Full Question
Of the cartons produced by a company, 10% have a puncture, 6% have a smashed corner, and 0.4% have both a puncture and a smashed corner. Find the probability that a randomly selected carton has a puncture or a smashed corner. The probability that a randomly selected carton has a puncture or a smashed corner nothing ____%. (Type an integer or a decimal. Do not round.)
Answer:
[tex]P(Punctured\ or\ Smashed\ Corner) = 0.156[/tex]
Step-by-step explanation:
Given
[tex]Puncture\ Corner = 10\%[/tex]
[tex]Smashed\ Corner = 6\%[/tex]
[tex]Punctured\ and\ Smashed\ Corner = 0.4\%[/tex]
Required
[tex]P(Punctured\ or\ Smashed\ Corner)[/tex]
For non-mutually exclusive event described above, P(Punctured or Smashed Corner) can be calculated as thus;
[tex]P(Punctured\ or\ Smashed\ Corner) = P(Punctured\ Corner) + P(Smashed\ Corner) - P(Punctured\ and\ Smashed\ Corner)[/tex]
Substitute:
10% for P(Puncture Corner),
6% for P(Smashed Corner) and
0.4% for P(Punctured and Smashed Corner)
[tex]P(Punctured\ or\ Smashed\ Corner) = 10\% + 6\% - 0.4\%[/tex]
[tex]P(Punctured\ or\ Smashed\ Corner) = 15.6\%[/tex]
Convert % to fraction
[tex]P(Punctured\ or\ Smashed\ Corner) = \frac{15.6}{100}[/tex]
Convert to decimal
[tex]P(Punctured\ or\ Smashed\ Corner) = 0.156[/tex]
Using Venn probabilities, it is found that:
The probability that a randomly selected carton has a puncture or a smashed corner is 15.6%.In this problem, the events are:
Event A: Puncture.Event B: Smashed corner.The "or" probability is given by:
[tex]P(A \cup B) = P(A) + P(B) - P(A \cap B)[/tex]
10% have a puncture, hence [tex]P(A) = 0.1[/tex]6% have a smashed corner, hence [tex]P(B) = 0.06[/tex].0.4% have both a puncture and a smashed corner, hence [tex]P(A \cup B) = 0.004[/tex].Then:
[tex]P(A \cup B) = 0.1 + 0.06 - 0.004 = 0.156[/tex]
The probability that a randomly selected carton has a puncture or a smashed corner is 15.6%.
To learn more about Venn probabilities, you can check https://brainly.com/question/25698611
Suppose Mr. Pink is 28 years old right now and puts away $1,800 per quarter in an account that returns 6% interest. a.) How much will be in the account when he turns 68? b.)What is his total contribution to the account?
Answer: (a) When he turns 68 , the account will have = $1,179,415.39
(b) $ 288,000
Step-by-step explanation:
Formula: Future value of annuity =[tex]P[\dfrac{(1+r)^n-1}{r}][/tex], where P+ periodic payment, r = rate of interest per period, n= number of periods.
As per given, we have
P= $1800
rate of interest = 6% = 0.06
(a) n= 68-28 = 40
Rate per period : r= [tex]\dfrac{0.06}{4}=0.015[/tex]
Number of periods: n = 4x 40 =160
Now, Future value of amount when Mr. Pink turns 28 years = [tex]1800(\dfrac{(1+0.015)^{160}-1}{0.015})[/tex]
[tex]=1800(\dfrac{10.8284615777-1}{0.015})\\\\=1800\times\dfrac{9.8284615777}{0.015}\\\\\approx\$1179415.39[/tex]
Hence, when he turns 68 , the account will have = $1,179,415.39
(b) Total contribution = P × n
=1800 × 160
=$ 288,000
Hence, Total contribution =$ 288,000
What is the solution to the system of equations? y = –3x + 6 y = 9
HELP PRECALC I DO NOT UNDERSTAND AT ALLLLL!!!!!!!!!!!!!!!!!!!!!!
Answer:
φ ≈ 1.19029 radians (≈ 68.2°)
Step-by-step explanation:
There are simple formulas for A and φ in this conversion, but it can be instructive to see how they are derived.
