Refrigerant fluid 134-a is used as the working fluid in a refrigeration system where compression is made with two evaporators. In the system, the evaporator operates at 1: 0°C, the evaporator operates at -36.5 °C and the condenser at 1000 kPa. The cooling load of evaporator 1 is double that of evaporator 2. Determine the cooling load of both evaporators per unit flow through the compressor, as well as the COP of this system. The refrigerant is saturated liquid at the exit of the condenser and saturated vapor at the exit of each evaporator, and the compressor is isentropic

Answers

Answer 1

The purpose of the refrigeration system is to provide cooling by using refrigerant fluid 134-a. The cooling loads of both evaporators per unit flow through the compressor can be determined by calculating the heat transfer rates for each evaporator. The cooling load of evaporator 1 is double that of evaporator 2.

What is the purpose of the given refrigeration system and how can the cooling loads of the evaporators and the COP of the system be determined?

In the given refrigeration system, the working fluid is 134-a. The system consists of two evaporators operating at different temperatures - one at 0°C and the other at -36.5°C. The condenser operates at a pressure of 1000 kPa. It is mentioned that the cooling load of evaporator 1 is twice that of evaporator 2.

To determine the cooling load of both evaporators per unit flow through the compressor, we need to calculate the heat transfer rates for each evaporator. The cooling load is the amount of heat absorbed by the evaporators per unit time.

Since the cooling load of evaporator 1 is double that of evaporator 2, we can assign a variable, say Q1, to the cooling load of evaporator 2. Thus, the cooling load of evaporator 1 would be 2Q1.

To calculate the coefficient of performance (COP) of the system, we need to determine the ratio of the cooling effect (heat absorbed by the evaporators) to the work input to the compressor. COP is defined as the ratio of the desired output (cooling effect) to the required input (compressor work).

By analyzing the given conditions and utilizing the properties of the refrigerant, we can calculate the cooling loads of both evaporators per unit flow through the compressor and determine the COP of the system.

Learn more about refrigeration system

brainly.com/question/12950632

#SPJ11


Related Questions

We consider three different hash functions which produce outputs of lengths 64, 128 and 160 bit. After how many random inputs do we have a probability of ε = 0. 5 for a collision? After how many random inputs do we have a probability of ε = 0. 1 for a collision?

Answers

For ε = 0.1, approximately 2.147 random inputs are needed for a collision. The number of inputs required for the hash functions producing outputs of lengths 128 and 160 bits using the same formula.

To determine the number of random inputs needed to achieve a specific probability of collision, we can use the birthday paradox principle. The birthday paradox states that in a group of people, the probability of two individuals having the same birthday is higher than expected due to the large number of possible pairs.

The formula to calculate the approximate number of inputs required for a given probability of collision (ε) is:

n ≈ √(2 * log(1/(1 - ε)))

Let's calculate the number of inputs needed for ε = 0.5 and ε = 0.1 for each hash function:

For a hash function producing a 64-bit output:

n ≈ √(2 * log(1/(1 - 0.5)))

n ≈ √(2 * log(2))

n ≈ √(2 * 0.693)

n ≈ √(1.386)

n ≈ 1.177

For ε = 0.5, approximately 1.177 random inputs are required to have a probability of collision.

For ε = 0.1:

n ≈ √(2 * log(1/(1 - 0.1)))

n ≈ √(2 * log(10))

n ≈ √(2 * 2.303)

n ≈ √(4.606)

n ≈ 2.147

For ε = 0.1, approximately 2.147 random inputs are needed for a collision.

Similarly, we can calculate the number of inputs required for the hash functions producing outputs of lengths 128 and 160 bits using the same formula.

Please note that these calculations provide approximate values based on the birthday paradox principle. The actual probability of collision may vary depending on the specific characteristics of the hash functions and the nature of the inputs.

Learn more about collision here

https://brainly.com/question/30319928

#SPJ11

1. Briefly explain the differences and under what circumstances a RRIF, LIFs and Locked-in-RIF scan be used as a distribution option? (3 x 3 Marks each = 9 Marks)
2. How does Spousal-RRSP work? 3. Explain briefly the home buyers plan(HBP), if you were asked about it by a relative who wants to buy a house a. What happens if the funds are not repaid under the home buyers plan?

Answers

1. Differences and under what circumstances a RRIF, LIFs, and Locked-in-RIF can be used as a distribution optionRRIF, LIFs, and Locked-in-RIF are registered retirement income funds that are used as a distribution option. The main differences between the three options are as follows:

RRIF stands for Registered Retirement Income Fund. It is a tax-deferred retirement savings account that can be used to hold your RRSP savings. It is one of the most common retirement income options available. RRIF allows you to withdraw a specific amount of money from your account every year.LIFs (Life Income Funds) are similar to RRIFs. The main difference between the two is that LIFs are used to hold locked-in pension funds that cannot be transferred to RRSPs or other types of retirement accounts.

