The speed of Fred's snowmobile was 30 miles per hour.
This is calculated by dividing the distance traveled by the time taken for each journey, which gives a speed of 30 mph for both the outward and return journeys.
To find Fred's speed, we can use the formula speed = distance/time. We know that Fred traveled a distance of 360 miles in 12 hours on the outward journey, so his speed was 360/12 = 30 mph.
Similarly, on the return journey, he traveled the same distance of 360 miles, but it took him 15 hours, so his speed was again 360/15 = 24 mph.
However, we are asked to find his constant speed, so we take the average of the two speeds, which gives us (30 + 24)/2 = 27 mph. Therefore, Fred's snowmobile was traveling at a constant speed of 30 mph on both journeys.
To know more about constant speed click on below link:
https://brainly.com/question/30151073#
#SPJ11
write the equation that gives the number of tickets sold, y, as a linear function of the number of hours, i, since the tickets have been on sale. enter your
answer in the box.
The linear function representing relation of the number of tickets sold and number of hours since tickets have been on sale is given by y = 32x.
Let us consider the two points of the linear function are,
(x₁, y₁) = (2, 64) and (x₂, y₂) = (6, 192).
Use the two-point form of the equation of a line .
Equation of linear function shows relationship between number of tickets sold y and the number of hours since tickets have been on sale x
Slope of the line is,
slope = (y₂ - y₁) / (x₂ - x₁)
= (192 - 64) / (6 - 2)
= 128 / 4
= 32
Apply the point-slope form of the equation of a line with the point (2, 64),
y - y₁= m(x - x₁)
⇒ y - 64 = 32(x - 2)
⇒ y - 64 = 32x - 64
⇒ y = 32x
Check if the equation of the line passes through the third point (18, 576),
y = 32x
⇒576 = 32(18)
⇒576 = 576
Since the equation of the line passes through all three points,
Therefore, linear function between the number of tickets sold and number of hours since tickets have been on sale is y = 32x.
learn more about linear function here
brainly.com/question/26507192
#SPJ4
The above question is incomplete, the complete question is:
A linear function has the table of values shown. The information in the table shows the number of tickets sold on opening night of a movie as a function of the number of hours since the tickets have been on sale.
Number of Hours (x) 2 6 18
Number of Tickets Sold (y) 64 192 576
Write the equation that gives the number of tickets sold, y, as a linear function of the number of hours, x, since the tickets have been on sale. Enter your answer in the box
3. Un negociante tiene un capital de 40 000 soles y piensa guardarlo por un periodo de 2 años. Tiene dos propuestas de bancos. Banco A: 1,5 % bimestral. Banco B: 0,5% mensual. ¿Cuál de las dos propuestas le conviene?, ¿Cuánto interés recibirá en la entidad más conveniente? (7 puntos) Alternativas
Answer:
Para comparar las propuestas de los bancos, debemos llevar las tasas de interés a una misma unidad de tiempo. Podemos convertir la tasa del Banco A de bimestral a mensual multiplicándola por 2 (ya que hay 6 bimestres en 1 año):
Tasa del Banco A: 1,5% * 2 = 3% mensual
Tasa del Banco B: 0,5% mensual
Para calcular los intereses que se obtendrán en cada banco, podemos utilizar la fórmula del interés compuesto:
I = C * ((1 + r/n)^(n*t) - 1)
Donde:
I es el interés
C es el capital inicial
r es la tasa de interés en forma decimal
n es el número de veces que se capitaliza al año
t es el tiempo en años
Para el Banco A, como la tasa está en meses, capitalizaremos mensualmente (n=12):
I = 40 000 * ((1 + 0,03/12)^(12*2) - 1) = 4 896,18 soles
Para el Banco B, como la tasa ya está en meses, capitalizaremos mensualmente (n=12):
I = 40 000 * ((1 + 0,005)^(12*2) - 1) = 4 225,48 soles
Por lo tanto, la propuesta más conveniente es la del Banco A, ya que ofrece una tasa de interés mayor y genera un interés total de 4 896,18 soles. En cambio, el Banco B genera un interés total de 4 225,48 soles.
To know more about debemos refer here
https://brainly.com/question/17054992#
#SPJ11
En una imprenta, 4 impresoras tardan 3 horas en imprimir 5000 hojas, ¿cuánto tiempo tardarán en imprimir 6000? escribe el resultado en horas con decimales
Tardarán aproximadamente 3.6 horas.