We want to compare ...
y(t) = Asin(ωt +φ)
to
y(t) = Psin(ωt) +Qcos(ωt)
Using trig identities to expand the first equation, we have ...
y(t) = Asin(ωt)cos(φ) +Acos(ωt)sin(φ)
Matching coefficients with the second equation, we have ...
P = Acos(φ)
Q = Asin(φ)
The ratio of these eliminates A and gives a relation for φ:
Q/P = sin(φ)/cos(φ)
Q/P = tan(φ)
φ = arctan(Q/P) . . . . taking quadrant into account
__
We can also use our equations for P and Q to find A:
P² +Q² = (Acos(φ))² +(Asin(φ))² = A²(cos(φ)² +sin(φ)²) = A²
A = √(P² +Q²)
_____
Here, we want φ.
φ = arctan(Q/P) = arctan(5/2)
φ ≈ 1.19029 . . . radians
Hypothesis Testing
Problem 1. Adults saving for retirement
In a recent survey conducted by Pew Research, it was found that 156 of 295 adult Americans without a high school diploma were worried about having enough saved for retirement. Does
the sample evidence suggest that a majority of adult Americans without a high school diploma are worried about having enough saved for retirement? Use a 0.05 level of significance
1. State the null and alternative hypothesis.
2. What type of hypothesis test is to be used?
3. What distribution should be used and why?
4. Is this a right, left, or two-tailed test?
5. Compute the test statistic.
6. Compute the p-value.
7. Do you reject or not reject the null hypothesis? Explain why.
8. What do you conclude?
Problem 2: Google Stock
Google became a publicly traded company in August 2004. Initially, the stock traded over 10 million shares each day! Since the initial offering, the volume of stock traded daily has
decreased substantially. In 2010, the mean daily volume in Google stock was 5.44 million shares, according to Yahoo!Enance. A random sample of 35 trading days in 2014 resulted in a
sample mean of 3.28 million shares with a standard deviation of 1.68 million shares. Does the evidence suggest that the volume of Google stock has changed since 2007? Use a 0.05 level of
significance
1. State the null and alternative hypothesis.
2. What type of hypothesis test is to be used?
3. What distribution should be used and why?
4. Is this a right, left, or two-tailed test?
5. Compute the test statistic.
6. Compute the p-value.
7. Do you reject or not reject the null hypothesis? Explain why
8. What do you conclude?
Answer:
Problem 1: We conclude that less than or equal to 50% of adult Americans without a high school diploma are worried about having enough saved for retirement.
Problem 2: We conclude that the volume of Google stock has changed.
Step-by-step explanation:
Problem 1:
We are given that in a recent survey conducted by Pew Research, it was found that 156 of 295 adult Americans without a high school diploma were worried about having enough saved for retirement.
Let p = proportion of adult Americans without a high school diploma who are worried about having enough saved for retirement
So, Null Hypothesis, [tex]H_0[/tex] : p [tex]\leq[/tex] 50% {means that less than or equal to 50% of adult Americans without a high school diploma are worried about having enough saved for retirement}
Alternate Hypothesis, [tex]H_A[/tex] : p > 50% {means that a majority of adult Americans without a high school diploma are worried about having enough saved for retirement}
This is a right-tailed test.
The test statistics that would be used here is One-sample z-test for proportions;
T.S. = [tex]\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample proportion of adult Americans who were worried about having enough saved for retirement = [tex]\frac{156}{295}[/tex] = 0.53
n = sample of adult Americans = 295
So, the test statistics = [tex]\frac{0.53-0.50}{\sqrt{\frac{0.50(1-0.50)}{295} } }[/tex]
= 1.03
The value of z-test statistics is 1.03.
Also, the P-value of the test statistics is given by;
P-value = P(Z > 1.03) = 1 - P(Z [tex]\leq[/tex] 1.03)
= 1 - 0.8485 = 0.1515
Now, at a 0.05 level of significance, the z table gives a critical value of 1.645 for the right-tailed test.
Since the value of our test statistics is less than the critical value of z as 1.03 < 1.645, so we insufficient evidence to reject our null hypothesis as it will not fall in the rejection region.
Therefore, we conclude that less than or equal to 50% of adult Americans without a high school diploma are worried about having enough saved for retirement.
Problem 2:
We are given that a random sample of 35 trading days in 2014 resulted in a sample mean of 3.28 million shares with a standard deviation of 1.68 million shares.
