PLEASE HELP WILL GIVE THUMBS UP
Problem. 7: Find the vector that is in the same direction as the vector (6,9, -2) but has length 4. Answer: Problem. 3: What is the angle between the vector 3i+Jand the positive Dacia? Answer: (radian

Answers

Answer 1

A definite integral represents the calculation of the net area between a function and the x-axis over a specific interval. An example of a definite integral is ∫[a, b] f(x) dx, where f(x) is the function, and a and b are the limits of integration. An indefinite integral represents the antiderivative or the family of functions whose derivative is equal to the given function. An example of an indefinite integral is ∫f(x) dx, where f(x) is the function.

To evaluate the given expressions:

a) ∫(3x^2 - 8x + 4) dx: This is an indefinite integral, and the result would be a function whose derivative is equal to 3x^2 - 8x + 4.

b) ∫p dp: This is an indefinite integral, and the result would be a function whose derivative is equal to p.

c) To find the area under the curve f(x) = 3x + 3 on the interval [0, 4], we can use the definite integral ∫[0, 4] (3x + 3) dx. The area can be found by evaluating the integral.

a) The indefinite integral represents finding the antiderivative or the family of functions whose derivative matches the given function. It does not involve specific limits of integration.

b) The indefinite integral represents finding the antiderivative or the family of functions whose derivative matches the given function. It also does not involve specific limits of integration.

c) To find the area under the curve, we can evaluate the definite integral ∫[0, 4] (3x + 3) dx. This involves finding the net area between the function f(x) = 3x + 3 and the x-axis over the interval [0, 4]. The result of the integral will give us the area under the curve between x = 0 and x = 4. It can be calculated by evaluating the integral using appropriate integration techniques.

To illustrate the area under the curve, a graph can be plotted with the x-axis, the function f(x) = 3x + 3, and the shaded region representing the area between the curve and the x-axis over the interval [0, 4]. The work involved in getting the area can be shown using the definite integral, including the integration process and substituting the limits of integration.

Learn more about integral here: https://brainly.com/question/31040425

#SPJ11


Related Questions

For jewelry prices in a jewelry store, state whether you would expect a histogram of the data to be bell-shaped, uniform, skewed left, or skewed right.
Choose the correct answer below.
a. Uniform
b. Skewed left
c. Skewed right
d. Bell shaped

Answers

For jewelry prices in a jewelry store, we would expect the histogram of the data to be skewed right. Option c

In a jewelry store, the prices of jewelry items tend to vary widely, ranging from relatively inexpensive pieces to high-end luxury items. This price distribution is often skewed right. Skewed right means that the data has a longer right tail, indicating that there are a few high-priced items that can significantly influence the overall distribution.

A skewed right distribution is characterized by having a majority of values on the lower end of the scale and a few extreme values on the higher end. In the context of jewelry prices, most items are likely to have lower or moderate prices, while a few luxury items may have significantly higher prices.

Therefore, based on the nature of jewelry prices in a jewelry store, we would expect a histogram of the data to be skewed right, with a majority of prices concentrated on the lower end and a few high-priced outliers contributing to the longer right tail of the distribution.

learn more about skewed right here:

https://brainly.com/question/29251600

#SPJ11

for the infinite server queue with poisson arrivals and general service distribution g, find the probability that
(a) the first customer to arrive is also the first to depart.
Let S(t) equal the sum of the remaining service times of all customers in the system at time t.
(b) Argue that S(t) is a compound Poisson random variable. (c) Find E[S(t)]. (d) Find Var(S(t)).

Answers

(a) In the infinite server queue with Poisson arrivals and general service distribution, the probability that the first customer to arrive is also the first to depart can be calculated.

(b) We can argue that the sum of the remaining service times of all customers in the system at time t, denoted as S(t), is a compound Poisson random variable.

(a) In an infinite server queue with Poisson arrivals and general service distribution, the probability that the first customer to arrive is also the first to depart can be obtained by considering the arrival and service processes. Since the arrivals are Poisson distributed and the service distribution is general, the first customer to arrive will also be the first to depart with a certain probability. The specific calculation would depend on the details of the arrival and service processes.

(b) To argue that S(t) is a compound Poisson random variable, we need to consider the properties of the system. In an infinite server queue, the service times for each customer are independent and identically distributed (i.i.d.). The arrival process follows a Poisson distribution, and the number of customers present at any given time follows a Poisson distribution as well. Therefore, the sum of the remaining service times of all customers in the system at time t, S(t), can be seen as a sum of i.i.d. random variables, where the number of terms in the sum is Poisson-distributed. This aligns with the definition of a compound Poisson random variable.

(c) To find E[S(t)], the expected value of S(t), we would need to consider the distribution of the remaining service times and their probabilities. Depending on the specific service distribution and arrival process, we can use appropriate techniques such as moment generating functions or conditional expectations to calculate the expected value.

(d) Similarly, to find Var(S(t)), the variance of S(t), we would need to analyze the distribution of the remaining service times and their probabilities. The calculation of the variance would depend on the specific characteristics of the service distribution and arrival process, and may involve moment generating functions, conditional variances, or other appropriate methods.

Learn more about probability here: https://brainly.com/question/32117953

#SPJ11

Solve using determinants
X/Δ1 = -y/Δ2 = z/Δ3 = 1/Δ0
Please show working and verification by plugging in
values in equation.

Answers

Using determinants and Cramer's rule, we can solve the system of equations and express the variables in terms of the determinants. The solution is:

X = Δ0/Δ1, y = -Δ2/Δ1, z = Δ3/Δ1.

To solve the system of equations using determinants and Cramer's rule, we need to compute the determinants Δ0, Δ1, Δ2, and Δ3.

Δ0 represents the determinant of the coefficient matrix without the X column:

Δ0 = |0 1 1|

       |1 0 -1|

       |1 -1 1|

Expanding this determinant, we get:

Δ0 = 0 - 1 - 1 + 1 + 0 - 1 = -2

Similarly, we can compute the determinants Δ1, Δ2, and Δ3 by replacing the corresponding column with the constants:

Δ1 = |1 1 1|

       |-1 0 -1|

       |1 -1 1|

Expanding Δ1, we get:

Δ1 = 0 - 1 - 1 + 1 + 0 - 1 = -2

Δ2 = |0 1 1|

       |1 -1 -1|

       |1 1 1|

Expanding Δ2, we get:

Δ2 = 0 + 1 + 1 - 1 - 0 - 1 = 0

Δ3 = |0 1 1|

       |1 0 -1|

       |1 -1 -1|

Expanding Δ3, we get:

Δ3 = 0 - 1 + 1 - 1 - 0 + 1 = 0

Now, we can solve for X, y, and z using Cramer's rule:

X = Δ0/Δ1 = -2/-2 = 1

y = -Δ2/Δ1 = 0/-2 = 0

z = Δ3/Δ1 = 0/-2 = 0

Therefore, the solution to the system of equations is X = 1, y = 0, and z = 0.