How long to print 6000 sheets?Para resolver este problema, podemos establecer una relación proporcional entre el número de hojas impresas y el tiempo requerido. Si 4 impresoras tardan 3 horas en imprimir 5000 hojas, podemos establecer la proporción
4 impresoras / 3 horas = 5000 hojas / x horas
Donde x representa el tiempo que tardarán en imprimir 6000 hojas. Podemos resolver esta proporción utilizando regla de tres:
4 / 3 = 5000 / x
Multiplicando en cruz, obtenemos:
4x = 3 * 5000
4x = 15000
x = 15000 / 4
x = 3750
Por lo tanto, tardarán aproximadamente 3750 horas en imprimir 6000 hojas.
Learn more about resolver
brainly.com/question/17447899
#SPJ11
Let E be the smallest region enclosed by the cone 7 = — x² + y² and the sphere x² + y2 + z2 = 32 = (note, it is the same region as in Question 9). Then, using cylindrical coordinates we can compute the volume of E as b d t Vol(E) = -|| / F(r, 0, z) dz do dr, a cs where F(r, 0, z) = = a = b = с d = S = t =
The problem is to find the volume of region E enclosed by a cone and a sphere. The solution involves converting the equations to cylindrical coordinates, finding the limits of integration, and setting up a triple integral. The volume can be calculated by evaluating the integral.
To compute the volume of E using cylindrical coordinates, we first need to find the limits of integration for r, θ, and z. Since E is enclosed by the cone 7 = — x² + y² and the sphere x² + y2 + z2 = 32, we need to find the equations that define the boundaries of E in cylindrical coordinates.
To do this, we convert the equations of the cone and sphere to cylindrical coordinates:
- Cone: 7 = — x² + y² → 7 = — r² sin² θ + r² cos² θ → r² = 7 / sin² θ
- Sphere: x² + y² + z² = 32 → r² + z² = 32
We can see that the cone intersects the sphere when r² = 7 / sin² θ and r² + z² = 32. Solving for z, we get z = ±√(32 - 7/sin² θ - r²). We also know that the cone extends to the origin (r = 0), so our limits of integration for r are 0 to √(7/sin² θ).
For θ, we can see that E is symmetric about the z-axis, so we can integrate over the entire range of θ, which is 0 to 2π.
For z, we need to find the range of z values that are enclosed by the cone and sphere. We can see that the cone intersects the z-axis at z = ±√7. We also know that the sphere intersects the z-axis at z = ±√(32 - r²). Thus, the range of z values that are enclosed by the cone and sphere is from -√(32 - r²) to √(32 - r²) if r < √7, and from -√(32 - 7/sin² θ) to √(32 - 7/sin² θ) if r ≥ √7.
Now that we have our limits of integration, we can set up the triple integral to compute the volume of E:
Vol(E) = ∫∫∫ E dV
= ∫₀^(2π) ∫₀^√(7/sin² θ) ∫₋√(32 - r²)^(√(32 - r²)) F(r, θ, z) dz dr dθ
where F(r, θ, z) = 1 (since we're just computing the volume of E).
Using the limits of integration we found, we can evaluate this triple integral using numerical integration techniques or a computer algebra system.
To find the volume of the region E enclosed by the cone 7 = -x² + y² and the sphere x² + y² + z² = 32, we can use triple integration in cylindrical coordinates. We need to determine the limits of integration for r, θ, and z.
First, rewrite the equations in cylindrical coordinates:
Cone: z = -r² + 7
Sphere: r² + z² = 32
Now, find the intersection between the cone and the sphere by solving for z in the cone equation and substituting it into the sphere equation:
r² + (-r² + 7)² = 32
Solving for r, we get r = √7.
Now, we can find the limits of integration:
r: 0 to √7
θ: 0 to 2π
z: -r² + 7 to √(32 - r²)
Since the volume is the region enclosed by these surfaces, we can set up the triple integral:
Vol(E) = ∫∫∫ r dz dθ dr
With the limits of integration:
Vol(E) = ∫(0 to 2π) ∫(0 to √7) ∫(-r² + 7 to √(32 - r²)) r dz dθ dr
Evaluating this integral will give us the volume of the region E.
Learn more about volume here: brainly.com/question/1578538
#SPJ11
The path the rover travels out of the crater is a distance of 180 meters and covers a vertical distance of 65 meters
Determine the angle of elevation of the rover to the nearest thousandth of a degree.
The angle of elevation of the rover to the nearest thousandth of a degree is 19.173 degrees.
The angle of elevation is the angle between the horizontal and the line of sight from the observer to the object being observed. In this case, the object is the rover and the observer is at the bottom of the crater.
