Answer:
x = 65°
y = 25° (equations in explanation)
Step-by-step explanation:
We know that EKD is 25° and we know that DKB is 90°.
EKD, DKB, and BKF are supplementary. This means that their angle measures add up to 180°.
So, since we know two, we can find the other very easily.
[tex]180 - (25+90)\\180 - 115\\65[/tex]
This means that BKF is 65°.
Now, BKF and EKC are alternate interior angles, so they have the exact same measurement. Therefore, EKC, x, is 65°.
Again, EKC, CKA, and AKF are supplementary. AKF is 90° and EKC is 65°, so we can find the measure of CKA easily.
[tex]180 - (65+90)\\180-155\\25[/tex]
Therefore y is 25° and x is 65°.
Hope this helped!
Angle 6 and 7, are complementary angles?
Answer:
Hey there!
Angle 6 and angle 7 are actually supplementary angles, which are angles that add to 180 degrees.
Complementary angles are angles that add to 90 degrees.
Hope this helps :)
Answer:
∠6 & ∠7 are not complementary angles
Step-by-step explanation:
∠6 & ∠7 are supplementary angles on a line
A party rental company has chairs and tables for rent. The total cost to rent 9 chairs and 7 tables is $91. The total cost to rent 3 chairs and 5 tables is $59. What is the cost to rent each chair and each table? Costtorenteachchair:$ Costtorenteachtable:$
Answer:
cost to rent each chair=$1.75, cost to rent each tabble=$10.75
Step-by-step explanation:
Hello, I can help you with this
Step 1
Define
cost to rent a chair=x
cost to rent a table=y
9x=total cost for rent 9 chair
7y = total cost for rent 7 tables
a)The total cost to rent 9 chairs and 7 tables is $91.
in mathematical terms it is
9x+7y=91....equation 1
b) The total cost to rent 3 chairs and 5 tables is
3x+5y=59.... equation 2
and you have 2 equation and 2 unknown terms
let's solve this
from equation 1 isolate x
[tex]9x+7y=91\\9x=91-7y\\x=\frac{91-7y}{9}\\ \\[/tex]
from equation 2 isolate x
[tex]3x+5y=59\\3x=59-5y\\x=\frac{59-5y}{3}[/tex]
now, x= x, so
[tex]x=\frac{91-7y}{9}\\\\\\x=\frac{59-5y}{3} \ \\\ \frac{91-7y}{9}=\frac{59-5y}{3}\\ 3(91-7y)=9(59-5y)\\273-21y=531-45y\\273-531=-45y+21y\\-258=-24y\\y=\frac{258}{24}\\ y=10.75\\[/tex]
now, we know y, use it to find x
[tex]x=\frac{59-5y}{3}\\x=\frac{59-5(10.75)}{3}\\x=\frac{59-53.75}{3}\\\\x=\frac{5.25}{3}\\ x= 1.75\\[/tex]
Have a nice day
The Patel, Lopez, and Russo families all had parties recently. There were 152 adults at the Lopez party. The ratio of adults to children at the Russo party was 5 to 4. What was the ratio of adults to children at the Patel party
Answer:
[tex]\frac{4}{5}[/tex]
Step-by-step explanation:
The Patel, Lopez, and Russo families all had parties recently. There were 152 adults at the Lopez party. The ratio of adults to children at the Russo party was 5 to 4. What was the ratio of adults to children at the Patel party?
(1) The Russo party had 31 more adults than children, and 47 more adults than did the Patel party.
(2) The Patel party had 40 more children, though 4 fewer people in total, than did the Lopez party, where the ratio of adults to children was 8 to 5.
Answer: Let the number of children in Russo party be x, The Russo party had 31 more adults than children, therefore the number of adults at the Russo party = x + 31. The ratio of adults to children at the Russo party was 5 to 4, we can find the number of children using:
[tex]\frac{5}{4}=\frac{x+31}{x}\\ 5x=4x+124\\x=124[/tex]
The number of children at the Russo party is 124 and the number of adult is 155 (124 + 31).
They are 47 more adults at the Russo party than the Patel party, the number of adult at the Patel party = 155 - 47 = 108
the ratio of adults to children was 8 to 5 at the Lopez party, There were 152 adults at the party. Let x be the number of children at the Lopez party therefore:
[tex]\frac{8}{5}=\frac{152}{x}\\ 8x=760\\x=95[/tex]
The Patel party had 40 more children than the Lopez, the number of children at the Patel party = 135 (95 + 40).
The ratio of adults to children at the Patel party is [tex]\frac{108}{135} =\frac{4}{5}[/tex]
simultaneous equations 2x + y = 21 x - y = 6
Step-by-step explanation:
this is substitution method
Answer:
2x + y = 21
+
x - y = 6
_________
3x = 27
x = 27 ÷ 3
x= 9
x - y = 6
9 - y = 6
9 - 6 = y
3 = y
Therefore, x= 9 and y = 3
Can someone tell me the answer?
Answer:
the first one has one solution because eventually they will cross
Solve for x. 3 1 2 140
Answer:
Hey there!
Angle QRS is 70, and since it is located on the circle, we have a useful formula. If 141x-1 is called y, then 70 is half of that.
Thus, we have 141x-1=140
141x=141
x=1
Hope this helps :)
simplify 12e^5 divided 3e^3
The division of 12e⁵ by 3e³ will be 4e².
What is the arithmetic operation?In mathematics, the arithmetic operation has four main operators such as addition, subtraction, multiplication, and division.
The symbol of + represents the addition
The symbol of ÷ represents the division
The symbol of - represents subtraction
The symbol of × represents multiplication
Given the division,
12e⁵ by 3e³
⇒ 12e⁵ / 3e³
⇒ 12/3 × e⁵/e³
⇒ 4e²
Hence "The division of 12e⁵ by 3e³ will be 4e²".
To learn more about the arithmetic operators,
brainly.com/question/25834626
#SPJ1
Please answer this in two minutes
Answer: 9.9
Step-by-step explanation:
SINE RULE:
7/sin(31) = q / sin(47)
Therefore q = 7 / sin(31) * sin(47)
which equals: 9.9 to the nearest tenth.
Answer:
q = 9.9
Step-by-step explanation:
We can use the rule of sines
sin R sin Q
------------- = ------------
PQ PR
sin 31 sin 47
------------- = ------------
7 q
Using cross products
q sin 31 = 7 sin 47
Divide by sin 31
q = 7 sin 47 / sin 31
q =9.939995043
To the nearest tenth
q = 9.9
can someone please answer this question as a simplified fraction.
Answer:
33/2
Step-by-step explanation:
6 * 11/4 = 66/4 = 33/2
Solve 5c − c + 10 = 34.
Answer: 6
Step-by-step explanation: 1. 5c-c= 4c. The equation would then be 4c+10=34.
2. From there, you subtract 10 from both sides of the equation. By doing this, you have the variable and the nonvariable on separate sides of the equation.
3. After doing that, you should have 4c=24. To get the variable by itself, divide both sides by 4. 4c/4 is c and 24/4 is 6.
The final answer is 6. Hope this helped you:)
Write as an algebraic expression and simplify if possible:
100% of x
What is the answer?
Answer: simplified algebraic expression : x
Step-by-step explanation:
The given phrase : 100 % of x
We can write 100 as 1 because 100% means complete or entire part.
Also, replace 'of' by '×' (Multiply sign).
So, the given phrase will become
1 × x [Algebraic expression]
= x [Simplified]
hence, the simplified algebraic expression is 'x'.
hey can someone help me!! in need of help!! ASAPPPP
Answer:
D
Step-by-step explanation:
To be a function each value of x must correspond to only one, unique value of y.
In the given ordered pairs
Each x- value corresponds to exactly one y- value
Which of the following shows the division problem below in synthetic division form?
Answer: D
Step-by-step explanation:
In synthetic division, if the divisor is an expression like x+3, you should always switch it to if x+3 were equal to 0.
[tex]x+3=0\\x=-3[/tex]
So, you should use -3. The only options with -3 are B and D.
The coefficients for the dividend are 7, -2, and 4, so D is the correct answer.
Hope this helps! If you still have questions, please ask.
What is the surface area of the regular pyramid? What is the surface area of a square pyramid with a height of 10.4 m and a base side length of 12.4 m? a. 141.4 cm c. 167.4 m b. 162.4 cm d. 188.4 cm
Answer:
A. 141.4 cm
Step-by-step explanation:
The piramide is 141.4cm
A diabetes drug cost $78 online. This cost is 75% of the cost of the
prescription in the store. How much is the prescription in the store?
plss help
Answer:
$104
Step-by-step explanation:
If the cost in the store is x we can write:
75%x = 78
0.75x = 78
x = 78 / 0.75 = 104
Answer:
$104 in the store
Step-by-step explanation:
To find the original cost before the discount, you divide the discounted price by the percentage, getting 104.
Tricky question heelp mee!
146
Step-by-step explanation:
Given:
[tex]x - \dfrac{1}{x} = 12[/tex]
To Find:
[tex] \sf \: The \: value \: of \: {x}^{2} + \dfrac{1}{ {x}^{2} } [/tex]
How to find:
Just square both side, Solve as a equation and get the answer. Simple, Isn't it?
Solution:
See in attachment.
Answer:
146
Step-by-step explanation:
The answer of this question id 146 .
you can do this type of numericals by above process.
In the case of Confidence Intervals and Two-Tailed Hypothesis Tests, the decision rule states that: Reject H0 if the confidence interval ______ contain the value of the hypothesized mean mu0.
Answer: Reject [tex]H_0[/tex] if the confidence interval does not contain the value of the hypothesized mean [tex]\mu_0[/tex].
Step-by-step explanation:
In the case of Confidence Intervals and Two-Tailed Hypothesis Tests,
Null hypothesis : [tex]H_0:\mu=\mu_0[/tex] [There is no change in mean.]
Alternative hypothesis: [tex]H_a:\mu\neq\mu_0[/tex] [There is some difference.]
Since confidence intervals contain the true population parameter ( mean).
So, Decision rule states that
Reject [tex]H_0[/tex] if the confidence interval does not contain the value of the hypothesized mean [tex]\mu_0[/tex].We do not reject [tex]H_0[/tex] if the confidence interval contains the value of the hypothesized mean [tex]\mu_0[/tex].find the distance of the line segment joining the two points (-4 /2 - /12) and (/32, 2/3)
Answer: [tex]4\sqrt{3}[/tex] .
Step-by-step explanation:
Distance formula : Distance between points (a,b) and (c,d) is given by :-
[tex]D=\sqrt{(d-b)^2+(b-a)^2}[/tex]
Distance between points [tex](-4\sqrt{2},\sqrt{12}) \text{ and }(-\sqrt{32}, 2\sqrt{3})[/tex].
[tex]D=\sqrt{(2\sqrt{3}-(-\sqrt{12}))^2+(-\sqrt{32}-(-4\sqrt{2}))}\\\\=\sqrt{(2\sqrt{3}+\sqrt{2\times2\times3})^2+(-\sqrt{4\times4\times2}+4\sqrt{2})^2}\\\\=\sqrt{(2\sqrt{3}-\sqrt{2^2\times3})^2+(-\sqrt{4^2\times2}+4\sqrt{2})^2}\\\\=\sqrt{(2\sqrt{3}+2\sqrt{3})^2+(-4\sqrt{2}+4\sqrt{2})^2}\\\\=\sqrt{(4\sqrt{3})^2+0}\\\\=4\sqrt{3}\text{ units}[/tex]
Hence, the correct option is [tex]4\sqrt{3}[/tex] .
Construct the cumulative frequency distribution for the given data.
Age (years) of Best Actress when award was won Frequency
20-29 27
30-39 37
40-49 11
50-59 3
60-69 5
70-79 1
80-89 2
Age (years) of Best Actress when award was won Cumulative Frequency
Less than 30
Less than 40
Less than 50
Less than 60
Less than 70
Less than 80
Less than 90
Answer:
Age Frequency Cumulative Frequency
Less than 30 27 27
Less than 40 37 27 + 37 = 64
Less than 50 1 1 64 + 11 = 75
Less than 60 3 75 + 2 = 77
Less than 70 5 77 + 5 = 82
Less than 80 1 82 + 1 = 83
Less than 90 2 83 +2 = 85
Step-by-step explanation:
Given:
The Frequency Distribution table of ages of best actresses when award was won
To find:
Construct the cumulative frequency distribution
Solution:
In order to construct cumulative frequency distribution for the given data, each frequency from above table is added to the sum of the previous frequencies. For example, frequency for Less than 40 is 37 and the previous frequency (less than 30) is 27 so in order to calculate cumulative frequency 27 i.e. previous frequency is added to 37 (frequency of less than 30). The complete table is given above.
Solve for y 110 75 100 55
Answer:
y = 100
Step-by-step explanation:
x = 25
x+y + 55 = 180 since it is a straight line
25+y+ 55 = 180
Combine like terms
80+y = 180
Subtract 80 from each side
y = 180-80
y = 100
What the answer please answer this question now
Answer:
[tex]m\angle Z\approx22.0\textdegree[/tex]
Step-by-step explanation:
First, note that we have a right triangle. Second, we need to find angle Z, and we are given the sides opposite to angle Z and the hypotenuse. Therefore, we can use sine.
Recall that:
[tex]\sin(\theta)=opp/hyp[/tex]
The opposite side is 3 while the hypotenuse is 8. Plug in the numbers and simplify. Use a calculator:
[tex]\sin(\angle Z)=3/8\\\angle Z=\arcsin(3/8)\\\angle Z\approx 22.0243\textdegree[/tex]
The value of the z-scores in a hypothesis test is influenced by a variety of factors. Assuming that all other variables are held constant, explain how the value of z is influenced by each of the following: (Hint: When coming up with your answer, consider how changing the corresponding value in the z formula would change things if its value was increased by 10, 100, 1000, etc. while all other values constant.)
Increasing the difference between the sample mean and the original population mean will result in a(n) (increase/decrease) ______ in the absolute value of z, and a(n) (increase/decrease) ______ in the probability of obtaining a sample with that mean.
Increasing the population standard deviation will result in a(n) (increase/decrease) _____in the absolute value of z, and a(n) (increase/decrease) ______in the probability of obtaining a sample with that mean.
Increasing the number of scores in the sample will result in a(n) (increase/decrease) _____ in the absolute value of z, and a(n) (increase/decrease)______in the probability of obtaining a sample with that mean.
Answer:
Explained below.
Step-by-step explanation:
The z-test statistic is given as follows:
[tex]Z=\frac{\bar X-\mu}{\sigma/\sqrt{n}}[/tex]
Here,
[tex]\bar X=\text{Sample Mean}\\\\\mu=\text{Population Mean}\\\\\sigma=\text{Population standard deviation}\\\\n=\text{Sample size}[/tex]
The p-value is well-defined as per the probability, [under the null-hypothesis (H₀)], of attaining a result equivalent to or greater than what was the truly observed value of the test statistic.
(i)
The difference between the sample mean and the original population mean are directly proportional to the z-test statistic.
So, increasing the difference between [tex]\bar X[/tex] and [tex]\mu[/tex] will lead to an increase in the z-score.
And as the Z-score increases the p-value of the test decreases.
Thus, the complete statement is:
"Increasing the difference between the sample mean and the original population mean will result in an increase in the absolute value of z, and a decrease in the probability of obtaining a sample with that mean."
(ii)
The population standard deviation is inversely proportional to the z-test statistic.
So, increasing the population standard deviation will lead to a decrease in the z-score.
And as the Z-score decreases the p-value of the test increases.
Thus, the complete statement is:
"Increasing the population standard deviation will result in a decrease in the absolute value of z, and an increase in the probability of obtaining a sample with that mean"
(iii)
The number of scores in the sample is directly proportional to the z-test statistic.
So, increasing the number of scores in the sample will lead to an increase in the z-score.
And as the Z-score increases the p-value of the test decreases.
Thus, the complete statement is:
"Increasing the number of scores in the sample will result in an increase in the absolute value of z, and an decrease in the probability of obtaining a sample with that mean."
answer correctly first for your brainliest!! :D solve for x: y=3x+22-2x !
Answer:
[tex]x=y-22[/tex]
Step 1:
In order to solve this equation, we must subtract the y on both sides so the y could be cancelled out on the left and could move to the right side of the equation.
[tex]y=3x+22-2x\\=-y+3x+22-2x[/tex]
Step 2:
Then, we add 2x on the right side of the equation to cancel out the -2x and bring it to the left of the equation, where the y was before.
[tex]=-y+3x+22-2x\\2x=-y+3x+22[/tex]
Step 3:
Then, we do the same thing with 3x: subtract it from the right side and add it to the 2x, which becomes -x.
[tex]2x=-y+3x+22\\2x-3x=-y+22\\-x=-y+22[/tex]
Step 4:
Finally, we divide all the numbers by -1 to get our final answer! Reminder: we are doing all this because we have to isolate the x, since we are solving for x.
[tex]-x=-y+22\\\frac{-x}{-1} =\frac{-y}{-1}+\frac{22}{-1} \\x=y-22[/tex]
Our answer is x = y - 22. Hope this helps!
Answer:
answer: x=y-22
Step-by-step explanation:
first subtract y from both sides. then, add -2x on both sides and subtract 3x from the right so the 2x will be -x. divide everything by a - and the answers x=y-22
I have a lot of questions like this, and I know the formula but I still get it wrong!
Answer: 4
Step-by-step explanation: use pick’s theorem to solve.
I+B/2-1.
We can substitute the variables with our information from the graph:
0+10/2-1=5-1=4 that’s the answe
Hope this helps
A solid square pyramid has a mass of 750 g. It is made of a material with a
density of 8.05 g/cm'. Given that the height of the pyramid is 13.5 cm, find the
length of its square base.