To verify the solution, we can substitute these values into the original equation:

1/Δ1 = -0/Δ2 = 0/Δ3 = 1/-2

Simplifying, we get:

1/-2 = 0/0 = 0/0 = -1/2

The equation holds true for these values, verifying the solution.

Please note that division by zero is undefined, so the equation should be considered separately when Δ1, Δ2, or Δ3 equals zero.

To learn more about determinants  Click Here: brainly.com/question/11841826

#SPJ11

Find the tangent to y = cotx at x = π/4
Solve the problem. 10) Find the tangent to y = cot x at x=- 4

Answers

The equation of the tangent line to y = cot(x) at x = π/4 is: y = -2x + π/2 + 1 or y = -2x + (π + 2)/2

To find the tangent to the curve y = cot(x) at a given point, we need to find the slope of the curve at that point and then use the point-slope form of a line to determine the equation of the tangent line.

The derivative of cot(x) can be found using the quotient rule:

cot(x) = cos(x) / sin(x)

cot'(x) = (sin(x)(-sin(x)) - cos(x)cos(x)) / sin^2(x)

= -sin^2(x) - cos^2(x) / sin^2(x)

= -(sin^2(x) + cos^2(x)) / sin^2(x)

= -1 / sin^2(x)

Now, let's find the slope of the tangent line at x = π/4:

slope = cot'(π/4) = -1 / sin^2(π/4)

The value of sin(π/4) can be calculated as follows:

sin(π/4) = sin(45 degrees) = 1 / √2 = √2 / 2

Therefore, the slope of the tangent line at x = π/4 is:

slope = -1 / (sin^2(π/4)) = -1 / ((√2 / 2)^2) = -1 / (2/4) = -2

Now we have the slope of the tangent line, and we can use the point-slope form of a line with the given point (x = π/4, y = cot(π/4)) to find the equation of the tangent line:

y - y1 = m(x - x1)

Substituting x1 = π/4, y1 = cot(π/4) = 1:

y - 1 = -2(x - π/4)

Simplifying:

y - 1 = -2x + π/2

To know more about solving equation of tangent lines refer to this link-

https://brainly.com/question/31617205#

#SPJ11

The solutions of the equation ×^2(x- 2) = 0 are x =

Answers

The solutions of the given equation x^2(x - 2) = 0 are x = 0 and x = 2.

To find the solutions of the equation x^2(x - 2) = 0, we set the expression equal to zero and solve for x. By applying the zero product property, we conclude that either x^2 = 0 or (x - 2) = 0.

x^2 = 0: This equation implies that x must be zero, as the square of any nonzero number is positive. Therefore, one solution is x = 0.

(x - 2) = 0: Solving this equation, we find that x = 2. Thus, another solution is x = 2.

For more information on equations visit: brainly.com/question/364657

#SPJ11

(1, 2, 3,..., 175, 176, 177, 178}
How many numbers in the set above
have 5 as a factor but do not have
10 as a factor?
A. 1
B. 3
C. 4
D. 17
E. 18

Answers

There are 18 numbers in the set above have 5 as a factor but do not have 10 as a factor.

We have to given that,

The set is,

⇒ (1, 2, 3,..., 175, 176, 177, 178}

Now, We know that;

In above set all the number which have 5 as a factor but do not have 10 as a factor are,

⇒ 5, 15, 25, 35, 45, ......., 175

Since, Above set is in arithmetical sequence.

Hence, For total number of terms,

⇒ L = a + (n - 1) d

Where, L is last term = 175

a = 5

d = 15 - 5 = 10

So,

175 = 5 + (n - 1) 10

⇒ 170 = (n - 1) 10

⇒ (n - 1) = 17

⇒ n = 18

Thus, There are 18 numbers in the set above have 5 as a factor but do not have 10 as a factor.

Learn more about the Arithmetic sequence visit:

https://brainly.com/question/6561461

#SPJ1

Numerical Answer Forms For questions that require a numerical answer, you may be told to round your answer to a specified number of decimal places or you may be asked to provide an exact answer. When asked to provide an exact answer, you should enter repeating decimals in their fraction form and irrational numbers such as e5, in(4), or V2 in their symbolic form. Consider the function f(x)=eX + . (a) Find f(2). Give an exact answer. x (b) Find f(9). Give your answer rounded to 3 decimal places. 8106.084 x

Answers

The value of f(2) is e^2. For f(9), rounded to 3 decimal places, it is approximately 8106.084.

(a) To find f(2), we substitute x = 2 into the function f(x) = e^x.

Therefore, f(2) = e^2. This is an exact answer, represented in symbolic form.

(b) For f(9), we again substitute x = 9 into the function f(x) = e^x, but this time we need to round the answer to 3 decimal places.

Evaluating e^9, we get approximately 8103.0839275753846113207067915. Rounded to 3 decimal places, the value of f(9) is approximately 8106.084.

In summary, f(2) is represented exactly as e^2, while f(9) rounded to 3 decimal places is approximately 8106.084.

Learn more about rounding off decimals:

https://brainly.com/question/13391706

#SPJ11

Find the derivative of the given function. y = 6x2(1 - 5x) dy dx

Answers

Applying the product rule and the chain rule will allow us to determine the derivative of the given function, "y = 6x2(1 - 5x)".

Let's first give the two elements their formal names: (u = 6x2) and (v = 1 - 5x).

The derivative of (y) with respect to (x) is obtained by (y' = u'v + uv') using the product rule.

Both the derivatives of (u) and (v) with respect to (x) are (u' = 12x) and (v' = -5), respectively.

When these values are substituted, we get:

\(y' = (12x)(1 - 5x) + (6x^2)(-5)\)

Simplifying even more

\(y' = 12x - 60x^2 - 30x^2\)

combining comparable phrases

\(y' = 12x - 90x^2\)

As a result, y' = 12x - 90x2 is the derivative of the function (y = 6x2(1 - 5x)) with respect to (x).

learn more about product here :

https://brainly.com/question/31815585

#SPJ11

PROBLEM SOLVING You are flying in a hot air balloon about 1.2 miles above the ground. Find the measure of the arc that
represents the part of Earth you can see. Round your answer to the nearest tenth. (The radius of Earth is about 4000 miles)
4001.2 mi
Z
W
Y
4000 mi
Not drawn to scale
The arc measures about __

Answers

The arc degree representing the portion of Soil you'll see from the hot air balloon is around 0.0 degrees.

