Step-by-step explanation:
sorry I can only explain as there are no labels to each diagram
The first diagram is single and can solved using triangular formular given as 1/2 ×base × height
A = 1/2 × 5 × 12
A = 30cm^2..
as for the second one...it consist of 2 diagrams which will be solved separately before adding ...it can simply be done using Pythagoras theorem..
To get the smaller part ...out tita is 45degrees while our adjacent is 4 and opposite is x we are to find x which is the height...
using SOH CAH TOA...
WE HAVE TAN45= opp/adj
Tan45= x/ 4
Tan 45 =1 ...so
1 = x/ 4
and x= 4 ...
so...having our height as 4 and base as 4 ..
Area of smaller triangle become 1/2 × 4 × 4
A = 8cm^2 ...
......SOLVING FOR THE SECOND DIAGRAM ..
WE HAVE the height as ( dotted spot + undotted spot ) = 4 + 4 = 8cm
and our base can be gotten from
Tan45 = opp / adj
1 = 8/x ..
x = 8cm ....so the base is 8 and the height is 8
..
The Area becomes 1/2 × 8×8 = 32cm ...
Total area becomes 32cm + 8cm = 40cm^2
If the m1 = 40, what is the m 3
Answer:
Your Answer is 120Step-by-step explanation:
m1=40
Taking m3
m3=40 ×3
m3= 120
Hope It helps UPlease help im stuck
Please answer question now
Answer:
469.42 ft²
Step-by-step explanation:
Law of sines;w/sin27 = 38/sin40
w = sin27*38/sin40
w = 26.84 ft
Angle x;∡X = 180 - 27- 40 = 113º
Area;A = 0.5*(26.84)*(38)*sin(113)
A = 469.42 ft²
if a/b and c/d are rational expressions, then a/b divided by c/d=a•d/b•c
The expression a/b ÷ c/d = ad/bc is A. true.
To show that if a/b and c/d are rational expressions, then a/b ÷ c/d = ad/bc
Rational ExpressionsRational expressions are expressions of the form a/b where a and b are integers and b ≠ 0
If the rational expression a/b is to be divided by c/d, we take the reciprocal of the expression on the right side of the division sign.
So, L.H.S = a/b ÷ c/d
= a/b × 1/(c/d)
= a/b × d/c
= ad/bc
= R.H.S
Since L.H.S = R.H.S.
a/b ÷ c/d = ad/bc
So, the expression a/b ÷ c/d = ad/bc is A. true.
Learn more about rational expressions here:
https://brainly.com/question/12099997
which explicit formula can be used to find the number of rabbits in the nth generation ?
Answer:
Option B. an = 3• 6ⁿ¯¹
Step-by-step explanation:
The following data were obtained from the question:
First generation = 3
2nd generation = 1st generation x 6
2nd generation = 3 x 6 = 18
3rd generation = 2nd generation x 6
3rd generation = 18 x 6 = 108
Therefore, we can thus form a sequence as:
3, 18, 108
Since the 2nd term is obtained by multiplying the previous term (i.e the 1st term) by 6 and also, the 3rd is obtained by multiplying the 2nd by 6, the sequence is a geometric progression.
Thus,
The common ratio (r) = 6
The first term (a) = 3
The nth term (an) =?
The nth term of geometric progression is given as
an = arⁿ¯¹
Inputing the value of the first term (a) and common ratio (r) into the above equation, we obtained:
an = arⁿ¯¹
an = 3• 6ⁿ¯¹
Therefore, the explicit formula which can be used to find the number of rabbits in the nth generation is
an = 3• 6ⁿ¯¹
HELP ASAP! Will name brainliest!
Answer:
The answer to your question is given in the attached photo.
Step-by-step explanation:
To determine the answer to the question,
First, we shall determine the value 3A.
This is obtained by multiplying matrix A by 3 as shown in the attached photo.