Let [tex]\mu[/tex] = mean daily volume in Google stock
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 5.44 million shares {means that the volume of Google stock has not changed}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] [tex]\neq[/tex] 5.44 million shares {means that the volume of Google stock has changed}
This is a two-tailed test.
The test statistics that would be used here is One-sample t-test statistics because we don't know about the population standard deviation;
T.S. = [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean volume in Google stock = 3.28 million shares
s = sample standard deviation = 1.68 million shares
n = sample of trading days = 35
So, the test statistics = [tex]\frac{3.28-5.44}{\frac{1.68}{\sqrt{35} } }[/tex] ~ [tex]t_3_4[/tex]
= -7.606
The value of t-test statistics is -7.606.
Also, the P-value of the test statistics is given by;
P-value = P([tex]t_3_4[/tex] < -7.606) = Less than 0.05%
Now, at a 0.05 level of significance, the t table gives a critical value of -2.032 and 2.032 at 34 degrees of freedom for the two-tailed test.
Since the value of our test statistics doesn't lie within the range of critical values of t, so we sufficient evidence to reject our null hypothesis as it will fall in the rejection region.
Therefore, we conclude that the volume of Google stock has changed.
A tower is 40 ft tall and 20 ft wide. A model of the tower is 5 in. tall. Identify the width of the model in inches.
Answer:
The width of the model will be 2.5 inches
Step-by-step explanation:
The tower was scaled down by a factor to a smaller size in the model. We are to, first of all, determine this factor and then use it to scale down the width of the model.
Step One: Determine the scale factor from the tower height.
The scale factor is obtained from the formula:
Scale factor = model size / observed size
This will be
Height of model tower/ height of the real tower.
The height of the model tower is 5 inches which is the same as 0.416667 ft
Scale factor = 0.416667 ft/ 40ft = 0.0104
Step two: Multiply the width of the real-life tower by the scale factor to get the model width.
Width of model =20ft X 0.0104 = 0.208ft
Step three: Convert your answer back to inches.
We will now have to convert 0.208 ft back to inches by multiplying by 12
This will be 0.208 X 12 =2.5 inches.
The width of the model will be 2.5 inches
Which of the following shapes can NOT be created by revolving a two-dimensional figure around an axis? There can be more than 1. A. come B. cube C. Rectangular pyramid D. Rectangular Prism E. Cylinder F. Sphere
PLEASE HELP
Answer:
A. Cone
D. Rectangular Prism
E. Cylinder
F. Sphere
Step-by-step explanation:
Rectangular Prism is a solid three dimensional shape. It has six faces which are sides of a rectangle. It is also known as Cuboid. The rectangular prism cannot be formed with two dimensional shapes. Sphere is a geometrical object which is a three dimensional circle. This shape has a circumference so this shape cannot be formed with two dimensional shapes.
Evaluate the following geometric sum.
1/2 + 1/10 + ( 1/50) + (1/250 ) + midline ellipsis + (1/31,250)
Answer:
39062/62,500Step-by-step explanation:
Given the following geometric progression; 1/2 + 1/10 + ( 1/50) + (1/250 ) + ... + (1/31,250),the sum of the arithmetic geometric progression is expressed using the formula below;
Sn = a(1-rⁿ)/1-r for r less than 1
r is the common ratio
n is the number of terms
a is the first term of the series
In between the mid-line ellipsis there are 2 more terms, making the total number of terms n to be 7]
common ratio = (1/10)/(1/2) = (1/50)/(1/10) = (1/250)/(1/50) = 1/5
a = 1/2
Substituting the given values into the equation above
S7 = 1/2{1 - (1/5)⁷}/1 - 1/5
S7 = 1/2(1- 1/78125)/(4/5)