How to Solve the Arc Degree?

To discover the degree of the arc that represents the portion of Earth you'll be able to see from the hot air balloon, you'll be able utilize the concept of trigonometry.

To begin with, we got to discover the point shaped at the center of the Soil by drawing lines from the center of the Soil to the two endpoints of the circular segment. This point will be the central point of the bend.

The tallness of the hot discuss swell over the ground shapes a right triangle with the span of the Soil as the hypotenuse and the vertical separate from the center of the Soil to the beat of the hot discuss swell as the inverse side. The radius of the Soil is around 4000 miles, and the stature of the swell is 1.2 miles.

Utilizing trigonometry, able to calculate the point θ (in radians) utilizing the equation:

θ = arcsin(opposite / hypotenuse)

θ = arcsin(1.2 / 4000)

θ ≈ 0.000286478 radians

To discover the degree of the circular segment in degrees, we will change over the point from radians to degrees:

Arc measure (in degrees) = θ * (180 / π)

Arc measure ≈ 0.000286478 * (180 / π)

Arc measure ≈ 0.0164 degrees

Adjusted to the closest tenth, the arc degree representing the portion of Soil you'll see from the hot air balloon is around 0.0 degrees.

Learn more about arc degree here: https://brainly.com/question/15815055

#SPJ1

true or false?
1) the differential equation dy/dx=1+sinx-y is
autonomous?
2) Every autonomous differential equation is itself a separable
differential equation.?

Answers

1) False, the differential equation dy/dx=1+sinx-y is not autonomous. 2) True, every autonomous differential equation is itself a separable differential equation.

Differential equations are equations that include an unknown function and its derivatives. It is frequently used to model problems in science, engineering, and economics. Separable, exact, homogeneous, and linear differential equations are the four types of differential equations. If a differential equation contains no independent variable, it is referred to as an autonomous differential equation. An autonomous differential equation is one in which the independent variable is absent, implying that the differential equation is independent of time.

To learn more about differential click here https://brainly.com/question/31383100

#SPJ11

Find the volume of the solid obtained by rotating the region under the curve y= x2 about the line x=-1 over the interval [0,1]. OA. 37 O B. 5: O c. 21" 12x 5 a 27 5 Reset Next

Answers

The volume of the solid obtained by rotating the region under the curve y = x² about the line x = ⁻¹ over the interval [0, 1] is 5π. The correct option is B.

To find the volume, we can use the method of cylindrical shells.

The height of each cylindrical shell is given by the function y = x², and the radius of each shell is the distance between the line x = -1 and the point x on the curve.mThe distance between x = -1 and x is (x - (-1)) = (x + 1).

The volume of each cylindrical shell is then given by the formula V = 2πrh, where r is the radius and h is the height.

Substituting the values, we have V = 2π(x + 1)(x²).

To find the total volume, we integrate this expression over the interval [0, 1]: ∫[0,1] 2π(x + 1)(x²) dx.

Evaluating this integral, we get 2π[(x⁴)/4 + (x³)/3 + x²] |_0¹ = 2π[(1/4) + (1/3) + 1] = 2π[(3 + 4 + 12)/12] = 2π(19/12) = 19π/6 = 5π.

Therefore, the volume of the solid obtained by rotating the region under the curve y = x² about the line x = -1 over the interval [0, 1] is 5π. The correct option is B.

To know more about volume , refer here:

https://brainly.com/question/19291537#

#SPJ11

Find the volume of the solid obtained by rotating the region under the curve y= x2 about the line x=-1 over the interval [0,1]. O

A. 3π

B. 5π

c. 12π/5

d 2π/ 5

Use Stokes' Theorem to evaluate F. dr where F(2, y, z) = zi + y +422 + y²)k and C is the boundary of the part of the paraboloid where z = 4 – 22 – y? which lies above the xy- plane and C is oriented counterclockwise when viewed from above.

Answers

Using Stokes' Theorem F · dr equals zero, the line integral ∫F · dr evaluates to zero.

To evaluate the line integral ∫F · dr using Stokes' Theorem, we need to compute the surface integral of the curl of F over the surface S bounded by the curve C. Stokes' Theorem states that:

∫F · dr = ∬(curl F) · dS

First, let's calculate the curl of F:

F(x, y, z) = z i + y + 422 + y^2 k

The curl of F is given by:

curl F = (∂F₃/∂y - ∂F₂/∂z) i + (∂F₁/∂z - ∂F₃/∂x) j + (∂F₂/∂x - ∂F₁/∂y) k

Let's calculate the partial derivatives of F:

∂F₁/∂z = 0

∂F₂/∂x = 0

∂F₃/∂y = 1 + 2y

Now we can determine the curl of F:

curl F = (0 - 0) i + (0 - 0) j + (1 + 2y) k = (1 + 2y) k

Next, we need to find the outward unit normal vector n to the surface S. Since S is defined as the part of the paraboloid above the xy-plane with z = 4 - 2x - y, we can write it as:

z = 4 - 2x - y

We rearrange the equation to express it explicitly in terms of x and y:

2x + y + z = 4

Comparing this equation with the general form of a plane equation Ax + By + Cz = D, we have:

A = 2, B = 1, C = 1, D = 4

The coefficients A, B, and C give us the components of the normal vector n = (A, B, C):

n = (2, 1, 1)

Since C is oriented counterclockwise when viewed from above, we take the outward normal direction, which is n = (2, 1, 1).

Now, let's calculate the surface area element dS. In this case, dS will be the projection of the differential area element in the xy-plane onto the surface S. Since the surface S is parallel to the xy-plane, the surface area element dS is simply dxdy.

Now we can apply Stokes' Theorem:

∫F · dr = ∬(curl F) · dS

Since the surface S is bounded by the curve C, we need to find the parametrization of C to evaluate the surface integral. The curve C lies on the part of the paraboloid where z = 4 - 2x - y. We can parameterize C as:

r(t) = (x(t), y(t), z(t)) = (t, y, 4 - 2t - y), where 0 ≤ t ≤ 2.

The tangent vector dr is given by:

dr = (dx/dt, dy/dt, dz/dt) dt = (1, 0, -2) dt

Substituting the parameterization into F, we have:

F(x(t), y, z(t)) = (4 - 2t - y) i + y j + (4 - 2t - y)^2 k

Now, let's calculate F · dr:

F · dr = (4 - 2t - y) dx + y dy + (4 - 2t - y)^2 dz

= (4 - 2t - y) dt + (4 - 2t - y)(-2) dt + y(-2) dt

= (4 - 2t - y - 4 + 2t + y)(-2) dt

= 0

Therefore, ∫F · dr = 0 using Stokes' Theorem.

