For the following probabilities:
7. Theoretically, blue will occur 100 times.8. Based on experiment, blue will occur 95-105 times.9. a) 1/4, b) 1/2, c) 3/4.10. a) 0.25, b) 0.5, c) 0.75.11. spade can occur 125 times theoretically.12. experimentally spade occurs 500 times.How to determine probability?7. Theoretically, if the spinner is spun 400 times, you would expect to get blue 100 times since blue has a probability of 1/4 or 25% of being selected on each spin.
8. Based on the experiment, if the spinner is spun 400 times, you would expect to get blue around 95-105 times, depending on the margin of error in the experiment. This is based on the observed experimental probability of blue being selected in the given number of spins.
9. a) P(club) = 13/52 or 1/4
b) P(red card) = 26/52 or 1/2
c) P(not a heart) = 39/52 or 3/4
10. a) P(club) = 5/30 or 1/6 in the experiment, which is close to the theoretical probability of 1/4 or 0.25.
b) P(red card) = 13/30 in the experiment, which is close to the theoretical probability of 1/2 or 0.5.
c) P(not a heart) = 27/30 in the experiment, which is close to the theoretical probability of 3/4 or 0.75.
11. Theoretically, if a card is drawn at random 500 times, you would expect to get a spade around 125 times since spades have a probability of 1/4 or 25% of being selected on each draw.
12. Based on the experiment, if a card is drawn at random 500 times, you would expect to get a spade around 110-140 times, depending on the margin of error in the experiment. This is based on the observed experimental probability of spades being selected in the given number of draws.
Find out more on probability here: https://brainly.com/question/251701
#SPJ1
Image transcribed:
7. Theoretically, if the spinner is spun 400 times, how many times would you expect to get blue?
8. Based on the experiment, if the spinner is spun 400 times, how many times would you expect to get blue?
9. A card is drawn from a standard deck of cards. Find each probability.
a) P(club)
b) P(red card)
c) P(not a heart)
10. The table below shows the results of an experiment in which a card was drawn at random 30 times. Find each probability based on the experiment and compare to the theoretical probability.
Result | Frequency
Heart | 3
Diamond | 10
Club | 5
Spade | 12
a) P(club)
b) P(red card)
c) P(not a heart)
11. Theoretically, if a card is drawn at random 500 times, how many times would you expect to get a spade?
12. Based on the experiment, if a card is drawn at random 500 times. how many times would you expect to get a spade?
In ∆DEF, DG−→− bisects ∠EDF. Is ∆FDG similar to ∆EDG? Explain.
A. Yes; ∆FDG ≅ ∆EDG by ASA.
B. Yes; ∆FDG and ∆EDG may not be congruent, but they are similar by the ASA Similarity Postulate.
C. No; ∆FDG and ∆EDG are not similar unless DE = DF.
D. No; ∆FDG and ∆EDG are not similar unless DE = EG and DF = FG
In ∆DEF, DG−→− bisects ∠EDF. ∆FDG is similar to ∆EDG; ∆FDG and ∆EDG may not be congruent, but they are similar by the ASA Similarity Postulate. Therefore, the correct option is B.
Consider the following reasoning:1. Since DG bisects ∠EDF, it means that ∠EDG = ∠FDG. This is the Angle Bisector Theorem.
2. In triangles FDG and EDG, we know that ∠FDG = ∠EDG (from step 1) and ∠DFG = ∠DEG (both are vertical angles and therefore congruent).
3. Now we have two pairs of congruent angles: ∠FDG = ∠EDG and ∠DFG = ∠DEG.
4. According to the (Angle-Side-Angle) or ASA Similarity Postulate, if two angles in one triangle are congruent to two angles in another triangle, then the triangles are similar. Therefore, ∆FDG is similar to ∆EDG.
Hence, the correct answer is option B: Yes; ∆FDG and ∆EDG may not be congruent, but they are similar by the ASA Similarity Postulate.
Learn more about ASA Similarity:
https://brainly.com/question/30091621
#SPJ11
Algebra please help
Your school newspaper has an editor-in-chief and an assistant editor-in-chief. The newspaper staff
has 5 students. How many different ways can students be chosen for these positions?
There are 20 different ways the students can be chosen for the positions of editor-in-chief and assistant editor-in-chief.
There are 5 students in the newspaper staff, and two positions to fill i.e. editor-in-chief and assistant editor-in-chief. We need to find the number of different ways the students can be chosen for these positions.
To solve this problem, we can use the formula for permutation
We know the formula for Permutation is
[tex]P(n,r)=\frac{n!}{(n-r)!}[/tex]
Here, n=5 and r=2
So, P(5,2) = 5!/(5-2)!
= 5!/3!
= 120/6
= 20
Therefore, there are 20 different ways the students can be chosen for the positions of editor-in-chief and assistant editor-in-chief.
Learn more about Permutation here
brainly.com/question/14767366
#SPJ4
In March 2020, a newspaper article reported that houses in Nevada are so expensive that many people are unable to
afford the monthly house payments.
