_1}{P_2V_1}}[/tex]

So,

 

[tex]\bold {V2 = \dfrac {1670900 }{101300 }\times 1.3}\\\\\bold {V2 =21.44\ cm^3}[/tex]  

Therefore, the volume of the bubble when it reaches surface is 21.44 [tex]\bold {cm^3}[/tex].

To know more air bubble volume,

https://brainly.com/question/10509397

From mechanics, you may recall that when the acceleration of an object is proportional to its coordinate, d2xdt2=−kmx=−ω2x , such motion is called simple harmonic motion, and the coordinate depends on time as x(t)=Acos(ωt+ϕ), where ϕ, the argument of the harmonic function at t=0, is called the phase constant. Find a similar expression for the charge q(t) on the capacitor in this circuit. Do not forget to determine the correct value of ϕ based on the initial conditions described in the problem. Express your answer in terms of q0 , L, and C. Use the cosine function in your answer.

Answers

Answer:

    q = q₀ sin (wt)

Explanation:

In your statement it is not clear the type of circuit you are referring to, there are two possibilities.

1) The circuit of this problem is a system formed by an Ac voltage source and a capacitor, in this case all the voltage of the source is equal to the voltage at the terminals of the capacitor

                    ΔV = Δ[tex]V_{C}[/tex]

we assume that the source has a voltage of the form

                    ΔV = ΔV₀o sin wt

The capacitance of a capacitor is

                   C = q / ΔV

                  q = C ΔV sin wt

the current in the circuit is

                    i = dq / dt

                    i = c ΔV₀ w cos wt

if we use

                  cos wt = sin (wt + π / 2)

we make this change by being a resonant oscillation

we substitute

                  i = w C ΔV₀ sin (wt + π/2)

With this answer we see that the current in capacitor has a phase factor of π/2 with respect to the current

2) Another possible circuit is an LC circuit.

In this case the voltage alternates between the inductor and the capacitor

                     V_{L} + V_{C} = 0

                      L di / dt + q / C = 0

the current is

                      i = dq / dt

                       

they ask us for a solution so that

                    L d²q / dt² + 1 / C q = 0

                     d²q / dt² + 1 / LC q = 0

this is a quadratic differential equation with solution of the form

                    q = A sin (wt + Ф)

to find the constant we derive the proposed solution and enter it into the equation

                di / dt = Aw cos (wt + Ф)

                d²i / dt²= - A w² sin (wt + Ф)

                 - A w² + 1 /LC  A = 0

                  w = √ (1 / LC)

To find the phase factor, for this we use the initial conditions for t = 0

in the case of condensate for t = or the charge is zero

                 0 = A sin Ф

                  Ф = 0

             

                  q = q₀ sin (wt)

A dart is thrown at a dartboard 3.66 m away. When the dart is released at the same height as the center of the dartboard, it hits the center in 0.455 s. (Neglect any effects due to air resistance.)At what angle relative to the floor was the dart thrown?

Answers

Answer:

The  angle is  [tex]\theta = 15.48^o[/tex]

Explanation:

From the question we are told that  

     The distance of the dartboard from the dart is  [tex]d = 3.66 \ m[/tex]

     The time taken is  [tex]t = 0.455 \ s[/tex]

   

The  horizontal component of the speed of the dart is mathematically represented as

      [tex]u_x = ucos \theta[/tex]

where u is the the velocity at dart is lunched

  so

      [tex]distance = velocity \ in \ the\ x-direction * time[/tex]

substituting values

      [tex]3.66 = ucos \theta * (0.455)[/tex]

 =>   [tex]ucos \theta = 8.04 \ m/s[/tex]

From projectile kinematics the time taken by the dart can be mathematically represented as

         [tex]t = \frac{2usin \theta }{g}[/tex]

=>    [tex]usin \theta = \frac{g * t}{2 }[/tex]

       [tex]usin \theta = \frac{9.8 * 0.455}{2 }[/tex]

      [tex]usin \theta = 2.23[/tex]

=>   [tex]tan \theta = \frac{usin\theta }{ucos \theta } = \frac{2.23}{8.04}[/tex]

       [tex]\theta = tan^{-1} [0.277][/tex]

      [tex]\theta = 15.48^o[/tex]

     

When the reflected path from one surface of a thin film is one full wavelength different in length from the reflected path from the other surface and no phase change occurs, will the result be destructive interference or constructive interference?

Answers

Answer:

destructive interference

Explanation:

As we know that , when the phase difference between the path of two wavelength is 180°, then its known as destructive interference . And when the phase difference between the path of two wavelength is 0°, then its known as constructive interference.

In the constructive interference , the resulting amplitude will be maximum while in the destructive interference , the resulting amplitude will be zero(minimum).

Therefore the answer will be destructive interference.