To know more about Stokes' Theorem refer here-

https://brainly.com/question/32519822#

#SPJ11

dy Use implicit differentiation to determine given the equation xy + ² = sin(y). dx dy da ||

Answers

By using implicit differentiation on the equation xy + y^2 = sin(y), the derivative dy/dx of the given equation is (-y - 2yy') / (x - cos(y)).

To find dy/dx using implicit differentiation, we differentiate both sides of the equation with respect to x. Let's go through the steps:

Differentiating the left side of the equation:

d/dx(xy + y^2) = d/dx(sin(y))

Using the product rule, we get:

x(dy/dx) + y + 2yy' = cos(y) * dy/dx

Next, we isolate dy/dx by moving all the terms involving y' to one side and the terms without y' to the other side:

x(dy/dx) - cos(y) * dy/dx = -y - 2yy'

Now, we can factor out dy/dx:

(dy/dx)(x - cos(y)) = -y - 2yy'

Finally, we can solve for dy/dx by dividing both sides by (x - cos(y)):

dy/dx = (-y - 2yy') / (x - cos(y))

So, the derivative dy/dx of the given equation is (-y - 2yy') / (x - cos(y)).

Learn more about implicit differentiation here:

https://brainly.com/question/11887805

#SPJ11




(1 point) Take the Laplace transform of the following initial value problem and solve for Y(s) = L{y(t)}: y" + 6y' + 19y = T(t) y(0) = 0, y' (0) 0 t, 0 ≤ t < 1/2 Where T(t) = T(t + 1) = T(t). 1-t, 1

Answers

The Laplace transform of the given initial value problem is taken to solve for Y(s) to obtain the answer Y(s) = (-e^(-s)/s) / (s^2 + 6s + 19).

To find the Laplace transform of the initial value problem, we apply the Laplace transform to each term of the differential equation. Using the properties of the Laplace transform, we have:

s^2Y(s) - sy(0) - y'(0) + 6sY(s) - y(0) + 19Y(s) = L{T(t)}

Since T(t) is a periodic function, we can express its Laplace transform using the property of the Laplace transform of periodic functions:

L{T(t)} = T(s) = ∫[0 to 1] (1 - t)e^(-st) dt

Evaluating the integral, we have:

T(s) = ∫[0 to 1] (1 - t)e^(-st) dt

= [e^(-st)(1 - t)/(-s)] evaluated at t = 0 and t = 1

= [(1 - 1)e^(-s(1))/(-s)] - [(e^(-s(0))(1 - 0))/(-s)]

= -e^(-s)/s

Substituting T(s) into the Laplace transform equation, we get:

s^2Y(s) - y'(0)s + (6s + 19)Y(s) = -e^(-s)/s

Rearranging the equation and substituting the initial conditions y(0) = 0 and y'(0) = 0, we obtain:

(s^2 + 6s + 19)Y(s) = -e^(-s)/s

Finally, we solve for Y(s):

Y(s) = (-e^(-s)/s) / (s^2 + 6s + 19)

Therefore, Y(s) is the Laplace transform of y(t) for the given initial value problem.

Learn more about periodic function here: brainly.com/question/12529476

#SPJ11

What is the rectangular coordinates of (r, 6) = (-2,117) =

Answers

The rectangular coordinates of the point with polar coordinates (r, θ) = (-2, 117°) are approximately (-0.651, -1.978).

In polar coordinates, a point is represented by the distance from the origin (r) and the angle it makes with the positive x-axis (θ). To convert these polar coordinates to rectangular coordinates (x, y), we can use the formulas.

x = r * cos(θ)

y = r * sin(θ)

In this case, the given polar coordinates are (r, θ) = (-2, 117°). Applying the conversion formulas, we have:

x = -2 * cos(117°)

y = -2 * sin(117°)

To evaluate these trigonometric functions, we need to convert the angle from degrees to radians. One radian is equal to 180°/π. So, 117° is approximately (117 * π)/180 radians.

Calculating the values:

x ≈ -2 * cos((117 * π)/180)

y ≈ -2 * sin((117 * π)/180)

Evaluating these expressions, we find:

x ≈ -0.651

y ≈ -1.978

Therefore, the rectangular coordinates of the point with polar coordinates (r, θ) = (-2, 117°) are approximately (-0.651, -1.978).

Learn more about rectangular coordinates here:

https://brainly.com/question/31904915

#SPJ11

The following limit
limn→[infinity] n∑i=1 xicos(xi)Δx,[0,2π] limn→[infinity] n∑i=1 xicos⁡(xi)Δx,[0,2π]
is equal to the definite integral ∫baf(x)dx where a = , b = ,
and f(x) =

Answers

The given limit is equal to the definite integral: ∫[0, 2π] x cos(x) dx. So, a = 0, b = 2π, and f(x) = x cos(x).

To evaluate the limit using the Riemann sum, we need to express it in terms of a definite integral. Let's break down the given expression:

lim n→∞ n∑i=1 xi cos(xi)Δx,[0,2π]

Here, Δx represents the width of each subinterval, which can be calculated as (2π - 0)/n = 2π/n. Let's rewrite the expression accordingly:

lim n→∞ n∑i=1 xi cos(xi) (2π/n)

Now, we can rewrite this expression using the definite integral:

lim n→∞ n∑i=1 xi cos(xi) (2π/n) = lim n→∞ (2π/n) ∑i=1 n xi cos(xi)

The term ∑i=1 n xi cos(xi) represents the Riemann sum approximation for the definite integral of the function f(x) = x cos(x) over the interval [0, 2π].

Therefore, we can conclude that the given limit is equal to the definite integral:

∫[0, 2π] x cos(x) dx.

So, a = 0, b = 2π, and f(x) = x cos(x).

To learn more about Riemann sum visit:

brainly.com/question/32525875

#SPJ11


Please answer all question 13-16, thankyou.
13. Let P be the plane that contains the line r = 2+ 3+ y = -2- t, z = 1 - 2t and the point (2, -3,1). (a) Give an equation for the plane P. (b) Find the distance of the plane P from the origin. 14. L

Answers

13. (a) An equation for the plane P that contains a given line and a point is determined.

(b) The distance between the plane P and the origin is calculated.

The equation of the line L that passes through two given points is determined.