Answer:
4.55cmStep-by-step explanation:
The unit of a volume: [tex]cm^3[/tex]
The unit of a density: [tex]\dfrac{g}{cm^3}[/tex]
The density is [tex]\dfrac{mass}{volume}[/tex]
Substitute:
[tex]\dfrac{8.05g}{cm^3}=\dfrac{750g}{V}[/tex]
cross multiply
[tex]8.05gV=750gcm^3[/tex]
divide both sides by 8.05g
[tex]V\approx93.17cm^3[/tex]
The formula of a volume of a square pyramid:
[tex]V=\dfrac{1}{3}a^2H[/tex]
a - length of square base
H - height of a pyramid
We have:
[tex]V=93.17cm^3;\ H=13.5cm[/tex]
Substitute:
[tex]93.17=\dfrac{1}{3}a^2(13.5)[/tex]
multiply both sides by 3
[tex]279.51=13.5H[/tex]
[tex]297.51=13.5a^2[/tex]
divide both sides by 13.5
[tex]a^2\approx20.7\to a=\sqrt{20.7}\approx4.55(cm)[/tex]
Answer:
Step-by-step explanation:
volume of pyramid=1/3×base area×height
let the length of base=x
base area=x²
volume V=1/3×x²×13.5=4.5 x²
mass=volume×density
750=4.5 x²×8.05=36.225 x²
x²=750/36.225
x=√(750/36.225)≈4.55 cm
Find the Equation of the Parallel Line
of
Instructions: Find the equation of the line through point (-1, 4) and parallel to
5x +y = 4. Use a forward slash (i.e. "/") for fractions (e.g. 1/2 for ).
y =
Answer:
y = -5x - 1
Step-by-step explanation:
Let the equation of a line parallel to the given line is,
y - y' = m(x - x')
Where m = slope of the line
And line passes through (x', y')
Equation of a line has been given as,
5x + y = 4
y = -5x + 4
Slope of this line = -5
By the property of parallel lines "slope of the parallel lines are same",
m = -5
Parallel line passing through (-1, 4) and slope 'm' = -5 will be,
y - 4 = -5(x + 1)
y - 4 = -5x - 5
y = -5x - 5 + 4
y = -5x - 1
Therefore, equation of the parallel line will be,
y = -5x - 1
Lines AB and CD are parallel. If ∠3 measures (3x + 20)°, and ∠4 measures 70°, which equation could be used to solve for x
Answer:
(3x + 20)° + 70° = 180°
Step-by-step explanation:
Identify which of these designs is most appropriate for the given experiment: completely randomized design, randomized blockdesign, or matched pairs design.
A drug is designed to treat insomnia. In a clinical trial of the drug, amounts of sleep each night are measured before and after subjects have been treated with the drug.
The most appropriate is (randomized block, matched pairs, completly randomized) design.
Answer:
Matched pairs design
Step-by-step explanation:
Looking at the options;
-It's not a completely randomized design because a randomized design will assign all individuals to a group which in this case it doesn't.
- It's not a randomized block design because randomized block design will group the subjects in question into 2 or more blocks which have a common characteristic and will then randomly assign subjects in each of the blocks.
-It's a matched pair because every individual/subject undergoes measurements both before and after being treated with the drugs.
Thus, the correct option is matched pairs design.
20
The average annual energy cost for a certain home is
$4,334. The homeowner plans to spend $25,000 to
install a geothermal heating system. The homeowner
estimates that the average annual energy cost will
then be $2,712. Which of the following inequalities
can be solved to find t, the number of years after
installation at which the total amount of energy cost
savings will exceed the installation cost?
A) 25,000 > (4,334 - 2,712)
B) 25,000 < (4,334 - 2,712)
C) 25,000 - 4,334 > 2,712t
D) 25,000 >
4,332
2,712t
Answer:
This is my first question but I think it's c
Step-by-step explanation:
25,000-4334=20,666
20,666/2712=7.62 which rounds to 8
In the given graph of a cubic polynomial, what are the number of real zeros and complex zeros, respectively?
Answer: 1 real and 2 complex.
Step-by-step explanation:
A cubic polynomial is written as:
a*x^3 + b*x^2 + c*x + d
And the zeros are such that:
a*x^3 + b*x^2 + c*x + d = 0
As the degree of the polynomial is 3, then we have 3 solutions (where some of them may be equal)
Now, an easy way to see the real and complex zeros of a polynomial is:
If after a change in curvature, the line touches the x-axis : that is a real zero
if it does not, then there we have a complex zero.
Here we can see two lines that do not touch the x-axis and one line that does touch the x-axis.
Then we have 2 complex zeros and one real zero.