pls help me

Which statement best explains the relationship between the electric force between two charged objects and the distance between them?

a.As the distance increases by a factor, the electric force increases by the square of that factor.
b.As the distance increases by a factor, the electric force increases by twice that factor.
c.As the distance increases by a factor, the electric force decreases by twice that factor.
d.As the distance increases by a factor, the electric force decreases by the same factor. e.As the distance increases by a factor, the electric force decreases by the square of that factor.

Answers

Answer 1

Explanation:

The electric force between two charged particles is given by the formula as follows :

[tex]F=k\dfrac{q_1q_2}{r^2}[/tex]

Here,

k is electrostatic constant

[tex]q_1,q_2[/tex] are charges

r is the distance between charges

The above formula shows that the electric force is inversely proportional to the square of the distance between charges. It means that as the distance increases by a factor, the electric force decreases by the square of that factor. Hence, the correct option is (e).


Related Questions

What is a major product of the reaction in the box?​

Answers

Answer:

Molecule C

Explanation:

In this case, on the first reaction, we will have the production of a Grignard reagent. This molecule will react with [tex]D_2O[/tex] and a deuterium atom will be transferrred to the benzene ring. Then at the top of the molecule, we will have an acetal structure. This acetal can be broken by the action of the acid [tex]DCl[/tex], In the mechanism at the end, we will obtain a carbonyl group bonded to a hydrogen atom. Therefore we will have in the final product the aldehyde group. See figure 1 to further explanations.

I hope it helps!

“Denitrifying” bacteria return molecular nitrogen gas (N2) back into the biosystem by a series of reductions. Identify the correct sequence. Select the correct answer below: A. NO−3→NO−2→N2O→N2 B. N2O→NO−3→NO−2→N2 C. N2O→NO−2→NO−3→N2 D. NO−3→N2O→NO−2→N2

Answers

Answer:

NO−3→NO−2→N2O→N2

Explanation:

Denitrification is the process by which nitrogen is returned to the atmosphere by denitrifying bacteria. The process of denitrification involves a sequence of reduction reactions in the sequence; NO3−→NO2−→N2O→N2.

Nitrogen is usually present in soil in the form of soil nitrates which are soluble in water and can be absorbed by plant roots. These denitrifying bacteria reduce soil nitrates to nitrites, then to nitrogen I oxide and finally to molecular nitrogen as shown in the sequence above.

Denitrification can release N2O, is an ozone-depleting substance and

greenhouse gas into the atmosphere with its attendant consequence on global warming.

Write the net ionic equation for any precipitation reaction that may be predicted when aqueous solutions of manganese(II) nitrate and sodium hydroxide are combined.

Answers

Answer:

Explanation:

Mn( NO₃ )₂ + 2Na OH = Mn( OH)₂ (s) ↓ +  2Na NO₃

Converting into ions

Mn⁺ + 2 NO₃⁻ + 2 Na⁺ + 2 OH⁻ = Mn( OH)₂ + 2 Na⁻ + 2 NO₃⁻

Cancelling out common terms

Mn⁺ + 2 OH⁻ = Mn( OH)₂

this is net ionic equation required.

The rate law for the reaction 2NO2 + O3 → N2O5 + O2 is rate = K[NO2][O3].
Which one of the following mechanisms Is consistent with this rate law?
A. NO2 + NO2 → N2O2 (fast)
N2O4 + O3 → N2O5 + O2 (slow)
B. NO2 + O3 → NO5 (fast)
NO5 + NO5 → N2O5 + (5/2)O2 (slow)
C. NO2 + O3 → NO3 + O2 (slow)
NO3 + NO2 → N2O5 (fast)
D. NO2 + NO2 → N2O2 + O2 (slow)
N2O2 + O3 → N2O5 (fast)

Answers

Answer:

C. NO2 + O3 → NO3 + O2 (slow)

NO3 + NO2 → N2O5 (fast)

Explanation:

A reaction mechanism represents an amount of elementary steps that explain how a reaction proceeds. The mechanism must explain the experimental rate law. Also, the slow step is the rate determining step.

This rate law is obtained from the multiplication of the reactants in the slow step, thus:

A. NO2 + NO2 → N2O2 (fast)

N2O4 + O3 → N2O5 + O2 (slow)

Rate law:

rate = k [N2O4] [O3]

This mechanism is not consistent with rate law.

B. NO2 + O3 → NO5 (fast)

NO5 + NO5 → N2O5 + (5/2)O2 (slow)

Rate law:

rate = k [NO5]²

This mechanism is not consistent with rate law.

C. NO2 + O3 → NO3 + O2 (slow)

NO3 + NO2 → N2O5 (fast)

Rate law:

rate = k [NO2] [O3]

This mechanism is consistent with rate law.

D. NO2 + NO2 → N2O2 + O2 (slow)

N2O2 + O3 → N2O5 (fast)

Rate law:

rate = k [NO2]²

This mechanism is not consistent with rate law.

Thus, right solution is:

C. NO2 + O3 → NO3 + O2 (slow)

NO3 + NO2 → N2O5 (fast)

What is an anode? Explain.

Answers

Answer:

Anode is the positively charged electrode which has the following characteristics:

1) Electrons leave anode to enter to the cathode by the battery.

2) Negatively charged ions are attracted towards cathode.