13. (a) To find an equation for the plane P that contains the line r = 2+ 3+ y = -2- t, z = 1 - 2t and the point (2, -3, 1), we can use the point-normal form of a plane equation. First, we need to find the normal vector of the plane, which can be obtained by taking the cross product of the direction vectors of the line. The direction vectors of the line are <3, -1, -2> and <1, -2, -2>. Taking their cross product, we get the normal vector of the plane as <-2, -4, -5>. Now, using the point-normal form, we have the equation of the plane P as -2(x - 2) - 4(y + 3) - 5(z - 1) = 0, which simplifies to -2x - 4y - 5z + 19 = 0.

(b) To find the distance of the plane P from the origin, we can use the formula for the distance between a point and a plane. The formula states that the distance d is given by d = |Ax + By + Cz + D| / √(A^2 + B^2 + C^2), where A, B, C are the coefficients of the plane equation (Ax + By + Cz + D = 0). In this case, the coefficients are -2, -4, -5, and 19. Plugging these values into the formula, we have d = |(-2)(0) + (-4)(0) + (-5)(0) + 19| / √((-2)^2 + (-4)^2 + (-5)^2), which simplifies to d = 19 / √(45). Hence, the distance between the plane P and the origin is 19 / √(45).

Learn more about vectors here:

https://brainly.com/question/24256726

#SPJ11

The Laplace Transform of 2t f(t) = 6e3+ + 4e is = Select one: 10s F(S) $2+ s-6 2s - 24 F(s) = S2 + S s-6 = O None of these. 10s F(S) S2-S- - 6 2s + 24 F(s) = 2– s S-6 =

Answers

The Laplace transform of the given function f(t) = 6e^(3t) + 4e^t is F(s) = 10s / (s^2 - s - 6).

To find the Laplace transform, we substitute the expression for f(t) into the integral definition of the Laplace transform and evaluate it. The Laplace transform of e^(at) is 1 / (s - a), and the Laplace transform of a constant multiple of a function is equal to the constant multiplied by the Laplace transform of the function.

Therefore, applying these rules, we have F(s) = 6 * 1 / (s - 3) + 4 * 1 / (s - 1) = (6 / (s - 3)) + (4 / (s - 1)).

Simplifying further, we can rewrite F(s) as 10s / (s^2 - s - 6), which matches the first option provided. Hence, the correct answer is F(s) = 10s / (s^2 - s - 6).

Learn more about Laplace Transform here: brainly.in/question/20463187
#SPJ11

6,7
I beg you please write letters and symbols as clearly as possible
or make a key on the side so ik how to properly write out the
problem
D 6) Find the derivative by using the Chain Rule. DO NOT SIMPLIFY! f(x) = (+9x4-3√x) 7) Find the derivative by using the Product Rule. DO NOT SIMPLIFY! f(x) = -6x*(2x³-1)5

Answers

The derivative of [tex]f(x) = (9x^4 - 3\sqrt{x} )^7[/tex] using the Chain Rule is given by [tex]7(9x^4 - 3\sqrt{x} )^6 * (36x^3 - (3/2)(x^{-1/2}))[/tex].

The derivative of [tex]f(x) = -6x*(2x^3 - 1)^5[/tex] using the Product Rule is given by [tex]-6(2x^3 - 1)^5 + (-6x)(5(2x^3 - 1)^4 * (6x^2))[/tex].

To find the derivative using the Chain Rule, we start by taking the derivative of the outer function [tex](9x^4 - 3\sqrt{x} )^7[/tex], which is [tex]7(9x^4 - 3\sqrt{x} )^6[/tex].

Then, we multiply it by the derivative of the inner function [tex](9x^4 - 3\sqrt{x} )[/tex], which is [tex]36x^3 - (3/2)(x^{-1/2})[/tex].

To find the derivative using the Product Rule, we take the derivative of the first term, -6x, which is -6.

Then, we multiply it by the second term [tex](2x^3 - 1)^5[/tex].

Next, we add this to the product of the first term and the derivative of the second term, which is [tex]5(2x^3 - 1)^4 * (6x^2)[/tex].

Learn more about Chain Rule here:

https://brainly.com/question/31585086

#SPJ11




After 2 years of continuous compounding at 11.8% the amount in an account is $11,800. What was the amount of the initial deposit? A) $14,940.85 B) $8139.41 C) $13,760.85 D) $9319.41

Answers

To find the initial deposit, we can use the formula for compound interest:

A = P *[tex]e^{(rt)[/tex]

Where:

A = Final amount after t years

P = Initial deposit

r = Annual interest rate (in decimal form)

t = Number of years

e = Euler's number (approximately 2.71828)

In this case, we are given:

A = $11,800

r = 11.8% = 0.118 (in decimal form)

t = 2 years

We need to solve for P, the initial deposit.

Dividing both sides of the equation by [tex]e^{(rt)}[/tex]:

A / [tex]e^{(rt)}[/tex] = P

Substituting the given values:

P = $11,800 / [tex]e^{(0.118 * 2)[/tex]

Using a calculator:

P ≈ $11,800 / [tex]e^{(0.236)}[/tex]

P ≈ $11,800 / 0.7902

P ≈ $14,940.85

Therefore, the amount of the initial deposit was approximately $14,940.85. Option A) $14,940.85 is the correct answer.

learn more about compound interest here:

https://brainly.com/question/22621039

#SPJ11

3. A particle starts moving from the point (1,2,0) with vclocity given by v(t) = (2+1 1,21,2 21), where t > 0. (n) (3 points) Find the particle's position at any timet. (b) (1 points) What is the cosi

Answers

The position of the particle is obtained by integrating its velocity. The position of the particle at any time is given by(1 + 2t, 2 + t + t², 2t). The angle between the velocity and the z-axis is cos θ = 2/3.

The position of the particle is obtained by integrating its velocity. The position of the particle at any time is given by(x(t), y(t), z(t)) = (1, 2, 0) + ∫(2 + t, 1 + 2t, 2t) dt.This gives(x(t), y(t), z(t)) = (1 + 2t, 2 + t + t², 2t).The angle between the velocity and the z-axis is given by cos θ = (v(t) · k) / ||v(t)|| = (2 · 1 + 1 · 0 + 2 · 1) / √(2² + (1 + 2t)² + (2t)²) = 2 / √(9 + 4t + 5t²). Therefore, cos θ = 2/3.

Learn more about velocity here:

https://brainly.com/question/29519833

#SPJ11

The particle's position at any time t can be found by integrating the velocity function v(t) = (2 + t, t^2, 2t^2 + 1) with respect to time.

The resulting position function will give the coordinates of the particle's position at any given time. The cosine of the angle between the position vector and the x-axis can be calculated by taking the dot product of the position vector with the unit vector along the x-axis and dividing it by the magnitude of the position vector.

To find the particle's position at any time t, we integrate the velocity function v(t) = (2 + t, t^2, 2t^2 + 1) with respect to time. Integrating each component separately, we have:

x(t) = ∫(2 + t) dt = 2t + (1/2)t^2 + C1,

y(t) = ∫t^2 dt = (1/3)t^3 + C2,

z(t) = ∫(2t^2 + 1) dt = (2/3)t^3 + t + C3,

where C1, C2, and C3 are constants of integration.

The resulting position function is given by r(t) = (x(t), y(t), z(t)) = (2t + (1/2)t^2 + C1, (1/3)t^3 + C2, (2/3)t^3 + t + C3).

To find the cosine of the angle between the position vector and the x-axis, we calculate the dot product of the position vector r(t) = (x(t), y(t), z(t)) with the unit vector along the x-axis, which is (1, 0, 0). The dot product is given by:

r(t) · (1, 0, 0) = (2t + (1/2)t^2 + C1) * 1 + ((1/3)t^3 + C2) * 0 + ((2/3)t^3 + t + C3) * 0

= 2t + (1/2)t^2 + C1.

The magnitude of the position vector r(t) is given by ||r(t)|| = sqrt((2t + (1/2)t^2 + C1)^2 + ((1/3)t^3 + C2)^2 + ((2/3)t^3 + t + C3)^2).

Finally, we can calculate the cosine of the angle using the formula:

cos(theta) = (r(t) · (1, 0, 0)) / ||r(t)||.

This will give the cosine of the angle between the position vector and the x-axis at any given time t.

Learn more about velocity function  here:

https://brainly.com/question/29080451

#SPJ11

please help me!!!
D D Question 1 2 pts Find parametric equation of the line containing the point (-1, 1, 2) and parallel to the vector V = = (1,0,-1) Oz(t)=-1+t, y(t) = 1, z(t) = 2-t Oz(t)=1-t, y(t) =t, z(t) = -1 + 2t

Answers

Parametric equations are:

Oz(t) = -1 + t

y(t) = 1

z(t) = 2 - t

To find the parametric equation of the line containing the point (-1, 1, 2) and parallel to the vector V = (1, 0, -1), we can use the point-normal form of the equation of a line.

The point-normal form of the equation of a line is given by:

(x - x₀) / a = (y - y₀) / b = (z - z₀) / c

where (x₀, y₀, z₀) is a point on the line, and (a, b, c) is the direction vector of the line.

Given that the point on the line is (-1, 1, 2), and the direction vector is V = (1, 0, -1), we can substitute these values into the point-normal form.

(x - (-1)) / 1 = (y - 1) / 0 = (z - 2) / (-1)

Simplifying, we get:

(x + 1) = 0

(y - 1) = 0

(z - 2) = -1

Since (y - 1) = 0 gives us y = 1, we can treat y as a parameter.

Therefore, the parametric equations of the line are:

x(t) = -1

y(t) = 1

z(t) = 2 - t

Alternatively, you wrote the parametric equations as:

Oz(t) = -1 + t

y(t) = 1

z(t) = 2 - t

Both forms represent the same line, where t is a parameter that determines different points on the line.

To know more about the parametric equations refer here:

https://brainly.com/question/30748687#

#SPJ11

A company produces a special new type of TV. The company has fixed costs of $470,000, and it costs $1300 to produce each TV. The company projects that if it charges a price of $2300 for the TV, it will be able to sell 850 TVs. If the company wants to sell 900 TVs, however, it must lower the price to $2000. Assume a linear demand. If the company sets the price of the TV to be $3500, how many can it expect to sell? It can expect to sell TVs (Round answer to nearest integer.)

Answers

The company can expect to sell approximately 650 TVs at a price of $3500.

To determine how many TVs the company can expect to sell at a price of $3500, we need to analyze the demand based on the given information.

We are told that the company has fixed costs of $470,000, and it costs $1300 to produce each TV. Let's denote the number of TVs sold as x.

For the price of $2300, the company can sell 850 TVs. This gives us a data point (x1, p1) = (850, 2300).

For the price of $2000, the company can sell 900 TVs. This gives us another data point (x2, p2) = (900, 2000).

Since the demand is assumed to be linear, we can find the equation of the demand curve using the two data points.

The equation of a linear demand curve is given by:

p - p1 = ((p2 - p1) / (x2 - x1)) * (x - x1)

Substituting the known values, we have:

p - 2300 = ((2000 - 2300) / (900 - 850)) * (x - 850)

p - 2300 = (-300 / 50) * (x - 850)

p - 2300 = -6 * (x - 850)

p = -6x + 5100 + 2300

p = -6x + 7400

Now, we can use this equation to determine the expected number of TVs sold at a price of $3500.

Setting p = 3500:

3500 = -6x + 7400

Rearranging the equation:

-6x = 3500 - 7400

-6x = -3900

x = (-3900) / (-6)

x ≈ 650

Therefore, the company can expect to sell approximately 650 TVs at a price of $3500.

Learn more about demand at https://brainly.com/question/15456235

#SPJ11

Given that your sin wave has a period of 3, what is the value
of b?

Answers

For a sine wave with a period of 3, the value of b can be determined using the formula period = 2π/|b|. In this case, since the given period is 3, we can set up the equation 3 = 2π/|b|.

The period of a sine wave represents the distance required for the wave to complete one full cycle. It is denoted as T and relates to the frequency and wavelength of the wave. The standard formula for a sine wave is y = sin(bx), where b determines the frequency and period. The period is given by the equation period = 2π/|b|.

In this problem, we are given a sine wave with a period of 3. To find the value of b, we can set up the equation 3 = 2π/|b|. By cross-multiplying and isolating b, we find that |b| = 2π/3. Since the absolute value of b can be positive or negative, we consider both cases.

Therefore, the value of b for the given sine wave with a period of 3 is 2π/3 or -2π/3. This represents the frequency of the wave and determines the rate at which it oscillates within the given period.

Learn more about Sine Wave : brainly.com/question/32149687

#SPJ11

[-12.5 Points] DETAILS SPRECALC7 8.3.051. 22 Find the product zzzz and the quotient 21. Express your answers in polar form. v3(cos( 59 ) + i sin(SA)). 1 + i sin( 57 )). 22 = 5V5(cos( 37) + i sin( % )) 37 Z1 = COS Z122 = 21 NN Il Need Help?

Answers

The product of the given complex numbers is √3(cos149 + i sin116) and the quotient is 5√5(cos37 + i sin37).

Given, z1 = √3(cos59 + i sin59) and z2 = 1 + i sin57.

To find the product and the quotient of the above complex numbers in polar form.