Next, we shall carry out the operation 3A – B as shown in the attached photo.
find the average speed of car if it travels 18km in 20 minutes.
Answer:
[tex]\boxed{\sf Average \ Speed = 54\ km/hr}[/tex]
Step-by-step explanation:
Given:
Distance = S = 18 km
Time = t = 20 min = 20/60 = 0.33 hours
Required:
Average Speed = <v> = ?
Formula:
Average Speed = Total Distance Covered / Total Time Taken
Solution:
A . S = 18 / 0.33
A.S = 54 km/hr
Answer:
0.9km/minute
or
54km/hour
Step-by-step explanation:
Average speed in km/minutes18km in 20 minutes = 18km/20min
18km/20min = 0.9km/min
Average speed in km/hour1 hour = 60 minutes
20 minutes = 20/60 = 0.3333 hours
18km/20mins = 18km/0.3333hours = 54km/hour
what are the lengths for x and y
Answer:
They are both equal to 7.07
Step-by-step explanation:
Using SohCahToa to find x you use the opposite and the hypotenuse if you use the 45 degree angle.
Now you use sin(45)=x/10
x=7.07
Now using SohCahToa to find y you use hypotenuse and adjacent, if using the 45 degree angle.
Now you use cos(45)=y/10
y=7.07
Answer: side y=7.1
side x= 7.1
Step-by-step explanation:
[tex]sin(45)=\frac{x}{10}[/tex]
[tex]x=7.07...[/tex]
[tex]cos(45)=\frac{y}{10}[/tex]
[tex]y=7.07...[/tex]
IMAGE BELOW The equations x minus 2 y = 4, 4 x + 5 y = 8, 6 x minus 5 y = 15, and x + 2 y = 0 are shown on the graph below.
Which system of equations has a solution of approximately (1.8, –0.9)?
6 x minus 5 y = 15 and x + 2 y = 0
4 x + 5 y = 8 and 6 x minus 5 y = 15
x minus 2 y = 4 and 4 x + 5 y = 8
6 x minus 5 y = 15 and x minus 2 y = 4
Answer:
6x - 5y = 15 and x + 2y = 0
Step-by-step explanation:
Here we are given the following equations:
i) x-2y= 4
ii) 4x+5y= 8
iii) 6x-5y=15
iv) x+2y=0
Required:
Which system of equations has a solution of approximately (1.8, –0.9).
To find the approximate equations, substitute x and y for 1.8 and -0.9 into all the equations respectively and check the resulting values
i) Substitute (1.8, -0.9) in x-2y= 4:
1.8 - 2(-0.9) = 4.
1.8 + 1.8 = 4.
3.6 ≠ 4.
ii) Substitute (1.8, -0.9) in 4x+5y= 8
4(1.8) + 5(-0.9) = 8
7.2 - 4.5 = 8.
2.7 ≠ 8.
iii) Substitute (1.8, -0.9) in 6x-5y=15
6(1.8) - 5(-0.9) = 15.
10.8 + 4.5 = 15
15.3 ≠ 15.
This equation has a solution that is close, therefore it is correct.
iv) Substitute (1.8, -0.9) in x+2y=0
1.8 + 2(-0.9) = 0.
1.8 - 1.8 = 0.
0 = 0.
x + 2 y = 0 has the exact value, therefore it is also correct.
The system of equations that has a solution of approximately (1.8, –0.9) are:
x+2y=0 and 6x-5y=15
Answer:
the correct answer is A
Step-by-step explanation:
A candy store sells mints, taffy, and caramel. If 5/8 of the candy in stock is
mints and 3/16 of the candy in stock is taffy, what part of the candy in stock is
caramel?
Answer:6/16 or 3/8
Step-by-step explanation:
I did it
Answer: 3/16
Step-by-step explanation:
How many triangles does a=6 b=10 A=33° create?
Answer:
2 triangles are possible.
Step-by-step explanation:
Given
a=6
b=10
[tex]\angle[/tex]A=33°
To find:
Number of triangles possible ?
Solution:
First of all, let us use the sine rule:
As per Sine Rule:
[tex]\dfrac{a}{sinA}=\dfrac{b}{sinB}[/tex]
And let us find the angle B.
[tex]\dfrac{6}{sin33}=\dfrac{10}{sinB}\\sinB = \dfrac{10}{6}\times sin33\\B =sin^{-1}(1.67 \times 0.545)\\B =sin^{-1}(0.9095) =65.44^\circ[/tex]
This value is in the 1st quadrant i.e. acute angle.
One more value for B is possible in the 2nd quadrant i.e. obtuse angle which is: 180 - 65.44 = [tex]114.56^\circ[/tex]
For the value of [tex]\angle B = 65.44^\circ[/tex], let us find [tex]\angle C[/tex]:
[tex]\angle A+\angle B+\angle C = 180^\circ\\\Rightarrow 33+65.44+\angle C = 180\\\Rightarrow \angle C = 180-98.44 = 81.56^\circ[/tex]
Let us find side c using sine rule again:
[tex]\dfrac{6}{sin33}=\dfrac{c}{sin81.56^\circ}\\\Rightarrow c = 11.02 \times sin81.56^\circ = 10.89[/tex]
So, one possible triangle is:
a = 6, b = 10, c = 10.89
[tex]\angle[/tex]A=33°, [tex]\angle[/tex]A=65.44°, [tex]\angle[/tex]C=81.56°
For the value of [tex]\angle B =[/tex][tex]114.56^\circ[/tex], let us find [tex]\angle C[/tex]:
[tex]\angle A+\angle B+\angle C = 180^\circ\\\Rightarrow 33+114.56+\angle C = 180\\\Rightarrow \angle C = 180-147.56 = 32.44^\circ[/tex]
Let us find side c using sine rule again:
[tex]\dfrac{6}{sin33}=\dfrac{c}{sin32.44^\circ}\\\Rightarrow c = 11.02 \times sin32.44^\circ = 5.91[/tex]
So, second possible triangle is:
a = 6, b = 10, c = 5.91
[tex]\angle[/tex]A=33°, [tex]\angle[/tex]A=114.56°, [tex]\angle[/tex]C=32.44°
So, answer is : 2 triangles are possible.
In the equation y= 22 - 3.c + 8the y-intercept is - 3
True
O False
Answer:
False
Step-by-step explanation:
[tex]y = x^2-3x+8[/tex]
Y-intercept is when x = 0
So, Putting x = 0 in the above equation
[tex]y = (0)^2-3(0)+8\\y = 0-0+8\\y = 8[/tex]
So, y-intercept = 8
y-intercept = -3 is a false statement.
Answer:
[tex]\boxed{false}[/tex]
Step-by-step explanation:
The y-intercept is when the value of x is 0.
Let x = 0
y = 0² - 3(0) + 8
y = 0 - 0 + 8
y = 8
The y-intercept is 8.
In one month, the median home price in the Northeast rose from $225,400 to $241,500. Find the percent increase. Round your answer to the nearest tenth of a percent.
Answer:
7.1%
The percentage increase is 7.1%
Step-by-step explanation:
Percentage increase %∆P is the percentage change in the price.
Percentage increase %∆P = ∆P/Pr × 100%
Where;
∆P = change in sales price = $241,500-$225,400
Pr = regular price = $225,400
Substituting the given values;
%∆P = (241,500-225,400)/225,400 × 100%
%∆P = 7.142857142857% = 7.1%
The percentage increase is 7.1%
Is it possible to draw a triangle whose sides are as follows? 6 cm, 7 cm, 17 cm. Give reasons to support your answer.