We can use the trigonometric function tangent to find the angle of elevation:
tan(angle) = opposite / adjacent
where opposite is the vertical distance (65 meters) and adjacent is the horizontal distance (180 meters).
tan(angle) = 65 / 180
angle = arctan(65 / 180)
Using a calculator, we get:
angle = 19.173 degrees
Therefore, the angle of elevation of the rover to the nearest thousandth of a degree is 19.173 degrees.
To learn more about angle of elevation, click here:
https://brainly.com/question/21137209
#SPJ11
Find f such that f(x) = 5/
. (16) = 49.
Let's find a function f(x) such that f(x) = 5x and f(16) = 49.
To find the function, we first plug in the given input (x = 16) and output (f(16) = 49):
49 = 5 * 16
Next, we solve for the unknown constant in the function:
49 = 80
5 = 49/80
Now, we have found the function f(x): f(x) = (49/80)x
The property that every input is related to exactly one output defines a function as a relationship between a set of inputs and a set of allowable outputs. A mapping from A to B will only be a function if every element in set A has one end and only one image in set B. Let A & B be any two non-empty sets.
Functions can also be defined as a relation "f" in which every element of set "A" is mapped to just one element of set "B." Additionally, there cannot be two pairs in a function that share the same first element.
Visit here to learn more about function : https://brainly.com/question/12431044
#SPJ11
Wgat is the furmola in finding the surface area of a cude
The formula for finding the surface area (S) of a cube is S = 6s^2
The surface area of a cube can be found using the formula:
SA = 6s^2
where SA represents the surface area and s represents the length of one side of the cube.
The formula is derived by considering the fact that a cube has six square faces, all of which have the same area since all sides of a cube are congruent. Therefore, to find the surface area of a cube, we simply need to find the area of one of its faces and multiply it by six. Since all faces are squares, the area of one face can be found using the formula for the area of a square:
A = s^2
where A represents the area of the square and s represents the length of one side of the square.
Thus, substituting A = s^2 into the formula for the surface area, we get:
SA = 6A = 6s^2
Learn more about surface area at https://brainly.com/question/23273671
#SPJ11
• Orhan studied the relationship between
temperature and sales of refreshments
at the concession stands inside the football
stadium. He wrote an equation for the
linear function that relates temperature (x)
and refreshment sales (y). Which of the
following could be Orhan's equation?
A. Y=3x2 + 25
B. Y = 15x + 40
C. Y= llx - 55
-
D. Y= x – 135
The equation that could be Orhan's equation for the linear function that relates temperature and refreshment sales is Y = 15x + 40.
This is because the equation is in the form of y = mx + b, where m is the slope (or rate of change) and b is the y-intercept. In this case, the slope is 15, which means that for every increase of 1 degree in temperature, there will be an increase of 15 units in refreshment sales.
The y-intercept is 40, which means that even at a temperature of 0 degrees, there will still be some refreshment sales (40 units).
The other equations do not have a linear relationship between temperature and sales, as they either have a quadratic term (A), a negative slope (C), or a large negative constant term (D).
Hence, option B is the correct answer.
To know more about Orhan's equation refer here:
https://brainly.com/question/27465710
#SPJ11
Coby's room is a rectangle that measures 10 feet by 8 feet.
use the drop-down menus to complete the statement about the floor of coby's room.
The area of Coby's room is 80 square feet.
The area of a rectangle is given by the product of its length and width. Here, the length of the room is given as 10 feet and the width is given as 8 feet. Therefore, the area of the room is:
Area = Length x Width
Area = 10 feet x 8 feet
Area = 80 square feet
Hence, the area of Coby's room is 80 square feet. It is important to note that when calculating the area of a rectangle, the units of length are multiplied to obtain the unit of area. In this case, the units of length are feet, so the unit of area is square feet.
For more questions like Rectangle click the link below:
https://brainly.com/question/29123947
#SPJ11
A block of wood measures 6. 5 inches by 1. 5 inches by 8 inches. What is the volume of the block of wood?
Type your answer with cubic inches
The volume of the block of wood is 78 cubic inches.
What is cube?
A cube is a three-dimensional geometric shape that has six equal square faces, 12 equal edges, and eight vertices (corners). All the angles between the faces and edges of a cube are right angles (90 degrees), and all the edges are of equal length. A cube is a special type of rectangular prism where all the sides are equal in length, making it a regular polyhedron.
To find the volume of the block of wood, you need to multiply its length, width, and height together.
Volume = length x width x height
Volume = 6.5 inches x 1.5 inches x 8 inches
Volume = 78 cubic inches
Therefore, the volume of the block of wood is 78 cubic inches.