The speed of a particle moving in a circle 2.0 m in radius increases at the constant rate of 4.4 m/s2. At an instant when the magnitude of the total acceleration is 6.0 m/s2, what is the speed of the particle? Group of answer choices

Answers

Answer:

The speed of the particle is 2.86 m/s

Explanation:

Given;

radius of the circular path, r = 2.0 m

tangential acceleration,  [tex]a_t[/tex] = 4.4 m/s²

total magnitude of the acceleration, a = 6.0 m/s²

Total acceleration is the vector sum of  tangential acceleration and radial acceleration

[tex]a = \sqrt{a_c^2 + a_t^2}\\\\[/tex]

where;

[tex]a_c[/tex] is the radial acceleration

[tex]a = \sqrt{a_c^2 + a_t^2}\\\\a^2 = a_c^2 + a_t^2\\\\a_c^2 = a^2 -a_t^2\\\\a_c = \sqrt{a^2 -a_t^2}\\\\a_c = \sqrt{6.0^2 -4.4^2}\\\\a_c = \sqrt{16.64}\\\\a_c = 4.08 \ m/s^2[/tex]

The radial acceleration relates to speed of particle in the following equations;

[tex]a_c = \frac{v^2}{r}[/tex]

where;

v is the speed of the particle

[tex]v^2 = a_c r\\\\v= \sqrt{a_c r} \\\\v = \sqrt{4.08 *2}\\\\v = 2.86 \ m/s[/tex]

Therefore, the speed of the particle is 2.86 m/s

A pickup truck starts from rest and maintains a constant acceleration a0. After a time t0, the truck is moving with speed 25 m/s at a distance of 120 m from its starting point. When the truck has travelled a distance of 60 m from its starting point, its speed is v1 m/s.
Which of the following statements concerning v1 is true?
a. v1< 12.5m/s
b. v1= 12.5m/s
c. v1 >12.5m/s

Answers

Answer:

the correct answer is c     v₁> 12.5 m / s

Explanation:

This is a one-dimensional kinematics exercise, let's start by finding the link to get up to speed.

            v² = v₀² + 2 a₁ x

as part of rest v₀ = 0

           a₁ = v² / 2x

           a₁ = 25² / (2 120)

           a₁ = 2.6 m / s²

now we can find the velocity for the distance x₂ = 60 m

           v₁² = 0 + 2 a1 x₂

           v₁ = Ra (2 2,6 60)

           v₁ = 17.7 m / s

these the speed at 60 m

we see that the correct answer is c     v₁> 12.5 m / s

Other Questions
What is the approximate area of the shaded sector in the circle shown below? O A. 25 in2 4.3 in 155 B. 5.82 in2 IC O C. 11.63 in2 D. 50 in2 SUBMIT Please helpppp!!!Solve: x^2 - 4x-5=0 Which of the following Teacher Tips would NOT be helpful when trying to select content from the Chrome Web Store? "Can be used across subject areas" "Helped my struggling students really understand the concept of color harmony." "Doesnt have much of a learning curve" "This app is not available in the Chrome Web Store" What is the sum of arithmetic series 19+25+31+37+ Where n=9 ? 4. Notice how Ms. Lassiter has stopped the game twice now to remind students of game strategy. She is closely observing the students play the game and wants to provide immediate and specific feedback so the students can continue to play the game with success. What are your thoughts? (Please answer!) What is the quotient (3x^3+10x+4)(x+2)? Answer choices below: The protein RDA for adults is 0.8 grams per kilogram of healthy body weight per day. A woman weighs 60 kg and her weight falls within the normal range for her height. How much protein (in grams) should she consume in one day? Which statement about fertility in individuals with Down syndrome is most accurate? a. Both males and females may be fertile. b. Both males and females are infertile. c. Males are fertile but females are infertile. d. Males are infertile but females are fertile. 5x+8=3x-6 plz help me asap The following question references the novel The Call of the Wild by Jack London. Third person limited point of view allows the reader to enter the mind of one of the characters. Objective point of view only allows the reader to observe what is seen and heard, no thoughts. Is The Call of the Wild told in the limited or objective third person point of view? How do you know? ASAPPPPPP!! PLEASE help me!!!!!!!!!! Without doing any further work, comment on what conclusions you could draw if you conducted a test of the null hypothesis that the mean number of bacteria is the same at the source and at the outlet, versus the two-sided alternative. Karissa buys a bag of cookies that contains 4 chocolate chip cookies, 4 peanut butter cookies, 9 sugar cookies and 6 oatmeal cookies. What is the probability that Karissa reaches in the bag and randomly selects an oatmeal cookie from the bag, eats it, then reaches back in the bag and randomly selects a chocolate chip cookie The initial concentrations of I2 and I in the reaction below are each 0.0401 M. If the initial concentration of I3 is 0.0 M and the equilibrium constant is Kc=0.25 under certain conditions, what is the equilibrium concentration (in molarity) of I? I3(aq)I2(aq)+I(aq) A cylindrical container has a radius of 0.3 meter and a height of 0.75 meter. The container is filled with kerosene. The density of kerosene is 815 kg/m. What is the mass of the kerosene in the container? Enter your answer in the box. Use 3.14 for . Round your final answer to the nearest whole number. A 4-year project has an annual operating cash flow of $54,000. At the beginning of the project, $4,500 in net working capital was required, which will be recovered at the end of the project. The firm also spent $22,900 on equipment to start the project. This equipment will have a book value of $4,860 at the end of the project, but can be sold for $5,820. The tax rate is 40 percent. What is the Year 4 cash flow Study the diagram of the geologic time scale. Which method is most likely used to identify what happened before the start of the Paleozoic era? Can u guys tell me the answer to question 8 and 9 thank you so much I would really appreciate it Thank you The temperature over a 9-hour period is given by Upper T (t )equalsnegative t squared plus 4 t plus 34. (a) Find the average temperature. (b) Find the minimum temperature. (c) Find the maximum temperature. An aqueous solution of cobalt(II) fluoride, , is made by dissolving 6.04 grams of cobalt(II) fluoride in sufficient water in a 200. mL volumetric flask, and then adding enough water to fill the flask to the mark. What is the weight/volume percentage of cobalt(II) fluoride in the solution