This graph shows the average house price and the average monthly payment for all the different counties in Nevada.
House Prices and Payments
1a. What does the pattern of the data indicate
about the connection between house prices and
monthly payments?
Type Here
1b. Find the monthly payment for a house
costing $450,000.
Type Here
1c. Find a formulate connecting the average
monthly payment with the average house price
in slope-intercept form (y = mx + b).
Type Here
Average monthly payment/dollars
5000
4000-
3000
000
100000
Fosfor
200000 300000 400000
Average house price/dollars
500000
The pattern of the data indicates a linear relationship or strong positive correlation between the average house prices and average monthly payments.
The monthly payment for a house costing $450,000 is $3,600.
A formulate connecting the average monthly payment with the average house price in slope-intercept form is y = 0.008x.
What is a proportional relationship?In Mathematics, a proportional relationship can be represented by this equation:
y = kx
Where:
x represents the average house price.y represents the average monthly payment.k represents the constant of proportionality.Next, we would determine the constant of proportionality (k) as follows:
Constant of proportionality (k) = y/x
Constant of proportionality (k) = 8/1000
Constant of proportionality (k) = 1/125 or 0.008.
Therefore, a formula that connects the two variables is given by;
y = kx
y = 0.008x
When average house price (x) = $450,000, the average monthly payment (y) is given by:
y = 0.008(450,000)
y = $3,600.
In conclusion, we can logically deduce that the pattern of the data shows a linear relationship or strong positive correlation between the average house prices (x) and average monthly payments (y) because as the average house prices (x) increases, the average monthly payments (y) also increases.
Read more on proportionality here: brainly.com/question/12866878
#SPJ1
find the missing no 3,4,13,?,8,168
Answer:
I believe it is 38
Step-by-step explanation:
In ΔSTU, u = 3. 4 cm, ∠S=6° and ∠T=93°. Find the area of ΔSTU, to the nearest 10th of a square centimeter
The area of ΔSTU is approximately 6.7 square centimeters.
What is the approximate area, in square centimeters, of ΔSTU given that u = 3.4 cm, ∠S=6°, and ∠T=93°?To find the area of a triangle, we can use the formula A = (1/2)bh, where b is the base of the triangle and h is the height. In this case, we know that u is the base of the triangle, so we need to find the height.
To do this, we can use the sine function, which tells us that sin(6°) = h/u. Rearranging this equation, we get h = usin(6°). We can then substitute u and sin(6°) into the formula for the area to get
A = (1/2)(3.4)(3.4sin(6°)) ≈ 6.7 square centimeters.
Learn more about Trigonometry
brainly.com/question/31896723
#SPJ11
someone help please 30 points
The difference in masses is equal to 1,728 grams.
How to calculate the volume of a rectangular prism?In Mathematics and Geometry, the volume of a rectangular prism can be calculated by using the following formula:
Volume of a rectangular prism = L × W × H
Where:
L represents the length of a rectangular prism.W represents the width of a rectangular prism.H represents the height of a rectangular prism.By substituting the given dimensions (parameters) into the formula for the volume of a rectangular prism, we have the following;
Volume of rectangular prism = 9 × 3 × 8
Volume of rectangular prism = 216 cm³.
Mass of gold = density × volume
Mass of gold = 19.3 × 216
Mass of gold = 4,168.8 grams.
Mass of lead = 11.3 × 216
Mass of lead = 2,440.8 grams.
Difference in masses = 4,168.8 grams - 2,440.8 grams.
Difference in masses = 1,728 grams.
Read more on volume of prism here: brainly.com/question/21012007
#SPJ1
If the team takes on two additional players, one at 5 feet 5 inches and the other at 6 feet 7 inches, how is the median of the data set affected? A. The effect on the median of the players' heights cannot be determined. B. The median of the players' heights is decreased. C. The median of the players' heights is increased. D. The median of the players' heights is not affected
Answer: The median of the players' heights is not affected.
Step-by-step explanation: B
The median of the players' heights is increased.
we need to consider the current arrangement of heights and the positions
of the new players in relation to the existing players' heights.
If we assume that the heights of the players are sorted in ascending order,
adding two additional players can affect the median in the following ways:
If both new players have heights lower than the current median:
In this case, adding the new players would not change the median.
The median would remain the same because the new players would be
added below the existing median, and the position of the median would
not shift.
If one new player has a height lower than the current median and the other
has a height higher than the current median:
In this case, the median would be increased.
Adding a taller player would shift the median towards the higher end of the data set.
If both new players have heights higher than the current median:
In this case, the would be increased.
Both new players would be taller than the current median, causing the
median to shift towards the higher end of the data set.
Based on these possibilities, the answer is C.
To know more about median refer herehttps://brainly.com/question/28060453##SPJ11
1. Use integration in cylindrical coordinates in order to compute the vol- ume of: U = {(x,y,z):05:36 - 12 - y}
The volume of the region U is 16π cubic units.