3) It is connected to the positive terminal of the battery.

below are three reactions showing how chlorine from CFCs (chlorofluorocarbons) destroy ozone (O3) in the stratosphere. Ozone blocks harmful ultraviolet radiation from reaching earth’s surface. Show how these 3 equations sum to produce the net equation for the decomposition of two moles of ozone to make three moles of diatomic oxygen (2 O3→ 3 O2), and calculate the enthalpy change. (6 points) R1 O2 (g) → 2 O (g) ΔH1°= 449.2 kJ R2 O3 (g) + Cl (g) → O2 (g) + ClO (g) ΔH2° = -126 kJ R3 ClO (g) + O (g) → O2 (g) + Cl (g) ΔH3°= -268 kJ

Answers

Answer:

ΔH = -338.8kJ

Explanation:

it is possible to sum the enthalpy changes of some reactions to obtain the enthalpy change of the whole reaction (Hess's law).

Using the reactions:

R₁ O₂(g) → 2O(g) ΔH₁°= 449.2 kJ

R₂ O₃(g) + Cl(g) → O₂(g) + ClO(g) ΔH₂° = -126 kJ

R₃ ClO (g) + O (g) → O₂ (g) + Cl (g) ΔH₃°= -268 kJ

By the sum 2R₂ + 2R₃:

(2R₂ + 2R₃) = 2O(g) + 2O₃(g) → 4O₂(g)

ΔH = 2ₓ(-126kJ) + (2ₓ-268kJ) = -788kJ

Now, this reaction + R₁

2O₃(g) → 3O₂(g)

ΔH = -768kJ + 449.2kJ

ΔH = -338.8kJ

For each reaction, write the chemical formulae of the oxidized reactants in the space provided. Write the chemical formulae of the reduced reactants.
reactants oxidized _____
reactants reduced _____
a. 2Fe(s)+3Pb(NO3)2(aq)→3Pb(s)+2Fe(NO3)3(aq)
b. AgNO3(aq)+Cu(s)→2Ag(s)+CuNO)2(a)
c. 3AgNO(aq)+Al()→3Ags)+Al(NO3)3(aq)

Answers

Answer:

a. Oxidized: Fe(s)

Reduced: Pb(NO3)2

b.Oxidized: Cu(s)

Reduced: AgNO3

c. Oxidized: Al(s)

Reduced: AgNO3

Explanation:

In a redox reaction, one reactant is been oxidized whereas the other is reduced.. The reduced reactant is the one that is gaining electrons and the oxidized one is loosing electrons.

In the reactions:

a. 2Fe(s)+3Pb(NO3)2(aq)→3Pb(s)+2Fe(NO3)3(aq)

The Fe is as reactant as Fe(s) (Oxidation state 0) and the product is +3 (Because NO3, nitrate ion, is always -1). That means Fe is oxidized. The Pb as reactant is +2 and as product 0 (Gaining 2 electrons). Pb(NO3)2 is reduced

b. 2AgNO3(aq)+Cu(s)→2Ag(s)+Cu(NO3)2(a)

AgNO3 is +1 and Ag(s) is 0. AgNO3 is reduced. Cu(s) is 0 as reactant and +2 as product. Cu(s) is been oxidized

c. 3AgNO3(aq)+Al(s)→3Ag(s)+Al(NO3)3(aq)

Here, in the same way, AgNO3 is +1 as reactant and 0 as product. AgNO3 is reduced. And Al(s) is 0 as reactant but + 3 as product. Al(s) is oxidized.

how salt solution can be determined by using hydrometer​

Answers

Answer:

Salt solution may be calculated by measuring the specific gravity of a sample of water using a hydrometer.

Hope this answer correct (^^)....

Use bond energies provided to estimate 2Br2

Answers

An your use the energies for the estimate or 2br2 oh 2b3

Determine whether each of the following salts will form a solution that is acidic, basic, or pH-neutral. Drag the appropriate items to their respective bins.
Reset Help
AI(NO3)3 CH3NH3CN NaCIO
CH3NH3CI NaNO3
Acidic Basic pH-neutral
Submit Request Answer
Provide Feedback

Answers

Answer:

AI(NO₃)₃ → Acidic   pH < 7

CH₃NH₃CN  → Neutral  pH = 7

NaCIO  → Basic   pH > 7

CH₃NH₃CI → Acidic   pH < 7

NaNO₃ → Neutral  pH = 7

Explanation:

First of all we dissociate the salts:

Al(NO₃)₃  →  Al³⁺  +  3NO₃⁻

Nitrate anion comes from the nitric acid which is strong, so the anion is the conjugate weak base. It does not react to water, but the Al is an special case. Aluminum as a cathion comes from the Al(OH)₃ which is a base but this compound can also react as an acid, it is called amphoterous.

Al³⁺  +  H₂O  ⇄ Al(OH)²⁺  +  H⁺

Aluminium cathion reacts to water in order to produce a complex and to give protons to the medium, so the salt is acid.

CH₃NH₃CN  →  CH₃NH₃⁺  +  CN⁻

Both ions come from a weak base and a strong acid, so both ions are the conjugate strong base and acid, respectively. They can make hydrolysis to water so the salt is neutral.

CH₃NH₃⁺   +  H₂O  ⇄  CH₃NH₂  +  H₃O⁺     Ka

CN⁻  +  H₂O  ⇄  HCN +  OH⁻   Kb

NaCIO  → Na⁺  + ClO⁻

Sodium cathion, comes from the strong base NaOH so it is does not react to water. It is the conjugate weak acid. Hypochlorite comes from the weak acid, so it can hydrolyse to water.

ClO⁻  +  H₂O  ⇄  HClO  +  OH⁻     Kb

Hypochlorous acid is formed giving OH⁻ to medium, so the salt is basic.

CH₃NH₃CI → CH₃NH₃⁺  +  Cl⁻

Chloride comes from the strong acid HCl. It does not react to water.