S7 = 1/2 (78124/78125)/(4/5)
S7 = 78124/156,250 * 5/4
S7 = 390,620/625000
S7 = 39062/62,500
Hence the geometric sum is 39062/62,500
5x - y = -7
4x + 2y = – 14
Answer:
[tex]\boxed{\sf \ \ x=-2, \ y=-3 \ \ }[/tex]
Step-by-step explanation:
Hello,
I assume that you want to solve this system of two equations
(1) 5x - y = -7
(2) 4x + 2y = -14
We will multiply (1) by 2 and add to (2) so that we can eliminate the terms in y
2*(1)+(2) gives
10x - 2y + 4x + 2y = -7*2 -14 = -14 - 14 = -28
<=>
14x = - 28 we can divide by 14 both parts
x = -28/14 = -2
and then we replace x in (1)
5*(-2)-y=-7
-10-y=-7 add 7
-10-y+7=0
-3-y=0 add y
-3 = y
which is equivalent to y = -3
do not hesitate if you have any question
Answer:
x = -2, y = -3
Step-by-step explanation:
5x - y = -7
4x + 2y = – 14
Multiply the first equation by 2
2(5x - y) = 2*-7
10x -2y = -14
Add this to the second equation to eliminate y
10x -2y = -14
4x + 2y = – 14
---------------------------
14x = -28
Divide by 14
14x/14 = -28/14
x = -2
Now find y
4x+2y = -14
4*-2 +2y = -14
-8+2y = -14
Add 8 to each side
2y = -6
Divide by 2
2y/2 = -6/2
y = -3
Rachel Plant has $28,000 invested in stock A and stock B. Stock A currently sells for $20 a share and stock B sells for $80 a share. If stock B doubles in value and stock A goes up 50%, her stock will be worth $54,000. How many shares of each stock does she own?
Answer:
A= 66.6667
B = 333.3333
Step-by-step explanation:
Initial value of A = $20
Initial value of B = $80
Initial total=$ 28000
A moves up 50%= 20+(0.5*20)
A moves up 50% = 20+10
A moves up 50% =$ 30
B double it values = $80*2
B double it values = $160
Now total value is = $54000
A20+B80= 28000... equation 1
A30+B160= 54000.... equation 2
Multiplying equation 1 * 2
Multiplying equation 2 * 1
A40 +B160 = 56000
A30+B160= 54000
A30 = 2000
A= 2000/30
A= 200/3
A= 66.6667
A20+B80= 28000
Substituting A
200/3 (20) +B80= 28000
B80= 28000-4000/3
B80= 80000/3
B= 80000/240
B = 333.3333
Given that a function, g, has a domain of -20 ≤ x ≤ 5 and a range of -5 ≤ g(x) ≤ 45 and that g(0) = -2 and g(-9) = 6, select the statement that could be true for g. A. g(0) = 2 B. g(7) = -1 C. g(-13) = 20 D. g(-4) = -11
Answer:
C. g(-13) = 20
Step-by-step explanation:
Let's check the offered statements:
A. g(0) = 2 . . . . . . doesn't match g(0) = -2
B. g(7) = -1 . . . . . . 7 is not in the domain of g
C. g(-13) = 20 . . . could be true
D. g(-4) = -11 . . . . -11 is not in the range of g
What's the common denominator of this equation?
3 - b = 6-7
Answer:
b = 4
Step-by-step explanation:
3 - b = 6 - 7
3 - b = -1
-b = -1 -3
-b = -4
b = 4
Scores turned in by an amateur golfer at the Bonita Fairways Golf Course in Bonita Springs, Florida, during and are as follows: Season: 7377787674727476 Season: 7069747684797078a. Calculate the mean (to the nearest whole number) and the standard deviation (to decimals) of the golfer's scores, for both years.MeanStandard deviationMeanStandard deviationb. What is the primary difference in performance between and
Complete question is;
Scores turned in by an amateur golfer at the Bonita Fairways Golf Course in Bonita Springs, Florida, during 2005 and 2006 are as follows:
2005 Season: 73 77 78 76 74 72 74 76
2006 Season: 70 69 74 76 84 79 70 78
A) Calculate the mean (to the nearest whole number) and the standard deviation (to decimals) of the golfer's scores, for both years.
B) What is the primary difference in performance between 2005 and 2006? What improvement,
if any, can be seen in the 2006 scores?
Answer:
A) 2006 mean = 75
2005 mean = 75
2006 standard deviation = 5.2644
2005 standard deviation = 2.0702
B)The primary difference is that variation is higher in the 2006 season than the 2005 season.
Step-by-step explanation:
A) Mean is the sum of all scores divided by the number of scores.