To find the volume of the region U, we can use cylindrical coordinates. In cylindrical coordinates, a point in space is represented by the coordinates (r, θ, z), where r is the distance from the z-axis, θ is the angle between the x-axis and the projection of the point onto the xy-plane, and z is the height above the xy-plane.
In this case, the region U is defined by 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, and 0 ≤ z ≤ 12 - r sin(θ).
To find the volume of U, we can integrate over the cylindrical coordinates. The volume of U is given by the integral:
V = ∫∫∫_U dV
where dV = r dz dr dθ is the volume element in cylindrical coordinates.
Substituting in the limits of integration, we have:
V = ∫₀²π ∫₀² ∫₀^(12-rsinθ) r dz dr dθ
Integrating with respect to z, we get:
V = ∫₀²π ∫₀² r(12-rsinθ) dr dθ
Integrating with respect to r, we get:
V = ∫₀²π [(6r² - (1/3)r³sinθ)] from r=0 to r=2 dθ
Simplifying, we get:
V = ∫₀²π [(24 - 16/3 sinθ)] dθ
Integrating, we get:
V = [24θ + 16/3 cosθ] from θ=0 to θ=2π
Simplifying, we get:
V = 48π/3 = 16π
Therefore, the volume of the region U is 16π cubic units.
Visit to know more about volume:-
https://brainly.com/question/463363
#SPJ11
Tim jones bought 100 shares of mutual fund abc at $4.25 with no load and sold them for $850. and 100 shares of def at $6.00 which had a load of $375 dollars, and sold them for $1,200.
*this is one where you finish the table, i looked it up and couldn't find the answer so i guessed and got a 100. so this is for yall who can't just guess it perfectly on the 1st try*
<<<<< on odyssey ware >>>>>
purchase price load total cost sales price sales price ÷ total cost
abc = $425 0 $425 ? ? % (nearest 1%)
def = $600 $375 ? ? ? % (nearest 1%)
---answers---
purchase price load total cost sales price sales price ÷ total cost
abc = $425 0 $425 $850 200 % (nearest 1%)
def = $600 $375 $975 $1200 123 % (nearest 1%)
The sales price divided by total cost is 123%.
Based on the information provided, I can help you complete the table:
Purchase Price | Load | Total Cost | Sales Price | Sales Price ÷ Total Cost (nearest 1%)
ABC = $425 | 0 | $425 | $850 | 200%
DEF = $600 | $375 | $975 | $1,200 | 123%
For mutual fund ABC, there was no load, so the total cost is equal to the purchase price. The sales price ÷ total cost is 200% (nearest 1%). For mutual fund DEF, the total cost includes the $375 load, resulting in a total cost of $975. The sales price ÷ total cost is 123% (nearest 1%).
To learn more about sales, refer below:
https://brainly.com/question/29857652
#SPJ11
QUESTION 4
This spinner is divided into eight equal-sized sections. Each section is labeled with a number.
Write the events below in the correct
order from least likely to most likely.
A) Arrow lands on a section labeled with an odd number.
B) Arrow lands on a section labeled
with the number 1.
C) Arrow lands on a section labeled
with a number less than 4.
Ranking of the events below in the correct order from least likely to most likely are:
Event B
Event A
Event C
What is the probability of Occurrence?The probability of an event is defined as a number that describes the chance that the event will eventually happen. An event that is sure to happen has a probability of 1. An event that can never possibly happen has a probability of zero. Finally, If there is a chance that an event will happen, then it will have a probability that is between zero and 1.
i) Arrow lands on a section labeled with an odd number: The odd numbers here are 1 and 3.
There are a total of four 1's, and two 3's. This tells us that there are 6 odd numbers on the spinner.
There are 8 numbers in total on the spinner. Thus, 6 out of the 8 numbers are seen as odd numbers. Therefore, the probability that the arrow lands on an odd number would be:
P(odd number) = 6/8 = 75%
ii) Arrow lands on a section labeled with the number 1: There are four 1's on the spinner, and there are seen to be 8 numbers in total on the spinner. Thus, the probability of the arrow landing on a 1 is:
P(Number 1) = 4/8 = 50%.
iii) Arrow lands on a section labeled with a number less than 4:
The numbers that are less than 4 are 3, 2, and 1.
There are two 3's.
There is one 2.
There are four 1's.
2 + 1 + 4 = 7.
The probability of the arrow landing on a number less than 4 is 7/8, which is 88.5%.
Read more about Probability of Occurrence at: https://brainly.com/question/28151602
#SPJ1
Consider the three points P (3,0,0), Q (0,0,-9), and R (0, -6,0). (a) Find a non-zero vector orthogonal to the plane through the points P, Q, and R. (b) Find the area of the parallelogram with sides PQ and PR.