Methylammonium comes from the weak base, methylamine so it can react to water in order to make hydrolysis. The salt will be acidic.

CH₃NH₃⁺   +  H₂O  ⇄  CH₃NH₂  +  H₃O⁺     Ka

NaNO₃ → Na⁺  +  NO₃⁻

Both ions come from a strong base and acid, so they are the conjugate base and acid, respectively. As they do not make hydrolisis in water, the salt will be neutral.

which statement describes the use of a flowchart?

Answers

Answer:

A flowchart is a type of diagram that represents a workflow or process

Explanation:

Answer: orders in which steps in a process happen

Explanation:

formic acid buffer containing 0.50 M HCOOH and 0.50 M HCOONa has a pH of 3.77. What will the pH be after 0.010 mol of NaOH has been added to 100.0 mL of the buffer

Answers

Answer:

pH = 3.95

Explanation:

It is possible to calculate the pH of a buffer using H-H equation.

pH = pka + log₁₀ [HCOONa] / [HCOOH]

If concentration of [HCOONa] = [HCOOH] = 0.50M and pH = 3.77:

3.77 = pka + log₁₀ [0.50] / [0.50]

3.77 = pka

Knowing pKa, the NaOH reacts with HCOOH, thus:

HCOOH + NaOH → HCOONa + H₂O

That means the NaOH you add reacts with HCOOH producing more HCOONa.

Initial moles of 100.0mL = 0.1000L:

[HCOOH] = (0.50mol / L) ₓ 0.1000L = 0.0500moles HCOOH

[HCOONa] = (0.50mol / L) ₓ 0.1000L = 0.0500moles HCOONa

After the reaction, moles of each species is:

0.0500moles HCOOH - 0.010 moles NaOH (Moles added of NaOH) = 0.0400 moles HCOOH

0.0500moles HCOONa + 0.010 moles NaOH (Moles added of NaOH) = 0.0600 moles HCOONa

With these moles of the buffer, you can calculate pH:

pH = 3.77 + log₁₀ [0.0600] / [0.0400]

pH = 3.95

When the pH be after 0.010 mol of NaOH has been added to 100.0 mL of the buffer pH is = 3.77 + log₁₀ [0.0600] / [0.0400] = 3.95

What is Formic Acid?

It is possible to Computation the pH of a buffer using H-H equation.

Then pH is = pka + log₁₀ [HCOONa] / [HCOOH]

Then If concentration of [HCOONa] is = [HCOOH] then = 0.50M and pH = 3.77:

3.77 is = pka + log₁₀ [0.50] / [0.50]

After that, 3.77 = pka

Then, Knowing pKa, the NaOH reacts with HCOOH, thus:

After that,[tex]HCOOH + NaOH \rightarrow HCOONa + H2O[/tex]

Now, That means the NaOH you add reacts with HCOOH producing more HCOONa.

Then, Initial moles of 100.0mL = 0.1000L:

After that, [HCOOH] = (0.50mol / L) ₓ 0.1000L = 0.0500moles HCOOH

Then, [HCOONa] = (0.50mol / L) ₓ 0.1000L = 0.0500moles HCOONa

After that, when the reaction, moles of each species is:

Then, 0.0500moles HCOOH - 0.010 moles NaOH (Moles added of NaOH) = 0.0400 moles HCOOH

Now, 0.0500moles HCOONa + 0.010 moles NaOH (Moles added of NaOH) = 0.0600 moles HCOONa

Then, With these moles of the buffer, you can calculate pH:

pH = 3.77 + log₁₀ [0.0600] / [0.0400]

Therefore, pH = 3.95

Find more information about Formic Acid here:

https://brainly.com/question/26708431

Match each property of a liquid to what it indicates about the relative strength of the intermolecular forces in that liquid.

Strong intermolecular forces

Weak intermolecular forces

Answers

Answer:

Strong intermolecular forces:  an increase in viscosity of the liquid, increase in surface tension, decrease in vapor pressure, and an increase in the boiling point.

Weak intermolecular forces: a decrease in viscosity, a decrease in surface tension, an increase in vapor pressure and an increase in boiling point.

Explanation:

Intermolecular forces are forces of attraction or repulsion between neighboring molecules in a substance. These intermolecular forces inclde dispersion forces, dipole-dipole interactions, hydrogen bonding, and ion-dipole forces.

The strength of the intermolecular forces in a liquid usually affects the various properties of the liquid such as viscosity, surface tension, vapour pressure and boiling point.

Strong intermolecular forces in a liquid results in the following; an increase in viscosity of the liquid, increase in surface tension, decrease in vapor pressure, and an increase in the boiling point of the liquid.

Weak intermolecular forces in a liquid results in the following; a decrease in viscosity, a decrease in surface tension, an increase in vapor pressure and an increase in boiling point of that liquid.

Strong intermolecular force is defined as the increase in viscosity of the liquid, increase in surface tension, decrease in vapor pressure, and an increase in the boiling point while  weak intermolecular forces define as the decrease in viscosity, a decrease in surface tension, an increase in vapor pressure, and an increase in boiling point.

Intermolecular forces are forces of attraction or repulsion between neighboring molecules in a substance. These intermolecular forces include as follows:-

Dispersion forcesDipole-dipole interactionsHydrogen bondingion-dipole forces.

Strong intermolecular forces in a liquid result in the following; an increase in viscosity of the liquid, increase in surface tension, decrease in vapor pressure, and an increase in the boiling point of the liquid.