Answer:
No
Step-by-step explanation:
The sum of two random sides of a triangle must be bigger than the third side and their differences must be smaller than the third side
For example
3 - 4 - 5 can be made into a triangle because 3 + 4 > 5 and 4 - 3 < 5
A woman bought a cup
of beans for 12 and sold it
for ₦15. What was her
percentage profit
Answer:
25 %Step-by-step explanation:
Given,
Cost price ( CP ) = 12
Selling price ( SP ) = 15
Since, CP < SP , she made a profit
Actual profit = SP - CP
plug the values
[tex] = 15 - 12[/tex]
Subtract the numbers
[tex] = 3[/tex]
Profit = 3
Now,
Profit percent = [tex] \frac{actual \: profit}{cost \: price} \times 100[/tex] %
Plug the values
[tex] = \frac{3}{12} \times 100[/tex] %
Calculate
[tex] = 25[/tex] %
Hope this helps...
Best regards!!
Answer:
25%
Step-by-step explanation:
Cost Price: ₦12
Selling Price: ₦15
Profit: ₦15 - ₦12 = ₦3
Profit Percentage = [tex]\frac{profit}{cost price}[/tex] × [tex]\frac{100}{1}[/tex]
Profit Percentage = [tex]\frac{3}{12}[/tex] × [tex]\frac{100}{1}[/tex]
Profit Percentage = [tex]\frac{1}{4}[/tex] × [tex]\frac{100}{1}[/tex] = 25%
Final Answer = 25%
Which equation is true for the value x = 15? A. 2(x + 3) = 40 B. 2(x − 5) = 30 C. 2(x + 5) = 40 D. x + 2x = 30 E. 3x − x = 45
I think it is C. Pls comment right or wrong!
The equation 2(x + 5) = 40 is true for the value x = 15 which is the correct answer would be option (C)
What is the equation?The equation is defined as mathematical statements that have a minimum of two terms containing variables or numbers that are equal.
To determine the required equation which is true for the value x = 15
We have to simplify the given equations and solve for x.
A. 2(x + 3) = 40
⇒ 2x + 6 = 40
⇒ 2x = 40 - 6
⇒ 2x = 34
⇒ x = 34/2
⇒ x = 17
B. 2(x − 5) = 30
⇒ 2x - 10 = 30
⇒ 2x = 30 + 10
⇒ 2x = 40
⇒ x = 20
C. 2(x + 5) = 40
⇒ 2x + 10 = 40
⇒ 2x = 40 - 10
⇒ 2x = 30
⇒ x = 15
Hence, the equation 2(x + 5) = 40 is true for the value x = 15 which is the correct answer would be option (C)
Learn more about the equations here:
brainly.com/question/13947055
#SPJ6
please help!!! Its not a super hard question i just want to make sure im right
Answer:
D
Step-by-step explanation:
If you put the equation into a graphing calculator it will give ou a function than is a straight line that is stretched vertically by 3 units
Graph the parabola. y=x^2 -4 where do i put the points
To generate a point, you plug in a number for x to get the corresponding y value.
If x = 0 for instance, then the y value is...
y = x^2 - 4
y = 0^2 - 4 ... x is replaced with 0
y = 0 - 4
y = -4
So x = 0 and y = -4 pair up to get the point (0,-4). This is the y intercept as the parabola crosses the y axis here. It turns out that this is also the vertex point as it is the lowest point on the parabola.
----------------
If x = 1, then,
y = x^2 - 4
y = 1^2 - 4
y = 1 - 4
y = -3
meaning (x,y) = (1,-3) is another point on this line.
----------------
Repeat for x = 2
y = x^2 - 4
y = 2^2 - 4
y = 4-4
y = 0
Since we got a y output of 0, we have found an x intercept located at (2,0). The other x intercept is (-2,0).
-------------------
The idea is to generate as many points as possible. Plot all of the points on the same xy coordinate grid. Then draw a curve through those points the best you can. You should get what you see in the diagram below. I used GeoGebra to make the graph. Desmos is another handy tool I recommend.
Note: the more points you generate, the more accurate the graph will be
One number is 7 less than 3 times the second number. Their sum is 29. Find the numbers.
Answer:
The numbers are 20 and 9Step-by-step explanation:
Let the first number be x
Let the second number be y
For the first equation
One number is 7 less than 3 times the second number is written as
x = 3y - 7
For the second equation
The sum of the two numbers is 29
So we have
x + y = 29
Substitute the first equation into the second one
That's
3y - 7 + y = 29
4y = 29 + 7
4y = 36
Divide both sides by 4
y = 9Substitute y = 9 into x = 3y - 7
That's
x = 3(9) - 7
x = 27 - 7
x = 20The numbers are 20 and 9
Hope this helps you
help me pleaseeeeeee,Which of the following choices matches the system? y ≥ 2x + 1 and y ≥ -x + 3 y ≤ 2x + 1 and y ≤ -x + 3 y ≤ 2x + 1 and y ≥ -x + 3 None of these choices are correct.
Answer:
y<=-x+3 and y<=2x+1
Step-by-step explanation:
y=-x+3 is the orange line. The shaded region is below so its y<-x+3
y=2x+1 is the blue line. The shaded region is below so y<2x+1
Factor .
X2-x-56=0
PLEASE HELP!!!
Answer:
use factoring x (see attachment)
-8 x 7 = -56
-8 + 7 = -1
(x - 8)(x + 7) = 0
x = 8, -7
hope this helps :)
In a survey of 2957 adults, 1455 say hey have started paying bills online in the least year construct a 99% confidence interval for the population proportion
Answer: 0.49 ± 0.0237
Step-by-step explanation: A interval of a 99% confidence interval for the population proportion can be found by:
[tex]p_{hat}[/tex] ± z.[tex]\sqrt{\frac{p_{hat}(1-p_{hat})}{n} }[/tex]
[tex]p_{hat}[/tex] is the proportion:
[tex]p_{hat}[/tex] = [tex]\frac{1455}{2957}[/tex]
[tex]p_{hat}[/tex] = 0.49
For a 99% confidence interval, z = 2.576:
0.49 ± 2.576.[tex]\sqrt{\frac{0.49(1-0.49)}{2957} }[/tex]
0.49 ± 2.576.[tex]\sqrt{\frac{0.49*0.51}{2957} }[/tex]
0.49 ± 2.576.(0.0092)
0.49 ± 0.0237
For a 99% confidence interval, the proportion will be between 0.4663 and 0.5137 or 0.49 ± 0.0237
Probability people where you at? 《brainlist if correct》
90% of households in a certain region have answering machines. 50% of the
households have both an answering machine and call-waiting. A household chosen at random was found to have the answering machine.
What is the probability that it also has call-waiting?
As an approximate decimal, this is 0.5556 which converts to 55.56%
======================================================
Explanation:
Let's say there are 100 households (just for the sake of simplicity). We are told that 90% of them have answering machines. So that means 90 households have answering machines. In addition, 50 households have answering machines and call waiting. Those 50 households are part of the 90 mentioned previously.
We then select a house at random. Someone tells us (or we have some kind of prior knowledge) that whichever house is selected, they have an answering machine. We can ignore the 10 households that don't have an answering machine. Out of those 90 households, 50 have both features. So 50/90 = 5/9 is the probability of getting a household with both features.
The answer would be 1/2 or 50% if we didn't have the prior knowledge of the household having an answering machine. But with this prior knowledge, the conditions change and so does the probability.
----------------
You could also compute 0.50/0.90 to get the same answer.
If b = 1/2x −1/y, then what is an expression for 2/b in terms of x and y?
Answer:
2/xy
Step-by-step explanation:
you have to do the math but im not very sure on this
8–2|4–5y|=4 help me as quick as u can plzzz
Answer: [tex]y=\frac{2}{5}, \frac{6}{5}[/tex]
Step-by-step explanation:
When answering a problem like this, you first isolate the absolute value. TO do this, first subtract 8 from both sides, to get –2|4–5y|=-4. Then divide both sides of the equation to get |4–5y|=2. The next thing you do is split the equation into 4-5y=2 and 4-5y=-2, because the contents of the absolute value could be negative or positive, and simplifying both into y = 2/5, and y = 6/5y.
Hope it helps <3
11.1/0.01= what is the answer
Answer:
1,110
Step-by-step explanation:
calculator
Ama has a rectangular garden measuring 12m and 25m.He wants to divide it into square plots of equal sizes .What is the largest sized square he can use?
The points B(2, 6) and D(0, -2) are two opposite vertices of a square ABCD, find the equation
of the diagonal AC.
Answer:
y = -x/4 + 9/2
Step-by-step explanation:
The diagonal AC is the perpendicular bisector of BD.
The centre of the square, P, through which both diagonal pass through is at the average of the coordinates of B(2,6) and D(0,-2)
P ((2+0)/2, (6-2)/2) = P(1,2)
The slope of BD,
m = (yd-yb)/(xd-xb) = (-2-6)/(0-2) = -8/-2 =4
Slope of AC
m' = -1 / m = -1/4
Using the point slope form of the line AC, slope m' through P(1,2)
y-yp = m'(x-xp)
y-2 = -(1/4)(x-1)
Simplify and isolate y
y = -x/4 + 1/4 +2 = -x/4 + 9/2
Sekkrit!!! Find the inverse of f(x) = 3x-5
Answer:
1/3(x+5)
Step-by-step explanation:
f(x) = 3x-5
y = 3x-5
Exchange x and y
x = 3y-5
Solve for y
Add 5 to each side
x+5 = 3y
Divide each side by 3
1/3 ( x+5) = 3y/3
1/3 ( x+5) = y
The inverse is 1/3(x+5)
Answer:
[tex]f^{-1}(x)=\frac{x+5}{3}[/tex]
Step-by-step explanation:
[tex]f(x)=3x-5[/tex]
[tex]\mathrm{We \: need \: to \: find \: the \: inverse \: of \: the \: function.} \\ \mathrm{The \: inverse \: of \: a \: function \: reverses \: the \: original \: function.}[/tex]
[tex]\mathrm{Plug \: f(x) \: as \: y.}[/tex]
[tex]y=3x-5[/tex]
[tex]\mathrm{Solve \: for \: x.}[/tex]
[tex]\mathrm{Add \: 5 \: to \: both \: sides \: of \: the \: equation.}[/tex]
[tex]y+5=3x[/tex]
[tex]\mathrm{Divide \: both \: sides \: of \: the \: equation \: by \: 3.}[/tex]
[tex]\frac{y+5}{3} =x[/tex]
[tex]\mathrm{Switch \: variables.}[/tex]
[tex]\frac{x+5}{3} =y[/tex]
[tex]\mathrm{Plug \: y \: as \: f^{-1}(x).}[/tex]
[tex]f^{-1}(x)=\frac{x+5}{3}[/tex]
En un colegio, dos séptimos de total de los estudiantes asisten al taller de escultura, un décimo al taller de guitarra y dos quintos al taller de computación. ¿Qué fracción del total de los estudiantes no asiste a estos talleres?
Answer:
3/14
Step-by-step explanation:
En esta pregunta, nos preocupa calcular la fracción de los estudiantes que no asisten a los talleres.
Para obtener la fracción que no asiste a los talleres, lo que debemos hacer es sumar las fracciones de cada uno de los talleres y restar el total de 1.
Matemáticamente eso sería;
1- (2/7 + 1/10 + 2/5)
Agregando los términos en el paréntesis, tenemos;
(20+ 7 + 28) / 70 = 55/70 = 11/14
Restando esto de 1, tenemos; 1-11 / 14 = 3/14