(a) To find a non-zero vector orthogonal to the plane through the points P, Q, and R, we need to take the cross product of two vectors in the plane. One way to do this is to subtract one point from another to get a vector, and then take the cross product of the two resulting vectors. For example, we could subtract point Q from point P to get the vector PQ, and subtract point R from point P to get the vector PR. Then, taking the cross product of PQ and PR will give us a vector orthogonal to the plane:PQ = <-3, 0, -9>PR = <-3, -6, 0>PQ x PR = <54, 27, 18>Therefore, the vector <54, 27, 18> is orthogonal to the plane through the points P, Q, and R.(b) To find the area of the parallelogram with sides PQ and PR, we need to find the length of the projection of PQ onto PR, and then multiply by the length of PR. The projection of PQ onto PR is given by:proj_PR(PQ) = (PQ · u) uwhere u is a unit vector in the direction of PR, and · denotes the dot product. Since PR = <-3, -6, 0>, we can take u = <-1/sqrt(10), -3/sqrt(10), 0>, which is a unit vector in the direction of PR. Then:proj_PR(PQ) = (PQ · u) u = (-3/sqrt(10)) <-1/sqrt(10), -3/sqrt(10), 0> = <9/10, 27/10, 0>The length of this vector is sqrt((9/10)^2 + (27/10)^2 + 0^2) = 3sqrt(10), so the area of the parallelogram is:A = |PQ| |proj_PR(PQ)| = sqrt((-3)^2 + 0^2 + (-9)^2) * 3sqrt(10) = 27sqrt(10)
For more similar questions on topic
https://brainly.com/app/ask?q=
#SPJ11
A. Orthogonal vector = (0, -27, 18)
B. The area of the parallelogram with sides PQ and PR is 1053 square units.
(a) To find a non-zero vector orthogonal to the plane through points P, Q, and R, we need to compute the cross product of vectors PQ and PR.
Vector PQ = Q - P = (-3, 0, -9)
Vector PR = R - P = (-3, -6, 0)
Cross product PQ x PR = (i, j, k) × ((-3, 0, -9), (-3, -6, 0))
= i(0 * 0 - (-9) * (-6)) - j(-3 * 0 - (-3) * (-9)) + k(-3 * -6 - 0 * (-3))
= i(0) - j(27) + k(18)
Orthogonal vector = (0, -27, 18)
(b) To find the area of the parallelogram with sides PQ and PR, we can use the magnitude of the cross product of PQ and PR.
Magnitude of PQ x PR = ||(0, -27, 18)||
= √(0^2 + (-27)^2 + 18^2)
= √(729 + 324)
= √1053
The area of the parallelogram with sides PQ and PR is 1053 square units.
To learn more about parallelogram, refer below:
https://brainly.com/question/29147156
#SPJ11
Garden plots in the Portland Community Garden are rectangles
limited to 45 square meters. Christopher and his friends want a plot
that has a width of 7.5 meters. What length will give a plot that has
the maximum area allowed?
The length should be less than or equal to 6 meters in order to have a plot with the maximum area allowed (45 square meters) when the width is 7.5 meters.
To find the length that will give a plot with the maximum area allowed, we can use the formula for the area of a rectangle:
Area = Length × Width
The width is given as 7.5 meters, and the area should not exceed 45 square meters.
Let's denote the length as L.
We want to maximize the area, so we need to find the value of L that satisfies the condition Area ≤ 45 and gives the largest possible area.
Substituting the given values into the area formula, we have:
Area = L × 7.5
Since the area should not exceed 45 square meters, we can write the inequality:
L × 7.5 ≤ 45
To find the maximum value of L, we can divide both sides of the inequality by 7.5:
L ≤ 45 / 7.5
Simplifying the right side:
L ≤ 6
Therefore, the length should be less than or equal to 6 meters in order to have a plot with the maximum area allowed (45 square meters) when the width is 7.5 meters.
To learn more on Area click:
https://brainly.com/question/20693059
#SPJ1
FILL IN THE BLANK. Find the indefinite integral ∫ sin²(x)- cos²(x)/cos(x) dx =_______ Note: Use an upper-case "C" for the constant of integration.
The final result is ∫ sin²(x)- cos²(x)/cos(x) dx = -3cos²(x)/2 + 2ln|cos(x)| + C.
To solve the indefinite integral ∫ sin²(x)- cos²(x)/cos(x) dx, we need to use trigonometric identities to simplify the integrand.
First, we use the identity sin²(x) + cos²(x) = 1 to write:
sin²(x) - cos²(x) = sin²(x) + cos²(x) - 2cos²(x) = 2sin²(x) - cos²(x)
Next, we use the identity sin²(x) = 1 - cos²(x) to write:
2sin²(x) - cos²(x) = 2(1-cos²(x)) - cos²(x) = 2 - 3cos²(x)
Substituting this into the original integral, we get:
∫ sin²(x)- cos²(x)/cos(x) dx = ∫ (2 - 3cos²(x))/cos(x) dx
Now, we use the substitution u = cos(x) and du/dx = -sin(x) dx to transform the integral into a simpler form:
∫ (2 - 3cos²(x))/cos(x) dx = ∫ (2 - 3u²)/u (-du/sin(x))
= -∫ (3u² - 2)/u du
= -3∫ u du + 2∫ du/u
= -3u²/2 + 2ln|u| + C
= -3cos²(x)/2 + 2ln|cos(x)| + C
where C is the constant of integration.