Weak intermolecular forces in a liquid result in the following; a decrease in viscosity, a decrease in surface tension, an increase in vapor pressure, and an increase in the boiling point of that liquid.

For more information, refer to the link:-

https://brainly.com/question/12271256

You are given 10.00 mL of a solution of an unknown acid. The pH of this solution is exactly 2.18. You determine that the concentration of the unknown acid was 0.2230 M. You also determined that the acid was monoprotic (HA). What is the pKa of your unknown acid

Answers

Answer:

[tex]pKa=3.70[/tex]

Explanation:

Hello,

In this case, given the information, we can compute the concentration of hydronium given the pH:

[tex]pH=-log([H^+])\\[/tex]

[tex][H^+]=10^{-pH}=10^{-2.18}=6.61x10^{-3}M[/tex]

Next, given the concentration of the acid and due to the fact it is monoprotic, its dissociation should be:

[tex]HA\rightleftharpoons H^++A^-[/tex]

We can write the law of mass action for equilibrium:

[tex]Ka=\frac{[H^+][A^-]}{[HA]}[/tex]

Thus, due to the stoichiometry, the concentration of hydronium and A⁻ are the same at equilibrium and the concentration of acid is:

[tex][HA]=0.2230M-6.61x10^{-3}M=0.2164M[/tex]

As the concentration of hydronium also equals the reaction extent ([tex]x[/tex]). Thereby, the acid dissociation constant turns out:

[tex]Ka=\frac{(6.61x10^{-3})^2}{0.2164}\\ \\Ka=2.02x10^{-4}[/tex]

And the pKa:

[tex]pKa=-log(Ka)=-log(2.02x10^{-4})\\\\pKa=3.70[/tex]

Regards.

D-Fructose is the sweetest monosaccharide. How does the Fischer projection of D-fructose differ from that of D-glucose? Match the words in the left column to the appropriate blanks in the sentences on the right. Fill in the blanks.
a ketone
carbon 3
carbon 2
carbon 1
an aldehyde
carbon 4
In D-glucose, there is__________ functional group, and the carbonyl group is at___________ when looking at the Fischer projection.
In D-tructose. there is functional group, and the carbonyl group is at when looking at______ the Fischer projection.

Answers

Answer:

aldehyde

carbon-1

ketone

carbon-2

Explanation:

Monosaccharides are colorless crystalline solids that are very soluble in water. Moat have a swwet taste. D-Fructose is the sweetest monosaccharide.

In the open chain form, monosaaccharides have a carbonuyl group in one of their chains. If the carbonyl group is in the form of an aldehyde group, the monosaccharide is an aldose; if the carbonyl group is in the form of a ketone group, the monosaccharide is known as a ketose. glucose is an aldose while fructose is a ketose.

In D-glucose, there is an aldehyde functional group, and the carbonyl group is at carbon-1 when looking at the Fischer projection.

In D-fructose, there is a ketone functional group, and the carbonyl group is at carbon-2 when looking at the Fischer projection.

For a reaction, what generally happens if the temperature is increased? a) A decrease in k occurs, which results in a faster rate. b) A decrease in k occurs, which results in a slower rate. c) An increase in k occurs, which results in a faster rate.

Answers

Answer:

an increase in K occurs,which results in a faster rate

if the temperature is increased for a reaction, An increase in k occurs, which results in a faster rate of reaction. Hence, Option (D) is correct.

What is Rate constant ?

A coefficient of proportionality relating the rate of a chemical reaction at a given temperature to the concentration of reactant (in a unimolecular reaction) or to the product of the concentrations of reactants.

It is represented as 'K'

The negative exponential relationship between k and the temperature indicates that as temperature increases, the value of k also increases.

Since the rate constant can be determined experimentally over a range of temperatures, the activation energy can be calculated using the Arrhenius equation.

Therefore, if the temperature is increased for a reaction, An increase in k occurs, which results in a faster rate of reaction. Hence, Option (D) is correct.

Learn more about Chemical kinetics here ;

https://brainly.com/question/24188785

#SPJ2

Mass of the condensed unknown liquid: 0.3175 g Temperature of the water bath: 99.00 oC Pressure of the gas: 748.2 mmHg Volume of the flask (volume of the gas): 145.0 mL Given : Kelvin = t oC + 273.15 1 L = 1000 mL 1 atm = 760 mmHg Gas constant: R = 0.08206 atm  L / mole  K; Ideal Gas Law: PV = nRT 1. What is the pressure of the gas in atm? (1 points) 2.

Answers

Answer:

1. 0.98 atm

Explanation:

The following data were obtained from the question:

Mass of unknown liquid (m) = 0.3175 g

Temperature (T) = 99 °C

Pressure (P) = 748.2 mmHg

Volume (V) = 145.0 mL

Gas constant (R) = 0.08206 atm.L/Kmol

1. Determination of the pressure in atm.

760 mmHg = 1 atm

Therefore,

748.2 mmHg = 748.2/760 = 0.98 atm

Therefore, the pressure in atm is 0.98 atm.

The combustion of propane (C 3H 8) in the presence of excess oxygen yields CO 2 and H 2O: C 3H 8 (g) + 5O 2 (g) → 3CO 2 (g) + 4H 2O (g) When 2.5 mol of O 2 are consumed in their reaction, ________ mol of CO 2 are produced.

Answers

Answer:

1.5 mol of CO₂

Explanation:

Use the mole ratio to find how many moles of CO₂ are produced from the reaction.

For every 5 moles of O₂, three moles of CO₂ is produced.