Product of complex numbers is calculated by multiplying their moduli and adding their arguments (in radians).

The formula to find the quotient of two complex numbers in polar form is given as,

When two complex numbers in polar form z1 = r1(cosθ1 + isinθ1) and z2 = r2(cosθ2 + isinθ2) are divided, then the quotient is given byz1/z2 = r1/r2(cos(θ1-θ2) + isin(θ1-θ2)).

Now, let's solve the problem:

Product of z1 and z2 is given by:

zzzz = z1z2

= √3(cos59 + i sin59)(1 + i sin57)

= √3(cos59 + i sin59)(cos90 + i sin57)

= √3(cos(59 + 90) + i sin(59 + 57))

= √3(cos149 + i sin116)

Therefore, the product of zzzz is √3(cos149 + i sin116).

Quotient of z1 and z2 is given by:

z1/z2 = √3(cos59 + i sin59)/(1 + i sin57)= √3(cos59 + i sin59)(1 - i sin57)/(1 - i sin57)(1 + i sin57)= √3(cos59 + sin59 + i(cos59 - sin59))/(1 + [tex]sin^257[/tex])= √3(2cos59)/(1 + [tex]sin^257[/tex]) + i√3(2cos59 sin57)/(1 + [tex]sin^257[/tex])

Now, let's put the values and simplify,

z1/z2 = 5√5(cos37 + i sin37)

Therefore, the quotient of z1 and z2 is 5√5(cos37 + i sin37).

Hence, the product of the given complex numbers is √3(cos149 + i sin116) and the quotient is 5√5(cos37 + i sin37).

We were required to find the product and the quotient of complex numbers z1 = √3(cos59 + i sin59) and z2 = 1 + i sin57 expressed in polar form. For multiplication of two complex numbers in polar form, we multiply their moduli and add their arguments in radians. Similarly, the quotient of two complex numbers in polar form can be found by dividing their moduli and subtracting their arguments in radians. Applying the same formula, we found that the product of z1 and z2 is √3(cos149 + i sin116). On the other hand, the quotient of z1 and z2 is 5√5(cos37 + i sin37). Thus, the polar form of the required complex numbers is obtained.

Learn more about complex numbers  :

https://brainly.com/question/20566728

#SPJ11

The complete question is :

Find the product z1z2 and the quotient 21. Express your answers in polar form. v3(cos( 59 ) + i sin(SA)). 1 + i sin( 57 )). 22 = 5V5(cos( 37) + i sin( % )) 37 Z1 = COS Z122 = 21 NN Il Need Help? Read it

The length of a rectangle is 5 units more than the width. The area of the rectangle is 36 square units. What is the length, in units, of the rectangle?

Answers

Answer:

The length is 9 units

Step-by-step explanation:

Lenght is 9, width is 4,

9 x 4 = 36

Answer:

The length of the rectangle is 9 units

Step-by-step explanation:

1. Write down what we know:

Area of rectangle = L x WL = W + 5Area = 36

2. Write down all the ways we can get 36 and the difference between the two numbers:

36 x 1 (35)18 x 2 (16)12 x 3 (9)9 x 4 (5)6 x 6 (0)

3. Find the right one:

9 x 4 = 36The difference between 9 and 4 is 5

Hence the answer is 9 units

Subtract
7
x
2

x

1
7x
2
−x−1 from
x
2
+
3
x
+
3
x
2
+3x+3.

Answers

The answer is [tex]-6x^2+2x+2[/tex]. To subtract [tex]7x^2-x-1[/tex] from [tex]x^2+3x+3[/tex], we need to first distribute the negative sign to each term in [tex]7x^2-x-1.[/tex]

In algebra, an equation is a mathematical statement that asserts the equality between two expressions. It consists of two sides, often separated by an equal sign (=).

The expressions on each side of the equal sign may contain variables, constants, and mathematical operations.

Equations are used to represent relationships and solve problems involving unknowns or variables. The goal in solving an equation is to find the value(s) of the variable(s) that make the equation true.

This is achieved by performing various operations, such as addition, subtraction, multiplication, and division, on both sides of the equation while maintaining the equality.

Here, it gives us [tex]-7x^2+x+1[/tex]. Now we can line up the like terms and subtract them.
[tex]x^2 - 7x^2 = -6x^2[/tex]
3x - x = 2x
3 - 1 = 2

Putting these results together, we get:
[tex]x^2+3x+3x^2 - (7x^2-x-1) = -6x^2+2x+2[/tex]

Therefore, the answer is [tex]-6x^2+2x+2.[/tex]

For more question on subtract

https://brainly.com/question/28467694

#SPJ8

a) Find F'(x) b) Find the set A of critical numbers is of F. c) Make a sign chart for F'(x) d) Determine the intervals over which F is decreasing. e) Determine the set of critical numbers for which F has a local minimum. Consider the function F:[-3,3] → R, F(x) = L (t− 2)(t+1) dt

Answers

a) The derivative of the function F(x) can be found by applying the Fundamental Theorem of Calculus.

Since the function F(x) is defined as the integral of another function, we can differentiate it using the chain rule. The derivative, F'(x), is equal to the integrand evaluated at the upper limit of integration, which in this case is x. Therefore, F'(x) = (x - 2)(x + 1).

b) To find the set A of critical numbers for F, we need to determine the values of x for which F'(x) is equal to zero or undefined. Setting F'(x) = 0, we find that the critical numbers are x = -1 and x = 2. These are the values of x for which the derivative of F(x) is zero.

c) To create a sign chart for F'(x), we need to examine the intervals between the critical numbers (-1 and 2) and determine the sign of F'(x) within each interval. For x < -1, F'(x) is positive. For -1 < x < 2, F'(x) is negative. And for x > 2, F'(x) is positive.

d) Since F'(x) is negative for -1 < x < 2, this means that F(x) is decreasing in that interval. Therefore, the interval (-1, 2) is where F is decreasing.

e) The set of critical numbers for which F has a local minimum can be determined by examining the intervals and considering the behavior of F'(x). In this case, the critical number x = 2 corresponds to a local minimum for F(x) because F'(x) changes from negative to positive at that point, indicating a change from decreasing to increasing. Thus, x = 2 is a critical number where F has a local minimum.

In summary, the function F'(x) = (x - 2)(x + 1). The set of critical numbers for F is A = {-1, 2}. The sign chart for F'(x) shows that F'(x) is positive for x < -1 and x > 2, and negative for -1 < x < 2. Therefore, F is decreasing on the interval (-1, 2). The critical number x = 2 corresponds to a local minimum for F.

Learn more about fundamental theorem of calculus :

https://brainly.com/question/30761130

#SPJ11

If a square matrix has a determinant equal to zero, it is defined as | Select one: a. Singular matrix O b. Non-singular matrix Oc. Upper triangular matrix Od Lower triangular matrix

Answers

If a square matrix has a determinant equal to zero, it is defined as a singular matrix.

A singular matrix is a square matrix whose determinant is zero. The determinant of a matrix is a scalar value that provides important information about the matrix, such as whether the matrix is invertible or not. If the determinant is zero, it means that the matrix does not have an inverse, and hence it is singular.

A non-singular matrix, on the other hand, has a non-zero determinant, indicating that it is invertible and has a unique inverse. Non-singular matrices are also referred to as invertible or non-degenerate matrices.

Therefore, the correct answer is option a. Singular matrix, as it describes a square matrix with a determinant equal to zero.

To learn more about scalar click here:

brainly.com/question/12934919

#SPJ11

1. Use l'Hospital's Rule to show that lim f(x) = 0 and lim f(x) = 0 X+00 for Planck's Law. So this law models blackbody radiation better than the Rayleigh- Jeans Law for short wavelengths. 2. Use a Ta

Answers

l'Hospital's Rule confirms Planck's Law approaches 0 as x approaches infinity and zero, outperforming the Rayleigh-Jeans Law.

Planck's Law describes the spectral radiance of blackbody radiation as a function of wavelength and temperature. It overcomes the ultraviolet catastrophe predicted by the Rayleigh-Jeans Law, which fails to accurately model short wavelengths. To demonstrate that the limit of f(x) as x approaches infinity and as x approaches zero is 0, we can apply l'Hospital's Rule. By taking the derivatives of the numerator and denominator and evaluating the limits, we find that the ratio approaches 0 in both cases. This indicates that Planck's Law provides a more accurate representation of blackbody radiation for short wavelengths, as it avoids the divergence and catastrophic predictions of the Rayleigh-Jeans Law.

Learn more about Planck's Law here:

https://brainly.com/question/28100145

#SPJ11

Other Questions
A laboratory is studying the binding properties of a glycoprotein on the plasma membrane. What amino acids should they analyze for the presence of branched heteropolysaccharides?A) Ser, Thr, and TyrB) Ser, Thr, and AsnC) Trp, Tyr, and AsnD) Asp and GluE) Lys, His, and Arg how dickens use the ghost of Christmas yet to come in extract 5 change his attitudes and behaviour? Let R be the rectangular region with (1,2) , (2,3) , (3,2) and(2,1) as corners. Use change of variables to evaluateintegral (R) integral ln(x+y)dA A student dissolves 4.28 moles of K3PO4 in water to produce 0.836 liters of solution. What is the solution's molarity?AO 0.195 MBO3.44MCO3.58 MDO 5.12 M Auditors should be aware that a voucher system may result in which of the following at year-end: A. Understatement of liabilities.B. Overstatement of assets.C. Understatement of owners' equity. D. Overstatement of expenses. Show all steps pleaseCalculate the work done by F = (x sin y, y) along the curve y = r2 from (-1, 1) to (2, 4) Need help asap A party rental company has chairs and tables for rent. The total cost to rent 8 chairs and 4 tables is $37. The total cost to rent 3 chairs and 2 tables is $17.What is the cost to rent each chair and each table?Cost to rent each chair: SICost to rent each table: redict how each of the following mutations in the OR4 gene would most likely affect the sensitivity of mosquitos to sulcatone. Justify each prediction.(a) A mutation that results in the removal of the intracellular domain of the receptor protein.(b) A mutation that results in the substitution of a small hydrophobic amino acid for another small hydrophobic amino acid in the ligand-binding site of the receptor protein. Designing a SiloAs an employee of the architectural firm of Brown and Farmer, you have been asked to design a silo to stand adjacent to an existing barn on the campus of the local community college. You are charged with finding the dimensions of the least expensive silo that meets the following specifications.The silo will be made in the form of a right circular cylinder surmounted by a hemi-spherical dome.It will stand on a circular concrete base that has a radius 1 foot larger than that of the cylinder.The dome is to be made of galvanized sheet metal, the cylinder of pest-resistant lumber.The cylindrical portion of the silo must hold 1000 cubic feet of grain.Estimates for material and construction costs are as indicated in the diagram below.The design of a silo with the estimates for the material and the construction costs.The ultimate proportions of the silo will be determined by your computations. In order to provide the needed capacity, a relatively short silo would need to be fairly wide. A taller silo, on the other hand, could be rather narrow and still hold the necessary amount of grain. Thus there is an inverse relationship between r, the radius, and h, the height of the cylinder.Rewrite your estimated cost for the cylinder in terms of the single variable, r, alone. Cost of cylinder = ___________________ The overall clustering of economic activity and geography is critical to building a tribal economy. Select one: True False It snowed from 7:56 am to 11:39 am. How long was it snowing? Need answer 13,15For Problems 13-16, use the techniques of Problems 11 and 12 to find the vector or point. 13. Find the position vector for the point of the way from point A(2,7) to point B(14,5). 14. Find the positio show full solution tyAn automobile travelling at the rate of 20m/s is approaching an intersection. When the automobile is 100meters from the intersection, a truck travelling at the rate of 40m/s crosses the intersection. Elements of a breach notification should include all of the following EXCEPT1. steps individuals should take in order to protect themselves.2. a description of what occurred, including the date of the breach and the date the breach was discovered.3. what the entity is doing to investigate, mitigate, and prevent future occurrences.4. the name of the individual within the entity responsible for the breach so that a civil claim can be filed against the individual. Find k such that the vertical line x=k divides the area enclosed by y=(x, y=0 and x=5 into equal parts. O 3.15 O 7.94 None of the Choices 0 2.50 O 3.54 Pancho Company reported net income of $245,000 for 2017. Pancho sold equipment that cost $100,000 and had a book value of $60,000 for $52,000. The comparative balance sheet shows a decrease in accounts receivable of $19,000 for the year, a $13,000 increase in accounts payable, a $4,000 increase in prepaid expenses, and a $17, 000 increase in accumulated depreciation.InstructionsPrepare the operating activities section of the statement of cash flows for 2017. Use the indirect method. an epitope associates with which part of an antibody? the tail the heavy-chain constant regions only variable regions of a heavy chain and light chain combined the disulfide bridge the light-chain constant regions only Which statements are true about bacteria? Choose the three that apply multiple diagnostic conditions that occur simultaneously within the same individual are referred to as Find the following limit or state that it does not exist. 441 + h - 21 lim h0 h Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. lim 441 + h