Thus;
μ_2005 = (73 + 77 + 78 + 76 + 74 + 72 +74 + 76)/8 = 75
Similarly;
μ_2006 = (70 + 69 + 74 + 76 + 84 + 79 + 70 + 78)/8 = 75
Now, variance is calculated by the sum of the square of mean deviations divided by (n - 1)
Thus;
2005 Variance = ((73-75)² + (77-75)² + (78-75)² + (76-75)² + (74-75)² + (72-75)² + (74-75)² + (76-75)²)/(8-1) = 4.2857
2006 Variance = ((70-75)² + (69-75)² + (74-75)² + (76-75)² + (84-75)² + (79-75)² + (70-75)² + (78-75)²)/(8 - 1) = 27.7143
Now, standard deviation is the square root of variance.
Thus;
2005 standard deviation = √4.2857 = 2.0702
2006 standard deviation = √27.7143 = 5.2644
B) The primary difference is that variation is higher in the 2006 season than the 2005 season.
Also,
Triangle ABC, with vertices A (3,0), B (2,4), and C (4,2)undergoes a transformation to form triangle ABC with vertices A(3.0), B (2, -4) and C(4, -2). this type of transformation that triangle ABC undegoes is a ___________. If triangle ABC undergoes a transformation to form triangle A"B"C" with vertices A(-3.0) B(-2, -4) and C(-4, -2), then the typeof transformation that triangle A'B'C' undergoes is a ____________.
Answer:
1st blank: X axis reflection
2nd blank: Y axis reflection
Step-by-step explanation:
If you drew the first triangle and then the second triangle on a piece of paper, you would notice that it would reflect across the corresponding axis.
So the solution is to just draw it out.
Answer:
reflection across the x axis and the second is a reflection across the y axis.
The Fine Line Pen Company makes two types of ballpoint pens: a silver model and a gold model. The silver model requires 1 minute in a grinder and 3 minutes in a bonder. The gold model requires 3 minutes in a grinder and 4 minutes in a bonder. Because of maintenance procedures, the grinder can be operated no more than 30 hours per week and the bonder no more than 50 hours per week. The company makes $5 on each silver pen and $7 on each gold pen. How many of each type of pen should be produced and sold each week to maximize profits?
Answer:
Optimal production = 600 gold pens
Revenue = 600*7 = $4200 gold pens
Step-by-step explanation:
The Fine Line Pen Company makes two types of ballpoint pens: a silver model and a gold model.
A. The silver model requires 1 minute in a grinder and 3 minutes in a bonder.
B. The gold model requires 3 minutes in a grinder and 4 minutes in a bonder.
Because of maintenance procedures,
C. the grinder can be operated no more than 30 hours per week and
D. the bonder no more than 50 hours per week.
The company makes
E. $5 on each silver pen and
F. $7 on each gold pen.
How many of each type of pen should be produced and sold each week to maximize profits?
Solution:
We will solve the problem graphically, with number of silver pens, x, on the x axis, and number of gold pens, y, on the y axis, i.e.
1. From A and C, the maximum number of silver pens
x <= 30*60 / 1 = 1800 and
x <= 50*60 /3 = 1000 ....................(1) bonder governs
2. from A & D, the maximum number of gold pens
y <= 30*60 / 3 = 600 .....................(2) grinder governs
y <= 50*60 / 4 = 750
3. From D,
x + 3y <= 30*60 = 1800 ...................(limit of grinder) ..... (3)
3x + 4y <= 50*60 = 3000 .................(limit of bonder) .......(4)
Need to maximize profit,
Z(x,y) = 5x+7y, represented by parallel lines y = -5x/7 + k such that all constraints of (3) and (4) are satisfied.
The maximum is obtained when Z passes through (360,480), i.e. at intersection of constraints (3) and (4). Using slope intercept form,
(y-480) = -(5/7)(x-360)
or y=-(5/7)x + (737+1/7) [the purple line] which violates the red line, so not a solution.
Next try the point (0,600)
(y-600) = -(5/7)(x-0), or
y = 600 - (5/7)x [the black line]
As we can see all point on the black (in the first quadrant) satisfy the constraints, so it is a feasible solution, and is the optimal solution, with a revenue of
Revenue = 600*7 = 4200 gold pens
Select the correct solution set.
x + 17 ≤ -3
A.{x | x ≤ 14}
B.{x | x ≤ -20}
C.{x | x ≥ -20}
helpppppppp i give you stars bralienst,and also thanks
Answer:
50% of 100<75% of 104
50% of 100>75% of 60
Step-by-step explanation:
For the inequality to support the statement, we can use 50% of 100 which is 50
Now we need to find "any other number" that is greater. I'll use 104 since it divides evenly. 75% of 104 is 78, 50<78
Now for the second one, we can use 50% of 100 again which is 50.