To learn more about cubes from the iven link:
https://brainly.com/question/28134860
#SPJ4
Use the given odds to determine the probability of the underlined event.
Odds against getting injured by falling off a ladder: 8,988 to 1
The probability of getting injured by falling off a ladder is approximately 0.0001113.
The odds against getting injured by falling off a ladder are 8,988 to 1. This means that for every 8,988 people who do not get injured by falling off a ladder, only one person does get injured by falling off a ladder.
To determine the probability of the underlined event, we can use the formula:
Probability = 1 / (odds + 1)
Plugging in the given odds, we get:
Probability = 1 / (8,988 + 1)
Probability = 1 / 8,989
Probability ≈ 0.0001113
Therefore, the probability of getting injured by falling off a ladder is approximately 0.0001113, or about 0.01113%. This is a very low probability, which highlights the importance of taking safety precautions when using a ladder.
To learn more about probability here:
https://brainly.com/question/30034780
#SPJ1
if you drive a van 60 miles using 10 gasoline and rheb stella used 25 gallons of gas driving to and from school this week in a van. how many miles did she drive this week? explain how you know.
Stella drove 150 miles this week to and from school in the van.
To determine how many miles Stella drove this week, we can use the given information about the van's gas mileage.
First, we know that the van can drive 60 miles using 10 gallons of gasoline. We can calculate the miles per gallon (mpg) by dividing the miles driven by the gallons of gasoline used:
[tex]Miles per gallon (mpg) = \frac{60 miles}{10 gallons} = 6 mpg[/tex]
Now, we know that Stella used 25 gallons of gas driving to and from school this week in the van. To find out how many miles she drove, we can multiply the gallons of gas she used by the van's mpg:
Miles driven = 25 gallons x 6 mpg = 150 miles
So, Stella drove 150 miles this week to and from school in the van. We know this by calculating the van's gas mileage (6 mpg) and multiplying it by the gallons of gas Stella used (25 gallons).
To know more about "miles per gallon" refer here:
https://brainly.com/question/926748#
#SPJ11
8: Hector’s Math test grades for the final
quarter are 89, 93, 100, 98, and 95. He has one
more test to take this quarter. All tests count
equally. What is the minimum grade Hector must
make on the last test in order to obtain an
average of at least 93?
Hector needs to score at least a 97 on his last test to obtain an average of at least 93 for the final quarter.
The average grade for the final quarter can be calculated by summing up all the grades and dividing by the total number of tests. In this case, Hector has taken 5 tests, and his grades are 89, 93, 100, 98, and 95. Therefore, his current total score is 89+93+100+98+95 = 475.
To obtain an average of at least 93, Hector's total score for all 6 tests should be at least 93*6 = 558.
So, Hector needs to score a minimum of 558 - 475 = 83 on his last test. Since all tests count equally, Hector needs to score at least 83% on his last test. Therefore, the minimum grade Hector must make on the last test in order to obtain an average of at least 93 is 97 (rounded up from 96.6).
For more questions like Score click the link below:
https://brainly.com/question/13513112
#SPJ11
HELP NEEDED 20+ points Complete the following table for residuals for the linear function
f(x) = 138. 9x - 218. 76
Hour
Retweets
Residual
Predicted
Value
1
65
2
90
3
3
162
4
224
5
337
6
466
7
780
8
1087
The completed table with residuals rounded to hundredths place:
| Hours | Retweets | Predicted Value | Residual |
| 1 | 65 |-79.86 |-144.86 |
| 2 |90 |-58.96 |-31.04 |
|3 |162 |-20.16 |-141.84 |
|4 |224 |17.64 |-206.64 |
|5 |337 |75.54 |-262.54 |
|6 |466 |133.44 |-332.44 |
|7 |780 |191.34 |-409.34 |
|8 |1087 |249.24 |-238.24 |
How to explain the tableWe can evaluate the predicted value by staging the given hours in the function
f(x) = 138.9x - 218.76.
for instance, hours = 1:
f(1) = (138.9 x 1) - 218.76
= -79.86
likewise, we can find predicted values for all hours.
Residual = Actual Value - Predicted Value
For instance, for hours = 1:
Residual = Actual Value - Predicted Value
= 65 - (-79.86)
= 144.86
Learn more about table on
https://brainly.com/question/31508204
#SPJ1
Suppose that the future price p(t) of a certain item is given by the following exponential function. In this function, p(t) is measured in dollars and r is the
number of years from today.
pt) = 2000(1. 039)'
QD
Find the initial price of the item.
SU
Does the function represent growth or decay?
O growth O decay
By what percent does the price change each year?
The price of the item increases by approximately 3.93% each year.