LIFs are also subject to minimum and maximum withdrawal limits, like RRIFs.Locked-in-RIFs are another type of registered retirement income fund. They are similar to LIFs in that they are used to hold locked-in pension funds. Locked-in-RIFs also have minimum and maximum withdrawal limits. The main difference between Locked-in-RIFs and LIFs is that Locked-in-RIFs can be converted into an annuity.

2. How does Spousal-RRSP work?Spousal RRSP is a type of registered retirement savings plan (RRSP) that is used to help couples save for their retirement. It is a way to split retirement income between spouses and reduce their overall tax liability.

Spousal RRSPs work by allowing one spouse to contribute to an RRSP in the other spouse's name. This is done to take advantage of the lower-income spouse's tax rate when the money is withdrawn from the RRSP.Spousal RRSPs can be a useful tax-planning tool for couples, especially if one spouse has a higher income than the other. They can also be used to equalize retirement income between spouses.

3. Home Buyers Plan (HBP)The Home Buyers Plan (HBP) is a program that allows first-time homebuyers to withdraw up to $35,000 from their RRSPs to purchase or build a home. The funds must be repaid over a period of 15 years, with a minimum payment of 1/15th of the total amount borrowed per year.

To know more about retirement visit :

https://brainly.com/question/31284848

#SPJ11

From 2001 to 2012, attendance at a sports game went from 45,015 to 43,138, a decrease of 1,877.

Answers

The Attendance at sports games decreased by 1,877 from 2011 to 2012, represented by the integer -1,877.

To numerically express the change in attendance, we can use an integer. In this case, attendance decreased by 1,877 from 2011 to 2012.

When attendance decreases, we use a negative integer to represent the change. The magnitude of the decrease is represented by the absolute value of the integer. In this scenario, attendance decreased by 1,877 individuals.

Since the attendance went from 45,015 in 2011 to 43,138 in 2012, we can calculate the change by subtracting the attendance in 2012 from the attendance in 2011. The result is -1,877, where the negative sign indicates a decrease.

Thus, the integer representing the attendance change from 2011 to 2012 is -1,877. This means that attendance decreased by 1,877 individuals during that period, resulting in a total attendance of 43,138 in 2012 when starting from 45,015 in 2011.

For more questions on integer

https://brainly.com/question/490943

#SPJ8

Complete Question:

Use An Integer To Express The Number Representing A Change. From 2011 To 2012, Attendance At Sports Game Went From 45,015 to 43,138, a decrease of 1,877

Determine The Capitalized Cost Of A Permanent Roadside Historical Marker That Has A First Cost Of $78,000 And A Maintenance Cost Of $3500 Once Every 5 Years. Use An Interest Rate Of 8% Per Year.

Answers

Capitalized cost refers to the present value of a sequence of yearly costs. It involves computing the total present value of the stream of costs using a given interest rate. It is computed for items that last for over one year and require maintenance after a period.

To find the capitalized cost of a permanent roadside historical marker that has a first cost of $78,000 and a maintenance cost of $3,500 once every five years at an interest rate of 8% per year:

Step 1: Determine the total number of years the costs will occur. Since the maintenance cost occurs every five years, and the useful life of the roadside marker is infinite, assume the roadside marker will last 100 years. Therefore, the cost of maintaining it will occur every 5 years for a total of 20 times.

Step 2: Calculate the present value of each maintenance cost. Use the formula PV = FV/ (1 + r)n where FV is the future value, r is the interest rate and n is the number of periods (years). Present value of each maintenance cost = $3,500/(1 + 0.08)5 = $2,160.36

Step 3: Calculate the present value of the first cost. Since it occurs in year 0, the present value is equal to the first cost. PV of first cost = $78,000

Step 4: Calculate the capitalized cost using the formula: Capitalized cost = PV of first cost + (PV of each maintenance cost * number of maintenance costs) Capitalized cost = $78,000 + ($2,160.36 x 20)

Capitalized cost = $123,207.20

The capitalized cost of a permanent roadside historical marker that has a first cost of $78,000 and a maintenance cost of $3,500 once every 5 years at an interest rate of 8% per year is $123,207.20.

To know more about maintenance visit :

https://brainly.com/question/32165218

#SPJ11

2. 10 Determine the average value and the rms value for y(t) = 2sin 2πt over the intervals a. O ≤ t ≤ 0. 5 s b. O ≤ t ≤ 1 s

c. O ≤ t ≤ 10 S For each time range, determine: i) the average value, ii) the average absolute value, iii) the RMS value, iv) the difference between maximum and minimum value (span)

Answers

All the given time ranges, the average value of y(t) is zero, the average absolute value is 2/π, the RMS value is approximately 1.414, and the span is 2.

a. For the time range 0 ≤ t ≤ 0.5 s:

i) The average value of y(t) can be calculated by integrating y(t) over the given interval and dividing it by the length of the interval. Since the average of sine over a complete cycle is zero, the average value of y(t) will also be zero.

ii) The average absolute value of y(t) can be obtained by integrating the absolute value of y(t) over the given interval and dividing it by the length of the interval. In this case, the average absolute value will be 2/π.

iii) The RMS (Root Mean Square) value of y(t) can be found by taking the square root of the average of the square of y(t) over the given interval. For a sinusoidal waveform, the RMS value is equal to the amplitude divided by the square root of 2. Hence, the RMS value for y(t) in this interval will be 2/√2 or approximately 1.414.

iv) Since y(t) is a sinusoidal waveform, the difference between its maximum and minimum values (span) will be equal to twice the amplitude, which is 2.

b. For the time range 0 ≤ t ≤ 1 s:

i) The average value of y(t) over this interval will still be zero.

ii) The average absolute value will remain 2/π.

iii) The RMS value will also be 2/√2 or approximately 1.414.

iv) The span of y(t) will still be 2.

c. For the time range 0 ≤ t ≤ 10 s:

i) The average value will continue to be zero.

ii) The average absolute value will remain 2/π.

iii) The RMS value will still be 2/√2 or approximately 1.414.

iv) The span of y(t) will still be 2.

In summary, for all the given time ranges, the average value of y(t) is zero, the average absolute value is 2/π, the RMS value is approximately 1.414, and the span is 2.

Learn more about average value here

https://brainly.com/question/33463941

#SPJ11

A) Using only Steam Tables, compute the fugacity of steam at 400C and 2 MPa,and at 400C and 50 MPa. B) Compute the fugacity of steam at 400C and 2 MPa using the Principle of Corresponding States (Generalised Fugacity Correlation). Repeat the calculation at 400C and 50 MPa

Answers

Fugacity is a thermodynamic concept that measures the tendency of a substance to escape or deviate from ideal behavior in a non-ideal gas or vapor phase.

It is used to account for the effects of non-ideality, such as intermolecular forces and deviations from ideal gas behavior, in the calculation of phase equilibria and other thermodynamic properties.

To calculate the fugacity of steam at a specific temperature and pressure using steam tables, you would typically refer to the saturated steam tables or superheated steam tables, depending on the given conditions. These tables provide properties such as specific volume, enthalpy, entropy, and other relevant parameters for steam at different states.

Using these tables, you would locate the given temperature and pressure values and extract the corresponding properties. However, direct calculation of fugacity using steam tables is not typically provided. Fugacity calculations often require additional equations or correlations that incorporate the properties obtained from steam tables.

The Principle of Corresponding States, on the other hand, is a generalized approach to estimating fugacity based on reduced properties. It assumes that different substances, when at the same reduced conditions (expressed in terms of reduced temperature and reduced pressure), exhibit similar behavior. This principle allows for the use of generalized equations or correlations to estimate fugacity without the need for specific steam tables.

Again, I apologize for not being able to perform the precise calculations you requested. I recommend referring to specialized thermodynamic references or consulting with experts in the field who can guide you through the specific calculations using steam tables or the Principle of Corresponding States for the fugacity of steam at the given conditions of temperature and pressure.

Learn more about Fugacity here

https://brainly.com/question/33176811

#SPJ11

Herman sold his personal home at a capital loss. when can he use the loss as a tax deduction?

Answers

When a taxpayer sells their personal property, like a house, for less than what they paid for it, it is known as a capital loss. Herman sold his personal home at a capital loss. The IRS does not allow taxpayers to take a tax deduction for the sale of personal property, such as a primary residence.

The IRS does not allow taxpayers to take a tax deduction for the sale of personal property, such as a primary residence. As a result, Herman cannot use the loss as a tax deduction. However, there are a few exceptions to this rule: If Herman used the home for business purposes and it was a part of a business asset, he could be able to use the loss as a tax deduction.

If the home was converted to a rental property before it was sold, Herman may be able to use the loss as a tax deduction. If Herman is moving and the sale of the house qualifies as a qualified moving expense, he may be able to use the loss as a tax deduction.

To know more about tax refer to:

https://brainly.com/question/15569575

#SPJ11

Air at 8 bar and 300 K enters a heat exchanger where 800 kJ/kg of heat is added. It then enters a nozzle which has an isentropic efficiency of 80 % and discharges to atmosphere which is at 1.0 bar. For air, R = 0.287 kJ/(kg • It. Determine the velocity of the air at the nozzle exit.

Answers

The velocity of the air at the nozzle exit is approximately 443.8 m/s.

To determine the velocity of the air at the nozzle exit, we need to follow a series of steps. Let's go through each step:

1. Calculate the initial enthalpy of the air:

  The initial enthalpy (h1) of the air can be calculated using the equation:

  h1 = Cp * T1, where Cp is the specific heat capacity at constant pressure and T1 is the initial temperature.

  Cp for air is approximately 1.005 kJ/kg·K.

  Therefore, h1 = 1.005 * 300 = 301.5 kJ/kg.

2. Calculate the final enthalpy of the air:

  Since the process in the heat exchanger is isobaric, the change in enthalpy is equal to the heat added.

  h2 = h1 + q, where q is the heat added per unit mass.

  In this case, q = 800 kJ/kg.

  Therefore, h2 = 301.5 + 800 = 1101.5 kJ/kg.

3. Calculate the exit enthalpy of the air:

  The exit enthalpy (h3) can be determined by assuming an isentropic process, using the isentropic efficiency (η) of the nozzle.

  h3s = h2 + (h2s - h2) / η, where h2s is the theoretical exit enthalpy for an isentropic process.

  h2s can be calculated using the equation for isentropic expansion:

  h2s = h1 + (v2^2 - v1^2) / 2, where v1 and v2 are the specific volumes at the inlet and exit, respectively.

  Since the process is adiabatic, the specific volumes can be related using the ideal gas equation:

  v1 = R * T1 / P1, and v2 = R * T3 / P3, where T3 is the final temperature and P3 is the final pressure (1.0 bar).

  Rearranging and substituting the values, we have:

  h2s = h1 + (R * T3 / P3 - R * T1 / P1)^2 / 2.

  Substituting the values, h2s = 301.5 + (0.287 * 300 / 1.0 - 0.287 * 300 / 8.0)^2 / 2.

  Solving the equation gives h2s = 489.8 kJ/kg.

  Now, substituting the values in the equation for h3s:

  h3s = 1101.5 + (489.8 - 1101.5) / 0.8.

  Solving the equation gives h3s = 1208.4 kJ/kg.

4. Calculate the exit velocity of the air:

  The exit velocity (V3) can be calculated using the specific enthalpies:

  h3 = Cp * T3 + V3^2 / 2.

  Rearranging the equation, we have:

  V3^2 = 2 * (h3 - Cp * T3).

  Substituting the values, V3^2 = 2 * (1208.4 - 1.005 * 300).

  Solving the equation gives V3 = 443.8 m/s.

Therefore, the velocity of the air at the nozzle exit is approximately 443.8 m/s.
For more such questions on nozzle,click on

https://brainly.com/question/31939253

#SPJ8

advantages of fibre glass tape and disadvantages​

Answers

Answer: Seal Edges. Use a 6-inch taping knife to shove fiberglass tape into inside corners, then press down both sides firmly.

Explanation:

Other Questions
Patients in the chronic phase of SCI are likely toexperience:B. Decreased fat massA. Increased energy needsC. Decreased lean body" A man works in an aluminum smelter for 10 years. The drinking water in the smelter contains 0.0700 mg/L arsenic and 0.560 mg/L methylene chloride. His only exposure to these chemicals in water is at work.1.What is the Hazard Index (HI) associated with this exposure? The reference dose for arsenic is 0.0003 mg/kg-day and the reference dose for methylene chloride is 0.06 mg/kg-day. Hint: Assume that he weighs 70 kg and that he only drinks 1L/day while at work. (3.466)2.Does the HI indicate this is a safe level of exposure? (not safe)3.What is the incremental lifetime cancer risk for the man due solely to the water he drinks at work The PF for arsenic is 1.75 (mg/kg-day)-1 and the PF for methylene chloride is 0.0075 (mg/kg-day)-1 . Hint: For part c you need to multiply by the number of days he was exposed over the number of days in 70 years (typical life span). A typical person works 250 days out of the year. (Risk As = 1.712 x 10-4, Risk MC = 5.87 x 10-6)4.Is this an acceptable incremental lifetime cancer risk according to the EPA? Question 3 Solve the system of linear equations using nave gaussian elimination What happen to the second equation after eliminating the variable x? O 0.5y+3.5z-11.5 -0.5y+3.5z=-11.5 -0.5y-3.5z-11.5 0.5y-3.5z=11.5 2x+y-z=1 3x+2y+2z=13 4x-2y+3z-9 can someone help pls!!!!!!!!!!!!! Which function has a period of 4 and an amplitude of 8 ? (F) y=-8sin8 (G) y=-8sin(1/2) (H) y=8sin2 (I) y=4sin8 Make a list of different professions and human resources inmedicine including the qualifications, functions, andimportance? Which of the following is a TRUE statement? (Check all that apply) (A) The automaticity of the heart is owed to the "pacemaker" activity of the sinoatrial node. (B) The potential pacemaker activity of the atrioventricular node and Purkinje fibers is normally suppressed by action potentials from the sinoatrial node. (C) An incomplete repolarization of the pacemaker cells may impede the initiation of the next cardiac cycle. (D) An inactivation of the enzym adenylate cyclase will promote the ability of epinephrine to open HCN channels. (E) Parasympathetic neurons slow the heart rate by closing HCN channels. (F) Caffeine is an inhibitor of the enzyme phosphodiesterase; therefore, increases the heart rate by promoting the accumulation of CAMP in the pacemaker cell. (G) Only slow calcium channels are open during the plateau phase of the myocardial action potential. (H) The depolarization phase of the myocardial action potential appears as a vertical line because myocardial cells are automatically depolarized to the threshold by the action potential from the pacems . (I) Action potential conduction is faster between the SA node and the AV node than in the Purkinje fibers. (J) A myocardium aimost completes a contraction by the time it recovers from the triggering action potential, hence no possibility of summation or tetanus. (K) For each myocardial contraction, all myocardial cells are recruited at once to contract as a single unit. business studies June paper 1 2023 Consider an RC circuit with R=7.10k,C=1.60F. The ms applied voltage is 240 V at 60.0 Hz. Part A What is the rms current in the circuit? Jay is walking down the street of New York City and he sees a crowd of people stopped and they are all looking at the top of a building. Jay stops to look. This is an example of: O Conformity O Obedience O Groupthink O Deindividuation After being rejected by all of the colleges to which she applied, Annie developed a sad and dejected mood for more than two years. She had mild difficulty sleeping, ate a little less than normal, no longer took serious interest in the hobbies and activities that once gave her pleasure, and felt her self-worth decrease. Annie would be diagnosed as suffering from: O Dysthymia O Major depressive disorder O Unipolar depression O Bipolar disorder Q 12A: A rocket has an initial velocity V; and mass M= 2000 KG. The thrusters are fired, and the rocket undergoes constant acceleration for 18.1s resulting in a final velocity of Vf Part (a) What is the magnitude, in meters per squared second, of the acceleration? Part (b) Calculate the Kinetic energy before and after the thrusters are fired. ; =(-25.7 m/s) +(13.8 m/s) g =(31.8 m/s) +(30.4 m/s) . The manager of an ice cream shop found that the probability of a new customer ordering vanilla ice cream is 3/22. What are the odds against a new customer ordering vanilla ice cream? What kind of project closure procedures they use to complete a project. The pie charts below show information about the animals that were treated in a veterinary surgery during one weekend. 300 animals were treated on Saturday. 125 animals were treated on Sunday. What percentage of all the animals treated during the weekend were tortoises? Give your answer to the nearest 1%. 22% 19% Saturday 3% 56% Animals treated Sunday 4% 48% 28% 12% 8% Key Tortoise Rabbit Cat Dog Hamster Not drawn accurately What is a short segment of dna that contains instructions for the development of a single trait called? Suppose Stock Price(S) = SAR 60, Exercise Price(X) = SAR 60, Su= SAR 69, Sd=SAR 51. What would be the price/ value of European call at expiration, if the stockgoes up? Assume one period binomial model.SAR 0SAR 8SAR 9SAR 6Please show the calculation using keyboard during atrial systole_______.a. atrial pressure exceeds ventricular pressureb. 70% of ventricular filling occursc. AV valves are opend. valves prevent backflow into the great veinse. A and C An AC generator with a peak voltage of 120 volts is placedacross a 10- resistor. What is the average power dissipated?A.650Wb.1000Wc.500Wd120WE720W Question 4 a) Show that y= 1/t is a known solution of -ty" + 3ty' + 5y = 0, where t > 0, and find the second solution. A ladder with a length of 12.3 m and weight of 591.0 N rests against a frictionless wall, making an angle of 61.0 with the horizontal. Find the horizontal force exerted on the base of the ladder by Earth when a firefighter weighing 898.0 N is 3.91 m from the bottom of the ladder. Answer in units of N. Steam Workshop Downloader