This time we need to find another number that is less than. I'll use 60. 75% of 60 is 45. 50>45
It took Malik 1 hour and 30 minutes to complete his English essay. He finished the essay at 5:30 pm. What time did he start working on the essay?
Answer:
4:00 pm
Step-by-step explanation:
To find the time it takes Malik to finish his English essay, let's start by subtracting one hour.
5:30 minus 1 hour is 4:30.
Now, subtract 30 minutes.
4:30 minus 30 minutes is 4:00.
Malik started working on his English essay at 4:00 pm.
Hope that helps.
Please help with 4d.
Answer:
(Hemingway, The Old Man and the Sea)(Orwell, 1984)Step-by-step explanation:
A short web search will turn up the authors of the given titles:
The Old Man and the Sea - Hemingway
Huckleberry Finn - Twain
Moby D.ick - Melville
1984 - Orwell
Crime and Punishment - Dostoevsky
find the product of .42 and 7/20
To make it easier, you can convert 7/20 to a decimal, and as a decimal it is 0.35. 0.42*0.35=0.147, so .42*7/20=0.147.
Answer:
0.147
Step-by-step explanation:
0.42 * 7/20
Well, 0.42 = 42/100. Now we have both numbers as fractions.
We can simplify 42/100 to 21/50
Therefore we have 7/20 * 21/50
To multiply fractions multiply the numerators together and multiply the denominators together.
This gives: 147 / 1000
Which is equal to 0.147
Therefore 0.42 * 7/20 = 0.147
Evaluate the determinant for the following matrix 1, 4, 4, 5, 2, 2, 1, 5, 5
Answer:
0
Step-by-step explanation:
The determinant of this matrix is zero (0).
Amy have 398.5 L of apple juice . Avery have 40098 ml of apple juice how many do they have all together
Answer: 438.5L = 438000ml
Step-by-step explanation:
The perimeter of an equilateral triangle with a side length of 12 units is:
Answer:
Hey there!
An equilateral triangle has all sides equal to each other, so the perimeter would be 3x, where x is the length of one side.
Thus, the perimeter for this equilateral triangle would be 3(12)=36
Hope this helps :)
Answer:
[tex]\boxed{Perimeter = 36 \ units}[/tex]
Step-by-step explanation:
Perimeter = sum of all sides
Perimeter = 12 +12 + 12
Perimeter = 36 units
Edna transferred a balance of $1400 to a new credit card at the beginning of
the year. The card offered an introductory APR of 2.9% for the first 3 months
and a standard APR of 22.1% thereafter. If the card compounds interest
monthly, which of these expressions represents Edna's balance at the end of
the year? (Assume that Edna will make no payments or new purchases during
the year, and ignore any possible late payment fees.)
Answer:
(1400)(1+0.029/12)3(1+0.221/12)9
Step-by-step explanation:
A p e x
Answer:
Step-by-step explanation:
Just so you know how it looks on the page
Which of the following are solutions to the equation below?
Check all that apply.