2.5 mol O₂ × 3 mol CO₂ ÷ 5 mol O₂

= 2.5 mol O₂ × 0.6

= 1.5 mol CO₂

When 2.5 mol of O₂ is consumed in the reaction, 1.5 mol of CO₂ is produced.

Hope that helps.

How many moles of aqueous magnesium ions and chloride ions are formed when 0.250 mol of magnesium chloride dissolves in water

Answers

Answer:

0.250 mol Mg²⁺

0.500 mol Cl⁻

Explanation:

Magnesium chloride (MgCl₂) dissociates into ions according to the following equilibrium:

MgCl₂  ⇒  Mg²⁺ + 2 Cl⁻

1 mol      1 mol   2 mol

1 mol of Mg²⁺ and 2 moles of Cl⁻ are formed per mole of MgCl₂.  If we have 0.250 mol of MgCl₂, the following amounts of ions will be formed:

0.250 mol MgCl₂ x 1 mol Mg²⁺/mol MgCl₂= 0.250 mol Mg²⁺

0.250 mol MgCl₂ x 2 mol Cl⁻/mol MgCl₂= 0.500 mol Cl⁻

Answer:

HEY THE ANSWER ABOVE ME IS RIGHT!! i defientely misclicked my rating :/

5/5 all the way.

Explanation:

A crystal lattice formed by positive and negative ions is called a

Answers

Answer:

Ionic Crystal

Explanation:

The initial concentrations of I2 and I− in the reaction below are each 0.0401 M. If the initial concentration of I−3 is 0.0 M and the equilibrium constant is Kc=0.25 under certain conditions, what is the equilibrium concentration (in molarity) of I−? I−3(aq)↽−−⇀I2(aq)+I−(aq)

Answers

Answer:

[I⁻] = 0.0352M

Explanation:

Based on the equilibrium:

I₃⁻(aq) ⇄ I₂(aq) + I⁻(aq)

Kc is defined as:

Kc = 0.25 = [I₂] [I⁻] / [I₃⁻]

The system reaches the equilbrium when the ratio [I₂] [I⁻] / [I₃⁻] is equal to 0.25

In the beginning, you add 0.0401M of both [I₂] [I⁻].  When the reaction reach the equilibrium, xM of both [I₂] [I⁻] is consumed producing xM of  [I₃⁻]. That is written as:

[I₃⁻] = X

[I₂] = 0.0401M - X

[I⁻] = 0.0401M - X

X is known as reaction coordinate.

Replacing in Kc:

0.25 = [I₂] [I⁻] / [I₃⁻]

0.25 = [0.0401M - X] [0.0401M - X] / [X]

0.25X = 0.00160801 - 0.0802X + X²

0 = 0.00160801 - 0.3302X + X²

Solving for X:

X = 0.0049M → Right solution

X = 0.3252M → False solution. Produce negative concentrations

Replacing, equilibrium concentrations will be:

[I₃⁻] = X

[I₂] = 0.0401M - X

[I⁻] = 0.0401M - X

[I₃⁻] = 0.0049M

[I₂] = 0.0352M

[I⁻] = 0.0352M

The equilibrium concentration (in molarity) of  [I⁻] should be considered as the 0.0352M.

Calculation of the  equilibrium concentration:

Since

I₃⁻(aq) ⇄ I₂(aq) + I⁻(aq)

Here Kc should be defined

Kc = 0.25 = [I₂] [I⁻] / [I₃⁻]

Also, The system finished the equilibrium at the time when the ratio [I₂] [I⁻] / [I₃⁻] is equivalent to 0.25.

Also,

[I₃⁻] = X

[I₂] = 0.0401M - X

[I⁻] = 0.0401M - X

Also,

0.25 = [I₂] [I⁻] / [I₃⁻]

0.25 = [0.0401M - X] [0.0401M - X] / [X]

0.25X = 0.00160801 - 0.0802X + X²

0 = 0.00160801 - 0.3302X + X²

Now

X = 0.0049M → Right solution

X = 0.3252M → False solution

Now equilibrium concentrations will be:

[I₃⁻] = X

[I₂] = 0.0401M - X

[I⁻] = 0.0401M - X

[I₃⁻] = 0.0049M

[I₂] = 0.0352M

[I⁻] = 0.0352M

Hence, The equilibrium concentration (in molarity) of  [I⁻] should be considered as the 0.0352M.

Learn more about molarity here: https://brainly.com/question/14782192

How many molecules of ATP are formed during the complete catabolism of a saturated fatty acid with the chemical formula CH3(CH2)20CO2H?

Answers

Answer:

[tex]148~ATP[/tex]

Explanation:

In case, we can start with the structure of [tex]CH_3(CH_2)_2_0CO_2H[/tex]. When we draw the molecule, we will obtain a total amount of 22 carbons. So, in order to calculate the total amount of ATP we have to make several questions:

How many Acetyl CoA is produced?

To calculate the total Acetyl Coa we have to use the equation:

[tex]Number~of~Acetyl~Coa=\frac{n}{2}[/tex], where n is the amount of carbons, so:

[tex]Number~of~Acetyl~Coa=\frac{22}{2}=11~carbons[/tex]

How many rounds take place?

To calculate the rounds we have to use the equation:

[tex]Number~of~rounds=\frac{n}{2}-1[/tex], where n is the amount of carbons, so:

[tex]Number~of~Acetyl~Coa=\frac{22}{2}-1=10~carbons[/tex]

How many [tex]FADH_2[/tex] and [tex]NADH[/tex] are produced for this fatty acid?

For each round, we will have 1 [tex]FADH_2[/tex] and 1 [tex]NADH[/tex], if we have 10 rounds. In total, we will have 10

How many ATP are formed?

The ATP would be formed in the electron transport chain and each coenzyme will have a different yield of ATP. So for the total calculation, we have to keep in mind the following relationships:

-) [tex]1~FADH_2~=~1.5~ATP [/tex]

-) [tex]1~NADH~=~2.5~ATP [/tex]

-) [tex]Acetyl~CoA~=~10~ATP[/tex]

So, know we can do the total calculation:

[tex](10*1.5)+(10*2.5)+(11*10)=150[/tex]

We have to subtract  "2 ATP" molecules that correspond to the activation of the fatty acid, so:

[tex]150-2=148~ATP[/tex]

In total, we will have 148 ATP.

See figure 1

I hope it helps!

Identify a homogeneous catalyst:

a. SO2 over vanadium (V) oxide
b. H2SO4 with concentrated HCl
c. Pd in H2 gas
d. N2 and H2 catalyzed by Fe
e. Pt with methane

Answers

Answer:

b, H2SO4 with HCl, as they are both liquid acids

If a diatomic molecule has a vibrational force constant of k=240 kg s-2 and a reduced mass of 1.627x10-27 kg, its vibrational frequency should be (in cm-1):
A. 2040
B. 4079
C. 2885
D. 5770
E. 1443

Answers

Answer:

2040 cm-1

Explanation:

The vibrations frequency is obtained from;

v=1/2πc √k/μ

Where;

k= force constant = 240kgs-2

μ= reduced mass = 1.627×10^-27 kg

c= speed of light= 3×10^10cms-1

v= 1/2×3.142×3×10^10√240/1.627×10^-27

v= 5.3×10^-12 × 3.84×10^14

v= 20.4×10^2

v= 2040 cm-1

A 27.9 mL sample of 0.289 M dimethylamine, (CH3)2NH, is titrated with 0.286 M hydrobromic acid.
(1) Before the addition of any hydrobromic acid, the pH is___________.
(2) After adding 12.0 mL of hydrobromic acid, the pH is__________.
(3) At the titration midpoint, the pH is___________.
(4) At the equivalence point, the pH is________.
(5) After adding 45.1 mL of hydrobromic acid, the pH is_________.

Answers

Answer:

(1) Before the addition of any HBr, the pH is 12.02

(2) After adding 12.0 mL of HBr, the pH is 10.86

(3) At the titration midpoint, the pH is 10.73

(4) At the equivalence point, the pH is 5.79

(5) After adding 45.1 mL of HBr, the pH is 1.18

Explanation:

First of all, we have a weak base:

0 mL of HBr is added

(CH₃)₂NH  + H₂O  ⇄  (CH₃)₂NH₂⁺  +  OH⁻            Kb = 5.4×10⁻⁴

0.289 - x                             x                x

Kb = x² / 0.289-x

Kb . 0.289 - Kbx - x²

1.56×10⁻⁴ - 5.4×10⁻⁴x - x²

After the quadratic equation is solved x = 0.01222 → [OH⁻]

- log  [OH⁻] = pOH → 1.91

pH = 12.02   (14 - pOH)

After adding 12 mL of HBr

We determine the mmoles of H⁺, we add:

0.286 M . 12 mL = 3.432 mmol

We determine the mmoles of base⁻, we have

27.9 mL . 0.289 M = 8.0631 mmol

When the base, react to the protons, we have the protonated base plus water (neutralization reaction)

(CH₃)₂NH     +      H₃O⁺        ⇄  (CH₃)₂NH₂⁺  +  H₂O

8.0631 mm       3.432 mm                 -

4.6311 mm                                  3.432 mm

We substract to the dimethylamine mmoles, the protons which are the same amount of protonated base.

[(CH₃)₂NH] → 4.6311 mm / Total volume (27.9 mL + 12 mL) = 0.116 M

[(CH₃)₂NH₂⁺] → 3.432 mm / 39.9 mL = 0.0860 M

We have just made a buffer.

pH = pKa + log (CH₃)₂NH  / (CH₃)₂NH₂⁺

pH = 10.73 + log (0.116/0.0860) = 10.86

Equivalence point

mmoles of base = mmoles of acid

Let's find out the volume

0.289 M . 27.9 mL = 0.286 M . volume

volume in Eq. point = 28.2 mL

(CH₃)₂NH     +      H₃O⁺        ⇄  (CH₃)₂NH₂⁺  +  H₂O

8.0631 mm       8.0631mm               -

                                                8.0631 mm

We do not have base and protons, we only have the conjugate acid

We calculate the new concentration:

mmoles of conjugated acid / Total volume (initial + eq. point)

[(CH₃)₂NH₂⁺] = 8.0631 mm /(27.9 mL + 28.2 mL)  = 0.144 M

(CH₃)₂NH₂⁺   +  H₂O   ⇄   (CH₃)₂NH  +  H₃O⁻       Ka = 1.85×10⁻¹¹

 0.144 - x                                  x               x

[H₃O⁺] = √ (Ka . 0.144) →  1.63×10⁻⁶ M  

pH = - log [H₃O⁺] = 5.79

Titration midpoint (28.2 mL/2)

This is the point where we add, the half of acid. (14.1 mL)

This is still a buffer area.

mmoles of H₃O⁺ = 4.0326 mmol (0.286M . 14.1mL)

mmoles of base = 8.0631 mmol - 4.0326 mmol

[(CH₃)₂NH] = 4.0305 mm / (27.9 mL + 14.1 mL) = 0.096 M

[(CH₃)₂NH₂⁺] = 4.0326 mm (27.9 mL + 14.1 mL) = 0.096 M

pH = pKa + log (0.096M / 0.096 M)

pH = 10.73 + log 1 =  10.73

Both concentrations are the same, so pH = pKa. This is the  maximum buffering capacity.

When we add 45.1 mL of HBr

mmoles of acid = 45.1 mL . 0.286 M = 12.8986 mmol

mmoles of base = 8.0631 mmoles

This is an excess of H⁺, so, the new [H⁺] = 12.8986 - 8.0631 / Total vol.

(CH₃)₂NH     +      H₃O⁺        ⇄  (CH₃)₂NH₂⁺  +  H₂O

8.0631 mm     12.8986 mm             -

       -               4.8355 mm                        

[H₃O⁺] = 4.8355 mm / (27.9 ml + 45.1 ml)

[H₃O⁺] = 4.8355 mm / 73 mL → 0.0662 M

- log [H₃O⁺] = pH

- log 0.0662 = 1.18 → pH

An astronomy research team has been studying the atmosphere of a moon orbiting a newly discovered exoplanet. The team has determined that the moon has an average temperature of 95K on the surface, with an average pressure of 1.6atm. Remote analysis of this moon's atmosphere has revealed it has a molar mass of 28.6 g/mol. Calculate the density (g/L) of 1 mole of the moon's atmosphere under the given conditions.

Answers

Answer:

5.81 g/L

Explanation:

Let's apply the Ideal Gases Law to determine this:

P . V = n . R . T

Pressure = 1.6 atm

Volume = ?

Mol = 1 mol

Temperature = 96 K

In order to find the density, we should know the volume of the atmosphere which is a mixture of gases so, we consider all the atmosphere as a unique ideal gas.

1. 6 atm . V = 1 mol . 0.082 L.atm/mol.K . 96K

V = (1 mol . 0.082 L.atm/mol.K . 96K) / 1.6 atm

V = 4.92 L → As this is the volume for the whole atmosphere and the mass of 1 mol is 28.6 g, density should be:

28.6 g / 4.92L = 5.81 g/L

Density → mass / volume

Consider the equilibrium system: N2O4 (g) = 2 NO2 (g) for which the Kp = 0.1134 at 25 C and deltaH rx is 58.03 kJ/mol. Assume that 1 mole of N2O4 and 2 moles of NO2 are introduced into a 5 L contains. What will be the equilibrium value of [N204]?
A) 0.358 M
B) 0.042 M
C) 0.0822 M
D) 0.928 M
E) 0.379 M

Answers

Answer: The equilibrium value of [tex]N_2O_4[/tex] is 0.379 M

Explanation:

Equilibrium constant is the ratio of the concentration of products to the concentration of reactants each term raised to its stochiometric coefficients.

Using ideal gas equation : [tex]PV=nRT[/tex]

P = pressure of gas

V = volume of gas

n = no of moles

R = gas constant

T = Temperature

pressure of [tex]N_2O_4[/tex] = [tex]\frac{1\times 0.0821Latm/Kmol\times 298}{5L}=5atm[/tex]

pressure of [tex]NO_2[/tex] = [tex]\frac{2\times 0.0821Latm/Kmol\times 298}{5L}=10atm[/tex]

[tex]N_2O_4(g)\rightleftharpoons 2NO_2(g)[/tex]

at t= 0    5 atm                                10 atm

at eqm    (5-x) atm                          (10+2x) atm

[tex]K_p=\frac{[p_NO_2]^2}{[p_N_2O_4]}[/tex]

[tex]0.1134=\frac{(10+2x)^2}{(5-x)}[/tex]

[tex]x=-4.48[/tex]

pressure of [tex]N_2O_4[/tex] at equilibrium = (5-(-4.48))= 9.48 atm

pressure of [tex]N_2O_4[/tex] = [tex]\frac{n\times 0.0821Latm/Kmol\times 298}{V}[/tex]

9.48 = [tex]{M\times 0.0821Latm/Kmol\times 298}[/tex]

[tex]M=0.379[/tex]

Thus the equilibrium value of [tex]N_2O_4[/tex] is 0.379 M

Two moles of neon gas enclosed in a constant volume system receive 4250 J of heat. If the gas was initially at 293 K, what is the final temperature of the neon

Answers

Answer:

=355.5K

Explanation:

Specific heat, Q = mcΔT

where

Q= 4250JΔT= change in temp = final temp - initial tempc = specific heat capacity = 1.7m = mass of substance in grams

[1 mole of Ne = 20g; 2 moles of Ne = 2 × 20 = 40g]

4250 = 40 × 1.7 × (final - 293K)

final - 293k = 4250 / ( 40 × 1.7)

Final temp = 62.5 + 293

=355.5K

I hope this steps are simple to follow and understand.

An aqueous solution of cobalt(II) fluoride, , is made by dissolving 6.04 grams of cobalt(II) fluoride in sufficient water in a 200. mL volumetric flask, and then adding enough water to fill the flask to the mark. What is the weight/volume percentage of cobalt(II) fluoride in the solution

Answers

Answer:

[tex]w/v\%=3.02\frac{g}{mL} \%[/tex]

Explanation:

Hello,

In this case, we first define the formula for the calculation of weight/volume percentage considering cobalt (II) fluoride as the solute, water the solvent and the both of them as the solution:

[tex]w/v\%=\frac{mass_{solute}}{V_{solution}}*100\%[/tex]

In such a way, since the mass of the solute is given as 6.04 g and the final volume of the solution 200 mL, the weight/volume percentage turns out:

[tex]w/v\%=\frac{6.04g}{200mL}*100\%\\\\w/v\%=3.02\frac{g}{mL} \%[/tex]

Regards.

11. (2 pts) Sodium Hydroxide, is also known as lye and was a critical component in
homemade soap. Now it is a commonly used drain cleaner because it chemically reacts
with fats (the typical cause of a clog) to form a soap that can be swept down the drain.
What is the molarity of 5.00 g Sodium Hydroxide in 750.0 mL of solution?

Answers

Answer:

0.167M

Explanation:

Molarity, M, is an unit of concentration in chemistry defined as the ratio between moles of solute (NaOH in this case) and volume of the solution in liters.

To find molarity of 5.00 g Sodium Hydroxide in 750.0 mL of solution we need to convert mass of NaOH to moles (Using its molar mass: 40g/mol) and the mililiters of solution to liters (1L = 1000mL), thus:

Moles NaOH = 5.00g × (1mol/ 40g) = 0.125 moles NaOH = Moles solute

Liters solution = 750.0mL × (1L / 1000mL) = 0.7500L solution

And molariy is:

0.125 moles NaOH  / 0.7500L solution =

0.167M

Other Questions
A car bought for $20,000. Its value depreciates by 10% each year for 3 years. What is the car's worth after3 years? which of the following is not a congruence theorem or postulate a) sas b) aas c) sss d) aa Can someone pls help will mark as brainliest What will most likely happen to the population of moths in this habitat? An online seed supplier packages a seed mix that costs the company $20.70 per pound. The mix includes poppy seeds costing $24.00 per pound and clover seeds costing $13.00 per pound. If a worker is going to prepare some of this mix and has already measured out 26 pounds of poppy seeds, what quantity of clover seeds should he add? Students in management science class have just received their grades on the first test. The instructor has provided information about the first test grades in some previous classes as well as the final average for the same students. Some of these grades have been sampled and are as follow:1st test Grade 98 77 88 80 96 61 64 95 79Final average 93 78 84 75 84 64 66 95 86Develop a regression model that could be used to predict the final average in the course based on the first test grade.Predict the final average of a students who made an 83 on the first test.Give the value of r and r2 for this model.Interpret the value of r2 in the context of this problem. Certain genetically modified strains of maize produce a powerful natural insecticide. The insecticide occurs throughout the plant, including its pollen. Maize pollen is dispersed by the wind and frequently blows onto milkweed plants that grow near maize fields. Caterpillars of monarch butterflies feed exclusively on milkweed leaves. When these caterpillars are fed milkweed leaves dusted with pollen from modified maize plants, they die. Therefore, by using genetically modified maize, farmers put monarch butterflies at risk. Which of the following would it be most useful to determine in order to evaluate the argument?A. Whether the natural insecticide is as effective against maize-eating insects as commercial insecticides typically used on maize areB. Whether the pollen of genetically modified maize contains as much insecticide as other parts of these plantsC. Whether monarch butterfly caterpillars are actively feeding during the part of the growing season when maize is releasing pollenD. Whether insects that feed on genetically modified maize plants are likely to be killed by insecticide from the plant's pollenE. Whether any maize-eating insects compete with monarch caterpillars for the leaves of milkweed plants growing near maize fields In the following problem, the expression is the right side of the formula for cos (alpha - beta) with particular values for alpha and beta. cos (79 degree) cos (19 degree) + sin (79 degree) sin (19 degree) Identify alpha and beta in each expression. The value for alpha: degree The value for beta: degree Write the expression as the cosine of an angle. cos degree Find the exact value of the expression. (Type an exact answer, using fraction, radicals and a rationalized denominator.) Study the map above and then read the statements below.i. Arrow A is pointing to the Pacific Ocean. ii. Arrow B is pointing to the Mediterranean Sea.iii. Arrow C is pointing to the Red Sea. Which of the statements above are true? A. ii. only B. i. and ii. only C. ii. and iii. only D. none of the statements are true Scores made on a certain aptitude test by nursing students are approximately normally distributed with a mean of 500 and a variance of 10,000. If a person is about to take the test what is the probability that he or she will make a score of 650 or more? The standard deviations of four data sets are shown in the table below. Whichof the data sets is the most spread out? Letters a, b, c, and d are angles measures. Lines m and n are cut by transversal p. At the intersection of lines p and m, labeled clockwise, from uppercase left, the angles are: a, b, c, blank. At the intersection of lines p and n, labeled clockwise, from uppercase left, the angles are: blank, blank, d, blank. Which equation is enough information to prove that lines m and n are parallel lines cut by transversal p? Select three options. a = c a = d c = d b + c = 180 b + d = 180 1) Difference between health and Medicine how to get rid of morning sickness It is believed that 30% of the people in Washington state want cell phone use banned in cafes. The CEO of a major coffehouse chain in Seattle wonders whether the opinion of the people who go to her cafes is different from the overall population. She hires a polling agency to investigate this issue. In a random sample of 1450 individuals, 474 people have the same opinion as the overall population. What is the p-value? What is the first step of the process of creating a new product? A. Idea generationB. Idea screeningC. Focus group testingD. Business analysis What was the brand name of a lightweight handheld camera introduced at the beginning of the 1970s and used for wide-angle compositions in films like Chinatown (1974)? "Which of the following statements are TRUE regarding the rights agent? I The rights agent usually handles the mechanics of a rights offering II The rights agent is usually the existing transfer agent of the issuer III The rights agent issues the additional shares upon presentation of the rights certificates with payment" PLEASE PLEASE PLEASE HELPPPP ASAPPPP!!!! best answer Ill give brainliest :) HELP ASAP! why was hellen keller confined