Substituting back u = cos(x), we obtain the final result
∫ sin²(x)- cos²(x)/cos(x) dx = -3cos²(x)/2 + 2ln|cos(x)| + C
To learn more about indefinite integral visit: https://brainly.com/question/29133144
#SPJ11
How to get the centre of the circle when the circumference is not given
To find the center of a circle when the circumference is not given, you still find it.
1. Determine the coordinates of at least three non-collinear points on the circle. Non-collinear points are points that do not lie on a straight line.
2. Using these points, create two line segments that are chords of the circle. A chord is a line segment connecting two points on the circle.
3. Find the midpoints of each chord. The midpoint formula is given as: Midpoint (M) = ((x1 + x2) / 2, (y1 + y2) / 2).
4. Calculate the slope of each chord using the slope formula: Slope (m) = (y2 - y1) / (x2 - x1).
5. Calculate the slope of the perpendicular bisectors of each chord. Since these lines are perpendicular to the chords, their slopes are the negative reciprocal of the chord slopes: m_perpendicular = -1 / m_chord.
6. Write the equation of each perpendicular bisector using the point-slope formula: y - y_midpoint = m_perpendicular * (x - x_midpoint).
7. Solve the system of equations formed by the two perpendicular bisectors. The solution is the coordinates of the center of the circle.
By following these steps, you can find the center of the circle even when the circumference is not given.
Learn more about Circles: https://brainly.com/question/29142813
#SPJ11
A rectangular patio is 10 feet by 13 feet. what is the length of the diagonal of the patio? (use pythagorean theorem: a² + b ²= c²)
The length of the diagonal is c = √269 feet.
To get the length of the diagonal of a rectangular patio, we can use the Pythagorean theorem, which states that for a right triangle with legs of length a and b, and hypotenuse of length c, a² + b² = c². In this case, the legs of the right triangle are the length and width of the rectangular patio, which are 10 feet and 13 feet, respectively. Let's use a and b to represent these lengths.
a = 10 feet
b = 13 feet
We want to find the length of the diagonal, which is the hypotenuse of the right triangle. Let's use c to represent this length.
a² + b² = c²
10² + 13² = c²
100 + 169 = c²
269 = c²
Now we need to find the square root of 269 to get the length of the diagonal.
c = √269
c ≈ 16.4 feet
So the length of the diagonal of the rectangular patio is approximately 16.4 feet. We can also find the ratio of the length, width, and diagonal of the rectangular patio.
length:width = 10:13
width:length = 13:10
length:diagonal = 10:√269
width:diagonal = 13:√269
diagonal:length = √269:10
diagonal:width = √269:13
Learn more about rectangle patio here, https://brainly.com/question/3720215
#SPJ11
I NEED HELPPPPPPPPPPPP
Answer: V = 2527.2 in^3
Step-by-step explanation:
V = Bh
that is, Volume = base area x height
the base area is the hexagon, and the height is given as 12.
Think of dividing the hexagon into 6 equal triangles, with height 7.8
so the area of all 6 triangles, (effectively the area of the hexagon), will be:
6(0.5 x 9 x 7.8) = 210.6 in^2
multiply this by the height to get the volume:
210.6 x 12 = 2527.2 in^3
thats it!
V = 2527.2 in^3
Find the new coordinates for the image under the given translation. Square RSTU with vertices R(-2, 1), S(3, 4), T(6, -1), and U(1, -4): (x, y) → (x-4, y − 1) - -9-8-7 -6 -5 -4 -3 -2 -1 0 1 2 R' (, ) S' (, ) T'(,0) U'(,) 3 4 LO 5 6 7 8 9
Thus, the new coordinates for the image of translated Vertices of Square RSTU are- R'(-6, 0), S'(-1, 3), T'(2, -2) and U'(-3, -5).
Define about the translations:In mathematics, a translation moves an object throughout the coordinate plane while preserving its dimensions and shape. After a translation, its area and orientation remain unchanged.
The vertical shift, horizontal shift, or perhaps a combination of the two can be referred to as a translation in mathematics.
Given that:
Vertices of Square RSTU.
R(-2, 1), S(3, 4), T(6, -1), and U(1, -4):
translation: (x, y) → (x-4, y − 1)
New vertices:
R(-2-4, 1 − 1) --> R'(-6, 0)
S(3-4, 4 − 1), ---> S'(-1, 3)
T(6-4, -1 − 1), -> T'(2, -2)
U(1-4, -4 − 1) --> U'(-3, -5)
Thus, the new coordinates for the image of translated Vertices of Square RSTU are- R'(-6, 0), S'(-1, 3), T'(2, -2) and U'(-3, -5).
know more about the translation
https://brainly.com/question/12861087
#SPJ1
Alan buys a bag of cookies that contains 5 chocolate chip cookies, 5 peanut butter cookies, 5 sugar cookies and 9 oatmeal cookies. What is the probability that Alan randomly selects a chocolate chip cookie from the bag, eats it, then randomly selects a peanut butter cookie? Express you answer as a reduced fraction
PLEASE HELP!!!!!!! Two lines, E and F, are represented by the equations given below. Line E: 5x + 5y = 40 Line F: x + y = 8 Which statement is true about the solution to the set of equations? (4 points) Question 2 options: 1) It is (40, 8). 2) It is (8, 40). 3) There is no solution. 4) There are infinitely many solutions.
Answer: (4)
Step-by-step explanation:
Two lines E and F are same.
5x + 5y = 40
x + y = 8
Deviding both hands of E by 5,
we get F's equation.
So every single point on the line x+y=8
represents the solution of the given system.
To determine what students want served in the cafeteria, the cook asks students in Ms. Andrew’s first period class. Describe the sample used by the cook.
To determine what students want served in the cafeteria, the cook asks students in Ms. Andrew’s first period class. The sample used by the cook is known as Convenience.
What type of sampling method was used?The sample used is known as convenience sample. The cook only asks students in Ms. Andrews’ first period class which is a convenient and accessible group to ask but this method of sampling may not be representative of the entire student population as it only includes students in one class.
So, the results may not accurately reflect what all students want to be served in the cafeteria, hence, more representative sample could be obtained by using a simple random sample or systematic sample where student in the population has an equal chance of being selected.
Read more about convenience sample
brainly.com/question/28046586
#SPJ1
a specific combination lock has 3 numbers chosen out of 40 possible numbers (0-39). assuming that all lock combinations are possible (including repeated numbers) find the number of possible lock combinations.
The total number of possible lock combination using the 40 possible numbers for making lock of 3 numbers is equal to 64,000.
Possible number used for lock combination are 40.
Range is 0 - 39.
Total number chosen for lock combination is equal to 3.
Since there are 40 possible numbers to choose from for each of the three positions on the combination lock.
The total number of possible combinations is equal to ,
40 x 40 x 40
= 40^3
= 64,000
Therefore, there are 64,000 possible lock combinations when choosing 3 numbers out of 40 possible numbers, assuming repeated numbers are allowed.
learn more about combination here
brainly.com/question/9304221
#SPJ4
Verónica jogged 10 3/16 miles in a one week, the next week she jogged 8 7/16 miles. how many more miles did she jog the first week? pls answer
Verónica jogged 7/4 or 1 and 3/4 more miles in the first week than in the second week.
Verónica jogged 10 3/16 miles in one week, next week she jogged 8 7/16 miles. how many miles did she jog the first week?Verónica jogged 10 3/16 miles in the first week and 8 7/16 miles in the second week. To find how many more miles she jogged in the first week, we need to subtract the distance she jogged in the second week from the distance she jogged in the first week:
10 3/16 miles - 8 7/16 miles
We need to first convert both mixed numbers to improper fractions:
10 3/16 = (10 x 16 + 3) / 16 = 163 / 16
8 7/16 = (8 x 16 + 7) / 16 = 135 / 16
Now we can subtract the two fractions:
163 / 16 - 135 / 16 = (163 - 135) / 16 = 28 / 16
We can simplify the fraction by dividing both the numerator and the denominator by their greatest common factor (GCF), which is 4:
28 / 16 = (4 x 7) / (4 x 4) = 7 / 4
Learn more about miles
brainly.com/question/23245414
#SPJ11
Practice writing and solving equations to solve number problems.
assessment started: undefined.
item 1
question 1
ansley’s age is 5 years younger than 3 times her cousin’s age. ansley is 31 years old.
let c represent ansley’s cousin’s age. what expression, using c, represents ansley’s age?
enter your response in the box.
Ansley's cousin is 12 years old, and Ansley's age can be found by plugging in 12 for Cousin's age.
How can we know that Ansley's age is 5 years less than 3 times her cousin's age?The problem tells us that Ansley's age is 5 years less than 3 times her cousin's age. We can write this as an equation:
Ansley's age = 3 × Cousin's age - 5
We also know that Ansley is 31 years old. So we can substitute 31 for Ansley's age in the equation:
31 = 3 × Cousin's age - 5
Now we solve for Cousin's age. First, we add 5 to both sides of the equation:
31 + 5 = 3 × Cousin's age
Simplifying:
36 = 3 × Cousin's age
Finally, we divide both sides by 3:
Cousin's age = 12
So Ansley's cousin is 12 years old, and Ansley's age can be found by plugging in 12 for Cousin's age in the expression we found earlier:
Ansley's age = 3 × Cousin's age - 5 = 3 × 12 - 5 = 31
So Ansley is indeed 31 years old.
Learn more about an equation
brainly.com/question/29657983
#SPJ11
Three years agoJerry purchased a condo This year his monthly maintenance fee is \$1,397 Twenty percent of this fee is for Jerry's property taxes. How much will Jerry pay this year in property taxes ?
Jerry pays $279.40 this year in property taxes.
To calculate Jerry's property taxes for the year, we need to first decide how many of his month-to-month maintenance fee is going toward property taxes.
The problem states that 20% of the price is for Jerry's assets taxes, which means we will calculate the amount of his belongings taxes with the aid of finding 20% of his monthly charge.
To do this, we multiply the price through 0.20 such as this:
20% of $1,397 = 0.20 x $1,397 = $279.40
Therefore, Jerry pays $279.40 this year in property taxes.
Learn more about property taxes:-
https://brainly.com/question/13887483
#SPJ4
answer questions 2-20 please 1 and 5-7 are already answered no need to correct them does not need to be correct but please have relistic answers : )
The Pythagorean Theorem with regards to the relationships between the lengths of the sides of a right triangle indicates that we get;
2. x = 51
3. x = 50
4. x = 82
8. x = 2·√(77)
9. x = √(39)
10. x = 2·√(19)
11. x = 2·√(154)
12. x = 3·√3
13. x = 6·√(13)
16. A right triangle
17. A right triangle
18. The triangle is not a right triangle
19. An obtuse triangle
20. An obtuse triangle
What is the Pythagorean Theorem?The Pythagorean Theorem states that the square of the length of the hypotenuse side of a right triangle is equivalent to the sum of the squares of the lengths of the other two sides.
2. x² = 45² + 24² = 2601
x = √(2601) = 51
3. x² = 30² + 40² = 2500
x = √(2500) = 50
x = 50
4. x² = 80² + 18² = 6724
x = √(6724) = 82
x = 82
8. According to the Pythagorean Theorem, in the right triangle we get;
x² = 18² - 4² = 308
x = 2·√(77)
9. x² = 8² - 5² = 39
x = √(39)
10. x² = 20² - 18²
x² = 76
x = √(76) = 2·√(19)
x = 2·√(19)
11. x² = 25² - 3² = 616
x = √(616) = 2·√(154)
x = 2·√(154)
12. x² = 6² - 3² = 27
x = √(27)
x = 3·√3
13. x² = 22² - 4² = 468
x = √(468) = 6·√(13)
x = 6·√(13)
16. A triangle is a right triangle if the square of the side that is the longest is equivalent to the square of the other two sides, therefore;
17² = 289
15² + 8² = 289
Therefore, the triangle is a right triangle
17. 45² = 2025
27² + 36² = 2025
Therefore, the triangle is a right triangle
18. 11² = 121
9² + 4² = 97
Therefore, the triangle is not a right triangle
19. 6² = 36
4² + 3² = 25
The square of the side that is longest is larger than the sum of the squares of the other two sides, which indicates that the angle facing the longest side is lar1ger than 90°, and the triangle is an obtuse triangle.
20. 16² = 256
9² + 11² = 202
16² > 9² + 11²; Therefore, the triangle is an obtuse triangle
Learn more on Pythagorean Theorem here: https://brainly.com/question/25958868
#SPJ1
Find the limit. Use l'Hospital's Rule where appropriate. If there is a more elementary method, consider using it.
lim x → 0
A.x2^x
B. 2^x - 1
The limit of A. x^(2^x) as x approaches 0 is 1, and the limit of B. 2^x - 1 as x approaches 0 is ln 2.
A. To find the limit of A. x^(2^x) as x approaches 0, we can take the natural logarithm of both sides and use the fact that ln(1 + a) is approximately equal to a for small values of a. This gives us:
ln(A. x^(2^x)) = 2^x ln x
ln(A. x^(2^x)) / ln x = 2^x
Taking the limit as x approaches 0, the right-hand side goes to 1, and using the continuity of the natural logarithm, we have:
ln(A) = 0
A = 1
Therefore, the limit of A. x^(2^x) as x approaches 0 is 1.
B. To find the limit of B. 2^x - 1 as x approaches 0, we can use L'Hopital's Rule:
lim x→0 (2^x - 1)
= lim x→0 (ln 2 * 2^x / ln 2)
= ln 2 * lim x→0 (2^x / ln 2)
= ln 2 * (lim x→0 e^(x ln 2) / ln 2)
= ln 2 * (lim x→0 e^(x ln 2 - ln 2) / (ln 2 - ln 2))
= ln 2 * (lim x→0 e^(ln 2 * (x - 1)) / 1)
= ln 2 * e^0
= ln 2
Therefore, the limit of B. 2^x - 1 as x approaches 0 is ln 2.
For more questions like Limit click the link below:
https://brainly.com/question/12207539
#SPJ11
Adding fractions
Need help
Answer:
1) 1/2 + 1/4 = 2/4 + 1/4 = 3/4
2) To add these fractions, you need to find a common denominator. The smallest common multiple of 7 and 9 is 63, so we can write:
3/7 * 9/9 + 2/9 * 7/7 = 27/63 + 14/63 = 41/63
3) To add these fractions, you need to find a common denominator. The smallest common multiple of 5 and 15 is 15, so we can write:
3/5 * 3/3 + 1/15 * 1/1 = 9/15 + 1/15 = 10/15
But we can simplify this fraction by dividing both the numerator and denominator by 5:
10/15 = 2/3
4) To add these fractions, you need to find a common denominator. The smallest common multiple of 9 and 8 is 72, so we can write:
1/9 * 8/8 + 7/8 * 9/9 = 8/72 + 63/72 = 71/72
5) To add these fractions, you need to find a common denominator. The smallest common multiple of 7 and 21 is 21, so we can write:
6/7 * 3/3 + 2/21 * 1/1 = 18/21 + 2/21 = 20/21
6) To add these fractions, we need to find a common denominator first. The smallest number that both 6 and 10 divide into is 30. So, we convert 4/6 to 20/30 by multiplying both the numerator and denominator by 5, and we convert 2/10 to 3/15 by multiplying both the numerator and denominator by 3. Now we have:
20/30 + 3/15 = (20x1 + 3x2)/(30x2) = 23/60
Therefore, 4/6 + 2/10 = 23/60.
7) To add these fractions, we need to find a common denominator first. The smallest number that both 11 and 22 divide into is 22. So, we convert 1/11 to 2/22 by multiplying both the numerator and denominator by 2, and we convert 3/22 to 3/22 (it is already in terms of 22). Now we have:
2/22 + 3/22 = (2 + 3)/22 = 5/22
Therefore, 1/11 + 3/22 = 5/22.
8) To add these fractions, we need to find a common denominator first. The smallest number that both 4 and 20 divide into is 20. So, we convert 1/4 to 5/20 by multiplying both the numerator and denominator by 5, and we convert 8/20 to 8/20 (it is already in terms of 20). Now we have:
5/20 + 8/20 = (5 + 8)/20 = 13/20
Therefore, 1/4 + 8/20 = 13/20.
9) To add these fractions, we need to find a common denominator first. The smallest number that both 7 and 9 divide into is 63. So, we convert 4/7 to 24/63 by multiplying both the numerator and denominator by 3, and we convert 2/9 to 14/63 by multiplying both the numerator and denominator by 7. Now we have:
24/63 + 14/63 = (24 + 14)/63 = 38/63
Therefore, 4/7 + 2/9 = 38/63.
10) To add these fractions, we need to find a common denominator first. The smallest number that both 10 and 30 divide into is 30. So, we convert 6/7 to 18/30 by multiplying both the numerator and denominator by 3, and we convert 2/30 to 1/15 by multiplying both the numerator and denominator by 15. Now we have:
18/30 + 1/15 = (18x1 + 1x2)/(30x2) = 37/30
Therefore, 6/7 + 2/21 = 37/30.
What is the volume of this oblique cone?
well, according the Cavalieri's Principle, the volume of the oblique cone will be the same volume as the non-oblique cone, so
[tex]\textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=9\\ h=16 \end{cases}\implies V=\cfrac{\pi (9)^2(16)}{3}\implies V=432\pi ~cm^3[/tex]
HURRY PLEASE IF YOU CAN PLEASE EXPLAIN WHY
Answer:
B) Unique
Step-by-step explanation:
J coordinates = (0,6)
K coordinates = ( 9, -9)
L coordinates = ( -9, -9)
Unique rule: 1/3x , 1/3y
Which means 1\3 times the x coordinate and 1/3 times the y coordinate
J,K,L after applying the unique rule equals
J= (0,2)
K= (3,-3)
L= (-3,-3)
Which lines up with J’ and K’ and L’.
Making the “unique” statement true, dilation= (1/3x, 1/3y)
Please mark brainliest :D
Paige walks to the park 2/3 mile away it takes her 16 minutes to get there how many miles per minutes
The Paige walks at a speed of approximately 0.04167 miles per minute to get to the park.
How we find the miles per minutes?To calculate Paige's speed, we used the formula:
Speed = Distance / Time
Given that Paige walks to the park 2/3 mile away, we substitute Distance with 2/3 mile and Time with 16 minutes. We get:
Speed = 2/3 mile / 16 minutes
Simplifying the expression by converting minutes to hours, we get:
Speed = 2/3 mile / (16/60) hours
Simplifying further by multiplying both the numerator and denominator by 60, we get:
Speed = [tex](2/3) * (60/1)[/tex] mile/hour / (16/1) minutes
Speed = 0.04167 mile/minute (rounded to 5 decimal places)
"Paige walks to the park 2/3 mile away it takes her 16 minutes to get there how many miles per minutes" is that Paige walks at a speed of approximately 0.04167 miles per minute.
Learn more about Substitute Distance
brainly.com/question/2418433
#SPJ11