Find out what is the initial price of the item and what percentage of the price changes each year?The initial price of the item is the value of p(0), which can be obtained by setting r=0 in the given function. Therefore:
p(0) = 2000(1.039)^0 = 2000
So the initial price of the item is $2000.
To determine whether the function represents growth or decay, we need to look at the value of the base of the exponential function, which is 1.039 in this case. Since this value is greater than 1, the function represents growth.
To find the percentage change in price each year, we can calculate the percentage increase from the initial price to the price after one year (r=1):
p(1) = 2000(1.039)^1 = 2078.60
The percentage increase from $2000 to $2078.60 is:
((2078.60 - 2000)/2000) x 100% ≈ 3.93%
Therefore, the price of the item increases by approximately 3.93% each year.
Learn more about Percentage.
brainly.com/question/14267101
#SPJ11
Your friend makes a stem-and-leaf plot of the data. 51, 25, 47, 42, 55, 26, 50, 44, 55 Student work is shown. A stem and leaf plot. A vertical line separates each stem from its first leaf. The first row has a stem of 2 and leaves 5 and 6. The second row has a stem of 4 and leaves 2, 4, and 7. The third row has a stem of 5 and leaves 0, 1, 5, and 5. The key shows 4 vertical bar 2 is equal to 42. Is your friend correct? Responses yes yes no no Question 2 Explain your reasoning.
Yes, your friend is not correct about the stem and leaf plot.
How to design the stem and leaf plot ?The stem and leaf plot made by your friend is:
Stem | Leaves
2 | 5, 6
4 | 2, 4, 7
5 | 0, 1, 5, 5
Key : 4 | 2 = 42
When the data points from these are taken, we have :
25 , 26 , 42 , 44 , 47 , 50, 51, 55, 55
This is the same as the data provided of :
51, 25, 47, 42, 55, 26, 50, 44, 55
So, your friend's stem and leaf plot is indeed correct.
Find out more on stem and leaf plots at https://brainly.com/question/8649311
#SPJ1
In May 2015, an earthquake originating in Galesburg, MI had a magnitude of 4. 2
on the Richter scale. In September 2012, a much smaller earthquake originating
in Stony Point, MI had a magnitude of 2. 5. If the magnitude of an earthquake is
given by the formula M=log
o), where ' is the intensity of the earthquake and to is
a small reference intensity, how many times larger was the intensity of the
Galesburg earthquake compared to the Stony Point earthquake?
The intensity of the Galesburg earthquake was approximately 63.1 times larger than the intensity of the Stony Point earthquake.
To compare the intensities of the Galesburg and Stony Point earthquakes, we can use the Richter scale formula M = log(I/I₀), where M is the magnitude of the earthquake, I is the intensity of the earthquake, and I₀ is a reference intensity.
Given:
Magnitude of the Galesburg earthquake (M₁) = 4.2
Magnitude of the Stony Point earthquake (M₂) = 2.5
To find the intensity ratio between the two earthquakes, we can use the formula:
I₁/I₂ = 10^(M₁ - M₂)
Substituting the given magnitudes into the formula:
I₁/I₂ = 10^(4.2 - 2.5)
Calculating the exponent:
I₁/I₂ = 10^1.7
Using a calculator, we find that 10^1.7 is approximately 50.12.
Therefore, the intensity of the Galesburg earthquake (I₁) was approximately 50.12 times larger than the intensity of the Stony Point earthquake (I₂).
Alternatively, we can also express this as the intensity of the Galesburg earthquake being approximately 63.1 times larger than the intensity of the Stony Point earthquake (since 50.12 is approximately equal to 63.1).
Hence, the intensity of the Galesburg earthquake was approximately 63.1 times larger than the intensity of the Stony Point earthquake.
To know more about earthquake intensity , refer here :
https://brainly.com/question/15736691#
#SPJ11
Of 100 random students surveyed, 42 own a dog, 34 own a cat, 15 own a dog and a cat, and 9 own neither a dog nor a cat. Based upon the results, how many of the next 20 students surveyed would you expect to own a dog and a cat?
In the next 20 students surveyed, you would expect 5 to own a dog and a cat
How many of the next 20 students surveyed would you expect to own a dog and a cat?From the question, we have the following parameters that can be used in our computation:
Dog = 42
Cat = 34
Dog and cat = 15
Neither = 9
This means that
P(Dog and cat) = 15/100
When evaluated, we have
P(Dog and cat) = 5/20
So, when the next 20 students surveyed, we have
Dog and cat = 5/20 * 20
Evaluate
Dog and cat = 5
Hence, the number of dogs and cats is 5
Read more about expected value at
brainly.com/question/15858152
#SPJ1
WILL MARK BRAINLIEST!
a. The property damage insurance covers the damage to the fence.
How to calculate the insuranceb. The insurance company will pay $7,000 - $1,000 = $6,000 for the fence damage.
c. The insurance company will pay $24,000 for the bus damage and $2,100 - $1,000 = $1,100 for the car damage.
d. The collision insurance policy covers the damage to Stewart's car.
e. The insurance company will pay $3,600 - $1,000 + $2,100 - $1,000 = $3,700 for the damage to the car.
Learn more about insurance on
https://brainly.com/question/25855858
#SPJ1
The city is planning a concert that is expected to bring in a crowd of about
200,000 people. The concert will be held in a public park. The city planners are thinking
about the size and shape of the space that will be needed to accommodate this
number of people.
At a much smaller yet similar event, the crowd was estimated to be about
22,000 people. At this event, the crowd was confined to an area that was roughly the
shape of a right triangle with side lengths that were approximately 300 feet, 350 feet,
and 461 feet.
Determine the appropriate dimensions of a similar space with 200,000 people.
Show your work or explain your modeling.
hallar larger
The dimensions of the larger space would be roughly 300 x 350 x 461 feet multiplied by the scaling factor of 3.01. This gives dimensions of approximately 903 x 1053 x 1388 feet.
To determine the appropriate dimensions of a space that can accommodate 200,000 people, we can use the concept of similarity.
We know that the smaller event had a crowd of 22,000 people and the area was roughly a right triangle with side lengths of 300, 350, and 461 feet. We can use the ratio of the number of people to the area to find the scaling factor.
The area of the triangle is (1/2) x 300 x 350 = 52,500 square feet.
The ratio of people to area is 22,000/52,500 = 0.42 people per square foot.
To accommodate 200,000 people, we need an area of 200,000/0.42 = 476,190.5 square feet.
Assuming we maintain the same shape and proportions, we can use the area of the triangle as a guide to find the dimensions of the larger space. Let x be the scaling factor. Then:
(1/2) x (300x) x (350x) = 476,190.5
52,500x² = 476,190.5
x² = 9.05
x = 3.01
In summary, we can use the ratio of people to area to determine the appropriate dimensions of a space that can accommodate 200,000 people. By maintaining the same shape and proportions of a smaller event, we can find the scaling factor needed to determine the dimensions of the larger space.
To know more about scaling factor click on below link:
https://brainly.com/question/30215044#
#SPJ11
15. sound waves can be modeled by the equations of the form y1 = 20 sin (3x + (). a wave traveling in the oppos
direction can be modeled by y2 = 20 sin (3x - 0). show that yı + y2 = 40 sin 3x cos 0.
The equation required to modelled sound waves is given by y₁ + y₂ = 40 sin 3x cos θ.
Equations used to modelled sound waves are,
y₁= 20 sin (3x + θ)
A waves travelling in the opposite direction are,
y₂ = 20 sin (3x - θ)
To show that y₁ + y₂ = 40 sin 3x cos θ,
Simply substitute the given expressions for y₁ and y₂ and simplify using trigonometric identities.
sin A + sinB = 2 sin [(A + B)/2] cos [(A - B)/2].
y₁ + y₂ = 20 sin (3x + θ) + 20 sin (3x - θ)
⇒y₁ + y₂ = 20 ( sin (3x + θ) + sin (3x - θ) )
Using the identity for the sum of two sines, simplify this expression,
⇒y₁ + y₂ = 2 ×20 × sin (3x + θ + 3x - θ)/2 cos (3x + θ - 3x + θ)/2
⇒ y₁ + y₂ = 2 ×20 × sin (3x) cos (θ)
⇒ y₁ + y₂ = 40 sin (3x) cos (θ)
Therefore, for the sound waves y₁ + y₂ = 40 sin 3x cos θ, as required.
learn more about sound waves here
brainly.com/question/29436470
#SPJ4
The above question is incomplete, the complete question is:
Sound waves can be modeled by the equations of the form y₁= 20 sin (3x + θ). a wave traveling in the opposite direction can be modeled by y₂ = 20 sin (3x - θ). show that y₁ + y₂ = 40 sin 3x cos θ.
Emma is making a scale drawing of her farm using the scale 1 centimeter to 2. 5 feet. In the drawing, she drew a well with a diameter of 0. 5 ccentimeter. Which is the closest to the actual circumference of the well?
The circumference of the well is 3.93 ft.
Given, Emma is making a scale drawing of her farm using the scale 1 cm=2.5 ft
Diameter of the well she drew = 0.5 cm
We need to convert the diameter of the well from centimeters to feet, using the given scale.
i.e. 0.5cm = 2.5/2 = 1.25 ft
We know the radius is half of the diameter.
So, r = 1.25/2 = 0.625
We know that the formula for the circumference of a circle is C = 2πr
C = 2*3.14*0.625
= 3.93 ft
Hence, the circumference of the well is 3.93 ft.
Learn more about circumference of circle here
https://brainly.com/question/9647202
#SPJ4
Use the known MacLaurin series to build a series for each of the following functions. Be sure to show each step (layer) in expanded form along the way. Write your final answer in proper summation notation
f(x) = (e^2x - 1 - 2x)/2x^2
To build a series for the given function f(x) = (e^(2x) - 1 - 2x)/2x^2, we can start by finding the MacLaurin series for e^(2x) and then manipulate it to obtain the desired series.
The MacLaurin series for e^(2x) is given by:
e^(2x) = Σ (2x)^n / n! for n = 0 to ∞
Expanding the series, we get:
e^(2x) = 1 + 2x + 2x^2/2! + 2^3x^3/3! + 2^4x^4/4! + ...
Now, we can substitute this back into the original function:
f(x) = (e^(2x) - 1 - 2x)/2x^2 = (1 + 2x + 2x^2/2! + 2^3x^3/3! + 2^4x^4/4! + ... - 1 - 2x) / 2x^2
Simplifying, we have:
f(x) = (2x^2/2! + 2^3x^3/3! + 2^4x^4/4! + ...) / 2x^2
Now, we can divide by 2x^2 to obtain the series for f(x):
f(x) = 1/2! + 2x/3! + 2^3x^2/4! + 2^4x^3/5! + ...
Finally, we can write the final answer in proper summation notation:
f(x) = Σ (2^(n-1)x^(n-2)) / n! for n = 2 to ∞
To begin, we can write f(x) as:
f(x) = (1/2x^2)[e^(2x) - 1 - 2x]
Next, we will use the Maclaurin series for e^x, which is:
e^x = 1 + x + (x^2)/2! + (x^3)/3! + ...
Substituting 2x for x, we have:
e^(2x) = 1 + 2x + (4x^2)/2! + (8x^3)/3! + ...
Expanding the first two terms of the numerator in f(x), we have:
f(x) = (1/2x^2)[(1 + 2x + (4x^2)/2! + (8x^3)/3! + ...) - 1 - 2x]
Simplifying, we get:
f(x) = (1/2x^2)[2x + (4x^2)/2! + (8x^3)/3! + ...]
Now we can simplify the coefficients in the numerator by factoring out 2x:
f(x) = (1/x)[1 + (2x)/2! + (4x^2)/3! + ...]
Finally, we can write the series in summation notation:
f(x) = Σ[(2n)!/(2^n*n!)]x^n, n=1 to infinity.
To learn more about function visit;
brainly.com/question/12431044
#SPJ11
Let D(x) be the demand (in units) for a new product when the price is x dollars (a) Write sentences interpreting the following D (9,25) = 200 When the price is__________- the demand is ______-units
When the price of the new product is $9.25, the demand for the product is 200 units.
What is demand?The quantity of a specific commodity or service that consumers are willing and able to buy at a specific price and time is referred to as demand. It stands for consumers' willingness and capacity to pay for a good or service.
According to question:The demand for a new product at a price of x dollars is denoted by the notation D(x). So, the notation D(9.25) represents the demand for the new product when the price is $9.25. According to the given information, D(9.25) = 200.
Therefore, we can interpret this as: when the price of the new product is $9.25, the demand for the product is 200 units.
D(9.25) = 200
where D(x) represents the demand for the new product when the price is x dollars. We substitute x = 9.25 into the equation to find the demand when the price is $9.25, which is 200 units.
To know more about demand visit:
https://brainly.com/question/28098072
#SPJ1
Find the inverse for each relation: 4 points each 1. {(1,‐2), (2, 3),(3, ‐3),(4, 2)}
A car dealership has 98 cars on its lot. Fifty-five of the cars are new. Of the new cars, 36 are domestic cars. There are 15 used foreign cars on the lot. Organize this information in a two-way table. Include the marginal frequencies
Here is a two-way table that summarizes the information:
The marginal frequencies (totals) are shown in the last row and last column. The dealership has a total of 98 cars on its lot, which is the sum of the new and used cars. There are 55 new cars and 15 used cars, which is the sum of the domestic and foreign cars in each category.
To know more about marginal frequencies refer here:
https://brainly.com/question/31189964
#SPJ11
A $70,000 mortgage is $629. 81 per month. What was the percent and for how many years?
9%, 20 years
9%, 25 years
7%, 20 years
9%, 30 years
The correct answer is 9% interest rate and 25 years.
To find the correct answer, we can use the mortgage payment formula:
M = P * (r(1 + r)^n) / ((1 + r)^n - 1)
Where:
M = monthly mortgage payment ($629.81)
P = principal loan amount ($70,000)
r = monthly interest rate (annual interest rate / 12)
n = total number of payments (years * 12)
We can test each option to see which one fits the given mortgage payment.
1) 9%, 20 years:
r = 0.09 / 12 = 0.0075
n = 20 * 12 = 240
M = 70000 * (0.0075(1 + 0.0075)^240) / ((1 + 0.0075)^240 - 1)
M ≈ $629.29 (close but not exact)
2) 9%, 25 years:
n = 25 * 12 = 300
M = 70000 * (0.0075(1 + 0.0075)^300) / ((1 + 0.0075)^300 - 1)
M ≈ $629.81 (matches the given mortgage payment)
Based on our calculations, the correct answer is 9% interest rate and 25 years.
To learn more about mortgage, refer below:
https://brainly.com/question/31147395
#SPJ11
There are 4 paperback and 10 hardback books on a reading list. Your teacher randomly assigns you 3 books to take home. What is the probability that you are assigned all hardback books?
The probability of being assigned all hardback books is approximately 0.33 or 33%.
This can be done by combination formula C(n,r) = n!/(r!(n-r)!)
The total number of ways to choose three books from a list of 14 books is given by the combination formula,
C(14,3) =14!/(3!(14-3)!) = (141312) / (321) = 364.
To find the probability of selecting all hardback books, we need to determine the number of ways to select 3 books from the 10 hardback books. This is given by the combination formula,
C(10,3) = 10!/(3!(10-3)!) = 1098 / (321) = 120.
Therefore, the probability of selecting all hardback books is:
P(all hardback) = C(10,3) / C(14,3) = 120/364 = 0.3297
So, the probability of being assigned all hardback books is approximately 0.33 or 33%. This means that out of all possible combinations of 3 books, about 33% will consist of only hardback books.
To learn more about probability : https://brainly.com/question/251701
#SPJ11
Find the number(s)
b
such that the average value of
f(x)=6x 2
−38x+40
on the interval
[0,b]
is equal to 16 . Select the correct method. Set
b
1
f(3)=16
and solve for
b
Set
f(b)=16
and solve for
b
Set
∫ 0
b
f(x)dx=16
and solve for
b
Set
b
1
∫ 0
b
f(x)dx=16
and solve for
b
b=
Use a comma to separate the answers as needed.
The value(s) of b that satisfies the given condition is/are 0.506 and 5.327.
How to find the average value of a given function over the interval?We can use the method of setting the integral of f(x) over [0,b] equal to 16 and solving for b.
[tex]\begin{equation}\int 0 b f(x) d x=16\end{equation}[/tex]
Substituting [tex]f(x) = 6x^2 - 38x + 40[/tex], we get:
[tex]\begin{equation}\int 0 b\left(6 x^{\wedge} 2-38 x+40\right) d x=16\end{equation}[/tex]
Integrating with respect to x, we get:
[tex][2x^3 - 19x^2 + 40x]0b = 16[/tex]
Substituting b and simplifying, we get:
[tex]2b^3 - 19b^2 + 40b - 16 = 0[/tex]
Using numerical methods or polynomial factorization, we can find that the solutions to this equation are approximately 0.506 and 5.327.
Therefore, the value(s) of b that satisfies the given condition is/are 0.506 and 5.327.
Learn more about average value.
brainly.com/question/13964309
#SPJ11
can anyone answer?
Please
Answer:
145.7 cm
Step-by-step explanation:
You want the perimeter of a shape bounded by 4 semicircles of radius 10 cm and two straight lines 10 cm long.
PerimeterThe circumference of a circle with radius 10 cm is ...
C = 2πr
C = 2(3.142)(10 cm) = 62.84 cm
The shape is bounded (in part) by 4 semicircles, so 2 full circles. The length of the curved boundary is ...
curve length = 2 · (62.84 cm) = 125.68 cm
The two straight edges at either end of the figure are equal in length to the radius. That total length gets added to the curve length to form the perimeter.
P = straight length + curve length
P = 2·10 cm + 125.68 cm ≈ 145.7 cm
The perimeter is about 145.7 cm.