x2 - 6x + 9 = 11
Answer:
x = 3 ± sqrt(11)
Step-by-step explanation:
x^2 - 6x + 9 = 11
Recognizing that this is a perfect square trinomial
(x-3) ^2 =11
Taking the square root of each side
sqrt((x-3) ^2) = ± sqrt(11)
x-3 =± sqrt(11)
Add 3 to each side
x = 3 ± sqrt(11)
Answer:
[tex]\large\boxed{\sf \ \ x = 3+\sqrt{11} \ \ or \ \ x = 3-\sqrt{11} \ \ }[/tex]
Step-by-step explanation:
Hello,
[tex]x^2-6x+9=11\\<=> x^2-2*3*x+3^2=11\\<=>(x-3)^2=11\\<=> x-3=\sqrt{11} \ or \ x-3=-\sqrt{11}\\<=> x = 3+\sqrt{11} \ or \ x = 3-\sqrt{11}[/tex]
Do not hesitate if you have any question
Hope this helps
Consider the following scores. (i) a score of 40 from a distribution with mean 50 and standard deviation 10 (ii) a score of 45 from a distribution with mean 50 and standard deviation 5 How do the two scores compare relative to their respective distributions
Answer:
The scores are equal
Step-by-step explanation:
The z-score for any normal distribution is:
[tex]z=\frac{X-\mu}{\sigma}[/tex]
(i) Score (X) = 40
Mean (μ)= 50
Standard deviation (σ) = 10
[tex]z=\frac{40-50}{10}\\ z=-1[/tex]
(ii) Score (X) = 45
Mean (μ)= 50
Standard deviation (σ) = 5
[tex]z=\frac{45-50}{5}\\ z=-1[/tex]
Both scores have the same z-score, which means that, relative to their respective distributions, the scores are equal.
a sample of bacteria is growing at an hourly rate of 14% according to the exponential growth function.the sa
Answer:
pleasse elaborate more
Step-by-step explanation:
For the functions f(x)=x4−x3−7x2+9x−2 and g(x)=x−1, find (f/g)(x) and (f/g)(2).
Answer:
[tex](f/g)(x)=\frac{x^4-x^3-7x^2+9x-2}{x-1} =x^3-7x+2\,\,\,for\,\,x\neq 1[/tex]
[tex](f/g)(2)=-4[/tex]
Step-by-step explanation:
[tex](f/g)(x)=\frac{x^4-x^3-7x^2+9x-2}{x-1} =x^3-7x+2\,\,\,for\,\,x\neq 1[/tex] and undefined for x = 1.
Notice that (x-1) is in fact a factor of f(x), so the quotient of the two functions introduces a "hole" for the new function at x = 1.
f(2) can be found by simply evaluating the expression for x = 2:
[tex](f/g)(2)=2^3-7(2)+2=-4[/tex]
Find the hcf of 15a²b² and -24ab | plzzz solve
Answer:
[tex]\large \boxed{\sf \ \ \ 3\cdot a \cdot b \ \ \ }[/tex]
Step-by-step explanation:
Hello,
First of all, let's find the factors of these two numbers and I will put in boxes the common factors.
[tex]15a^2b^2=\boxed{3}\cdot 5\cdot \boxed{a} \cdot a \cdot \boxed{b} \cdot b \\ \\ \\-24ab=(-1)\cdot 2 \cdot \boxed{3} \cdot 4 \cdot \boxed{a} \cdot \boxed{b}[/tex]
The Highest Common Factor (HCF) is found by finding all common factors and selecting the largest one. So, in this case, it gives
[tex]\large \boxed{\sf \ \ \ 3\cdot a \cdot b \ \ \ }[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Find the value of annuity if the periodic deposit is $1500 at 8% compounded semiannually for 22 years
Answer:
The value of annuity is [tex]P_v = \$ 32058[/tex]
Step-by-step explanation:
From the question we are told that
The periodic payment is [tex]P = \$ 1500[/tex]
The interest rate is [tex]r = 8\% = 0.08[/tex]
Frequency at which it occurs in a year is n = 2 (semi-annually )
The number of years is [tex]t = 22 \ years[/tex]
The value of the annuity is mathematically represented as
[tex]P_v = P * [1 - (1 + \frac{r}{n} )^{-t * n} ] * [\frac{(1 + \frac{r}{n} )}{ \frac{r}{n} } ][/tex](reference EDUCBA website)
substituting values
[tex]P_v = 1500 * [1 - (1 + \frac{0.08}{2} )^{-22 * 2} ] * [\frac{(1 + \frac{0.08}{2} )}{ \frac{0.08}{2} } ][/tex]
[tex]P_v = 1500 * [1 - (1.04 )^{-44} ] * [\frac{(1.04 )}{0.04} ][/tex]
[tex]P_v = 1500 * [1 - 0.178 ] * [\frac{(1.04 )}{0.04} ][/tex]
[tex]P_v = \$ 32058[/tex]
A polynomial function is shown below:
f(x) = x3 - 4x2 - x + 4
Which graph best represents the function? (5 points)
Answer:
Simply plug in the polynomial into a graphing calc.
Step-by-step explanation: