Kepler-62e is an exoplanet that orbits within the habitable zone around its parent star. The planet has a mass that is 3.57 times larger than Earth's and a radius that is 1.61 times larger than Earth's. Kepler-62e is an exoplanet that orbits within the habitable zone around its parent star. The planet has a mass that is 3.57 times larger than Earth's and a radius that is 1.61 times larger than Earth's. Kepler-62e is an exoplanet that orbits within the habitable zone around its parent star. The planet has a mass that is 3.57 times larger than Earth's and a radius that is 1.61 times larger than Earth's. Calculate the acceleration of gravity on the surface of Kepler-62e.

Answers

Answer 1

Answer:

g' = 13.5 m/s²

Explanation:

The acceleration due to gravity on surface of earth is given by the formula:

g = GMe/Re²   --------------- euation 1

where,

g = acceleration due to gravity on surface of earth

G = Universal Gravitational Constant

Me = Mass of Earth

Re = Radius of Earth

Now, the the acceleration due to gravity on the surface of Kepler-62e is:

g' = GM'/R'²   --------------- euation 1

where,

g' = acceleration due to gravity on surface of Kepler-62e

G = Universal Gravitational Constant

M' = Mass of Kepler-62e = 3.57 Me

R' = Radius of Kepler-62e = 1.61 Re

Therefore,

g' = G(3.57 Me)/(1.61 Re)²

g' = 1.38 GMe/Re²

using equation 1:

g' = 1.38 g

where,

g = 9.8 m/s²

Therefore,

g' = 1.38(9.8 m/s²)

g' = 13.5 m/s²


Related Questions

Two uniform solid balls are rolling without slipping at a constant speed. Ball 1 has twice the diameter, half the mass, and one-third the speed of ball 2. The kinetic energy of ball 2 is 37.0 J.
Part A What is the kinetic energy of ball 1?
Express your answer with the appropriate units.
K7 = Value Units

Answers

Answer:

The kinetic energy of the ball 1 is 2.06 J

Explanation:

The kinetic energy of a rolling object K = 1/2Iω² + 1/2mv² where I is its rotational inertia, ω its angular speed, m its mass and v = its velocity of center of mass.

Let m₁, I₁, v₁, d₁ represent the mass, rotational inertia, speed and diameter of  solid ball 1. and Let m₂, I₂, v₂, d₂ represent the mass, rotational inertia, speed and diameter of  solid ball 2.

Since both objects are spheres, I =2/5mr²

Let r₁ = radius of ball 1 and r₂ = radius of ball 2. Since d₂ = 2d₁

⇒ 2r₂ = 4r₁ ⇒ r₂ = 2r₁

Now, the the kinetic energy of sphere 1 is

K₁ = 1/2I₁ω₁² + 1/2m₁v₁²  ω₁ = v₁/r₁ which is the angular speed of solid ball 1.

K₁ = 1/2(2/5mr²)v₁²/r₁² + 1/2m₁v₁²

K₁ = 1/5m₁v₁² + 1/2m₁v₁²

K₁ = 7/10m₁v₁²

Also, the the kinetic energy of sphere 2 is

K₂ = 1/2I₂ω₂² + 1/2m₂v₂²  ω₂ = v₂/r₂ which is the angular speed of solid ball 2.

K₂ = 1/2(2/5m₂r₂²)v₂²/r₂² + 1/2m₂v₂²

K₂ = 1/5m₂v₂² + 1/2m₂v₂²

K₂ = 7/10m₂v₂²

Now, m₁ = m₂/2 and v₁ = v₂/3

Substituting these into K₁, we have

K₁ = 7/10(m₂/2)(v₂/3)²

K₁ = 7/10 × 1/18m₂v₂²

K₁ = (1/18)(7/10m₂v₂²)

K₁ = K₂/18

K₂ = 37.0 J/18

K₂ = 2.06 J

So, the kinetic energy of the ball 1 is 2.06 J

A block and tackle having a velocity ratio of 5 is used to raise a load of 400N through a distance of 10m. If the work done against friction is 100J. Calculate 1. Efficiency of the machine 2. The effort applied

Answers

Answer:

Explanation:

Load will be moved by 4L when effort moves by distance L .

4L = 10 m ( given )

L = 2.5 m

work output = work input = 400 x 10 = 4000 J

work by friction = 100 J

net work output = 3900 J .

efficiency = net output of work / work input

= (3900 / 4000) x 100

= 97.5 %

2 )

work input = 4000 J

distance moved by effort = 2.5 m

If effort be F

F X 2.5  = 4000

F = 1600 N .

A flat slab of material (nm = 2.2) is d = 0.45 m thick. A beam of light in air (na = 1) is incident on the material with an angle θa = 46 degrees with respect to the surface's normal.
Numerically, what is the displacement, D, of the beam when it exits the slab?

Answers

Answer:

Explanation:

Formula of lateral displacement

[tex]S_{lateral}=\frac{t}{cosr} \times sin(i-r)[/tex]

t is thickness of slab , i  and r are angle of incidence and refraction respectively .

Given t = .45 m

sin i / sin r = 2.2

sin 46 / sin r = 2.2

sin r = .719 / 2.2 = .327

r = 19°

[tex]S_{lateral}=\frac{t}{cosr} \times sin(i-r)[/tex]

[tex]S_{lateral}=\frac{.45}{cos19} \times sin(46-19)[/tex]

= .45 x .454 / .9455

= .216 m

= 21.6 cm .

The displacement, D, of the beam when it exits the slab is; 21.65 cm.

We are given;

Refractive index of slab material; nm = 2.2

Thickness of slab; t = 0.45 m

Refractive index of air; na = 1

Angle of incidence; θa = 46°

From snell's law, we can calculate the angle of refraction from;

na × sin θa = nm × sin θm

Thus;

1 × sin 46 = 2.2 × sin θm

0.7193 = 2.2 × sin θm

sin θm = 0.7193/2.2

θm = sin^(-1) 0.32695

θm = 19.08°

Formula for the displacement of the beam is;

D = (t/cos θm) × sin (θa - θm)

Plugging in the relevant values gives;

D = (0.45/cos 19.08) × sin (46 - 19.08)

D = 0.4783 × 0.4527

D = 0.2165m = 21.65 cm

Read more at; https://brainly.com/question/24875145

The resistance of a 0.29 m long piece of wire is measured to be 0.31 Ohms. The wire has a cross-sectional area of 0.003 m2. What is the resistivity of the wire?

Answers

Answer:

3.21×10⁻³ Ωm

Explanation:

Applying,

R = Lρ/A................... Equation 1

Where R = Resistance of the wire, L = Length of the wire, ρ = Resistivity of the wire, A = cross sectional area of the wire.

Make ρ the subject of the equation

ρ = RA/L................... Equation 2

Given: R = 0.31 Ohms, A = 0.003 m², L = 0.29 m

Substitute into equation 2.

ρ = 0.31(0.003)/0.29

ρ  = 3.21×10⁻³ Ωm

If radio waves were used to communicate with an alien spaceship approaching Earth at 10% of the speed of light c, Earth would receive their signals at a speed of

Answers

Answer:

Explanation:

speed of alien spaceship = .1 c

We shall apply formula of relativistic mechanics to solve the problem

relative velocity =

[tex]\frac{v+v_1}{1 -\frac{v\times v }{c^2} }[/tex]

Here v = v₁ = .1 c

relative velocity  = .1c + .1 c / 1 - .1²

= .2 c / .99

= .202 c

The earth would receive the signal at the speed of .202 c .

Your friend just challenged you to a race. You know in order to beat him, you must run 15 meters within 20 seconds in a northern direction. What does your average velocity need to be to win the race? .5 meters per second, north .75 meters per second, north 1.3 meters per second, north 300 meters per second, north

Answers

.75 meters per second

A positively charged particle has a velocity in the negative z direction at a certain point P. The magnetic force on the particle at this point is in the negative y direction. Which one of the following statements about the magnetic field at point P can be determined from this data?
a. Bx is positive
b. Bz­ is positive
c. By is negative
d. By is positive
e. Bx is negative

Answers

Answer:

a. Bx is positive

Explanation:

See attached file

What would you estimate for the length of a bass clarinet, assuming that it is modeled as a closed tube and that the lowest note that it can play is a D b whose frequency is 69 Hz

Answers

Answer:

1.24m

Explanation:

See attached file

When a potential difference of 10 V is placed across a certain solid cylindrical resistor, the current through it is 2 A. If the diameter of this resistor is now tripled, the current will be

Answers

Answer:

The current will be 18 A

Explanation:

Given;

potential difference, V = 10 V

current between the resistor, I = 2 A

Apply ohm's law;

V = IR

R = V / I

R = 10 / 2

R = 5Ω

Resistance is given as;

[tex]R = \frac{\rho l}{A}[/tex]

where;

ρ is resistivity

l is length

A is area

[tex]R = \frac{\rho l}{A} \\\\R = \frac{\rho l}{\pi r^2} = \frac{\rho l}{\pi (\frac{d}{2}) ^2} = \frac{\rho l}{\pi (\frac{d^2}{4}) }\\\\R = \frac{4*\rho l}{\pi d^2} \\\\R = (\frac{4*\rho l}{\pi } )\frac{1}{d^2} \\\\R = (k)\frac{1}{d^2} \\\\k = Rd^2\\\\R_1d_1^2 = R_2d_2^2\\\\R_2 = \frac{R_1d_1^2}{d_2^2}[/tex]

When the diameter of the resistor is tripled

d₂ = 3d₁

[tex]R_2 = \frac{5*d_1^2}{(3d_1)^2} \\\\R_2 = \frac{5d_1^2}{9d_1^2} \\\\R_2 = 0.556 \ ohms[/tex]

The current is now calculated as;

Apply ohms law;

V = IR

I = V / R

I = 10 / 0.556

I = 17.99 A

I = 18 A

Therefore, the current will be 18 A

5) A coil of wire consists of 20 turns, each of which has an area of 0.0015 m2. A magnetic field is perpendicular to the surface with a magnitude of B = 4.91 T/s t – 5.42 T/s2 t2. What is the magnitude of the induced emf in the coil?

Answers

Answer:

1.5x10^-1 V

Explanation:

See attached file

Answer:

The magnitude of the induced emf in the coil is 15.3 mV

Explanation:

Given;

number of turns, N = 20 turns

Area of each coil, A = 0.0015 m²

initial magnitude of magnetic field at t₁, B₁ = 4.91 T/s

final magnitude of magnetic field at t₂, B₂ = 5.42 T/s

The magnitude of the induced emf in the coil is given by;

[tex]E = -N\frac{\delta \phi}{\delta t} \\\\E =-N (\frac{\delta B}{\delta t} )A\\\\E = -NA(\frac{B_1-B_2)}{\delta t} \\\\E = NA(\frac{B_2-B_1)}{\delta t} \\\\E = 20(0.0015)(5.42-4.91)\\\\E = 0.0153 \ V\\\\E = 15.3 \ mV[/tex]

Therefore, the magnitude of the induced emf in the coil is 15.3 mV

In a fluorescent tube of diameter 3 cm, 3 1018 electrons and 0.75 1018 positive ions (with a charge of e) flow through a cross-sectional area each second. What is the current in the tube

Answers

Answer:

The  current in the tube is 0.601 A

Explanation:

Given;

diameter of the fluorescent, d = 3 cm

negative charge flowing in the fluorescent tube, -e = 3 x 10¹⁸ electrons/second

positive charge flowing in the fluorescent tube, +e = 0.75 x 10¹⁸ electrons/ second

The current in the fluorescent tube is due to presence of positive and negative charges to create neutrality in the conductor (fluorescent tube).

Q = It

I = Q/t

where;

I is current in Ampere (A)

Q is charge in Coulombs (C)

t is time is seconds (s)

1 e = 1.602 x 10⁻¹⁹ C

3 x 10¹⁸ e/ s = ?

= (3 x 10¹⁸ e/s  x 1.602 x 10⁻¹⁹ C) / 1e

= 0.4806 C/s

negative charge per second (Q/t) = 0.4806 C/s

positive charge per second (Q/t) =  (0.75 x 10¹⁸ e/s  x 1.602 x 10⁻¹⁹ C) / 1e

positive charge per second (Q/t) = 0.12015 C/s

Total charge per second in the tube, Q / t = (0.4806 C/s + 0.12015 C/s)

                                                                I = 0.601 A

Therefore, the  current in the tube is 0.601 A

A person takes a trip, driving with a constant speed of 98.5 km/h, except for a 20.0-min rest stop. The person's average speed is 68.8 km/h. (a) How much time is spent on the trip? h (b) How far does the person travel? km

Answers

Answer:

Total time taken(T) = 1.1 hour

Distance = 75.68 km

Explanation:

Given:

Average speed = 68.8 km/h

Constant speed = 98.5 km/h

Rest time = 20 min = 20 / 60 = 0.3333 hour

Find:

Total time taken(T)

Total distance (D)

Computation:

Distance = speed × time

D = 68.8 × t.........Eq1

and

D = 98.5 × [t-0.33]

D = 98.5 t - 32.8333.........Eq2

From Eq1 and Eq2

68.8 t = 98.5 t - 32.83333

29.7 t = 32.83333

t = 1.1

Total time taken(T) = 1.1 hour

Distance = speed × time

Distance = 68.8 × 1.1

Distance = 75.68 km

A flat loop of wire consisting of a single turn of cross-sectional area 8.60 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 2.40 T in 1.02 s. What is the resulting induced current if the loop has a resistance of 2.80

Answers

Answer:

The  induced current is [tex]I = 5.72*10^{-4 } \ A[/tex]

Explanation:

From the question we are told that

     The cross-sectional area is  [tex]A = 8.60 \ cm^2 = \frac{8.60 }{10000} = 8.60 *10^{-4} \ m[/tex]

     The initial value of magnetic field is  [tex]B_1 = 0.500 \ T[/tex]

     The  value of magnetic field  at  time  t     is  [tex]B_f = 2.40 \ T[/tex]

     The number of turns  is  N  =  1  

     The  time taken is   [tex]dt[/tex]=  1.02 \ s  

       The resistance of the loop is  [tex]R = 2.80\ \Omega[/tex]

Generally the induced emf is mathematically represented as

         [tex]e = - \frac{d \phi}{dt }[/tex]

Where  [tex]d \phi[/tex] is the change n the magnetic flux which is mathematically represented as

          [tex]d \phi = N *A * d B[/tex]

Where [tex]dB[/tex] is the change in magnetic field which is mathematically represented as  

          [tex]d B = B_f - B_i[/tex]

substituting values  

         [tex]d B = 2.40 - 0.500[/tex]

         [tex]d B = 1.9 \ T[/tex]

So  

        [tex]d \phi = 1 * 1.9 * 8.60 *10^{-4}[/tex]

       [tex]d \phi = 1.63*10^{-3} \ T[/tex]

So  

      [tex]e = - \frac{1.63 *10^{-3}}{ 1.02 }[/tex]

      [tex]e = - 1.60*10^{-3} \ V[/tex]

     Here the negative only indicates that the emf is acting in opposite direction of the motion producing it so the magnitude of the emf is  

       [tex]e = 1.60*10^{-3} \ V[/tex]

Now the induced current is evaluated as follows

       [tex]I = \frac{e}{R }[/tex]

substituting values  

      [tex]I = \frac{1.60 *10^{-3}}{2.80 }[/tex]

      [tex]I = 5.72*10^{-4 } \ A[/tex]

A tiger leaps horizontally out of a tree that is 3.30 m high. He lands 5.30 m from the base of the tree. (Neglect any effects due to air resistance.)
Calculate the initial speed. (Express your answer to three significant figures.)
m/s Submit

Answers

Answer:

The  initial velocity is  [tex]v_h = 8.66 \ m/s[/tex]

Explanation:

From the question we are told that

    The height of the tree is  [tex]h = 3.30\ m[/tex]

    The distance of the position of landing from base  is  [tex]d = 5.30 \ m[/tex]

According to the second equation of motion

    [tex]h = u_o * t + \frac{1}{2} at^2[/tex]

[tex]Where\ u_o[/tex] is the initial velocity in the vertical axis  

           a  is equivalent to acceleration due to gravity which is positive because the tiger is downward

    So

     [tex]3 = 0 + 0.5 * 9.8 *t^2[/tex]

=>    [tex]t = \frac{3 }{9.8 * 0.5}[/tex]

      [tex]t = 0.6122\ s[/tex]

Now the initial velocity in the horizontal direction is mathematically evaluated as

         [tex]v_h = \frac{5.30}{0.6122}[/tex]

        [tex]v_h = 8.66 \ m/s[/tex]

 

PLEASE ANSWER FAST In which of the following situations is the greatest amount of work accomplished? 1. A boy lifts a 2-newton box 0.8 meters. 2. A boy lifts a 5-newton box 0.8 meters. 3.A boy lifts a 8-newton box 0.2 meters. 4.A boy lifts a 10-newton box 0.2 meters.

Answers

Explanation:

Work done is given by the product of force and displacement.

Case 1,

1. A boy lifts a 2-newton box 0.8 meters.

W = 2 N × 0.8 m = 1.6 J

2. A boy lifts a 5-newton box 0.8 meters.

W = 5 N × 0.8 m = 4 J

3. A boy lifts a 8-newton box 0.2 meters.

W = 8 N × 0.2 m = 1.6 J

4. A boy lifts a 10-newton box 0.2 meters.

W = 10 N × 0.2 m = 2 J

Out of the four options, in option (2) ''A boy lifts a 5-newton box 0.8 meters'', the work done is 4 J. Hence, the greatest work done is 4 J.

A solenoid of length 2.40 m and radius 1.70 cm carries a current of 0.190 A. Determine the magnitude of the magnetic field inside if the solenoid cons

Answers

Complete question:

A solenoid of length 2.40 m and radius 1.70 cm carries a current of 0.190 A. Determine the magnitude of the magnetic field inside if the solenoid consists of 2100 turns of wire.

Answer:

The magnitude of the magnetic field inside the solenoid is 2.089 x 10⁻ T.

Explanation:

Given;

length of solenoid, L = 2.4 m

radius of solenoid, R = 1.7 cm = 0.017 m

current in the solenoid, I = 0.19 A

number of turns of the solenoid, N = 2100 turns

The magnitude of the magnetic field inside the solenoid is given by;

B = μnI

Where;

μ is permeability of free space = 4π x 10⁻⁷ m/A

n is number of turns per length = N/L

I is current in the solenoid

B = μnI = μ(N/L)I

B = 4π x 10⁻⁷(2100 / 2.4)0.19

B = 4π x 10⁻⁷ (875) 0.19

B = 2.089 x 10⁻⁴ T

Therefore, the magnitude of the magnetic field inside the solenoid is 2.089 x 10⁻⁴ T.

The primary of an ideal transformer has 100 turns and its secondary has 200 turns. If the input current at the primary is 100 A, we can expect the output current at the secondary to be

Answers

Answer:

Explanation:

For current in ideal transformer the formula is

I₁ / I₂ = N₂ / N₁

I₁  and I₂ are current in primary and secondary coil respectively and N₁ and N₂ are no of turns in primary and secondary coil .

Putting the given values

100 / I₂ = 200 / 100 = 2

I₂ = 50 A .

output current = 50 A .

A car and a truck, starting from rest, have the same acceleration, but the truck accelerates for twice the length of time. Compared with the car, the truck will travel:_____.
a. twice as far.
b. one-half as far.
c. three times as far.
d. four times as far.
e. 1.4 times as far.

Answers

Answer:

d. four times as far

Explanation:

Initial velocity of car and truck, u = 0

let acceleration of both the truck and car = a

let the length of time for the acceleration = t

Let the time the truck accelerated = 2t

The distance traveled by the car is calculated as;

s = ut + ¹/₂at²

s₁ = 0(t) + ¹/₂at²

s₁ = ¹/₂at²

The distance traveled by the truck is calculated as;

s = ut + ¹/₂at²

s₂ = 0(2t) + ¹/₂a (2t)²

s₂ =  ¹/₂a x 4t²

s₂ = 4 (¹/₂at²)

s₂ = 4(s₁)

Truck distance = four times car distance

Therefore, Compared with the car, the truck will travel four times as far

d. four times as far

0.25-kg block oscillates on the end of a spring with a spring constant of 200 N/m. If the oscillations is started by elongating the spring 0.15 m and giving the block a speed of 3.0 m/s, then the maximum speed of the block is A :

Answers

Answer:

5.2m/s

Explanation:

Plss see attached file

A 2.0-cm length of wire centered on the origin carries a 20-A current directed in the positive y direction. Determine the magnetic field at the point x

Answers

Question:

A 2.0-cm length of wire centered on the origin carries a 20-A current directed in the positive y direction. Determine the magnetic field at the point x = 5.0m on the x-axis.

Answer:

1.6nT [in the negative z direction]

Explanation:

The magnetic field, B, due to a distance of finite value b, is given by;

B = (μ₀IL) / (4πb[tex]\sqrt{b^2 + L^2}[/tex])                -----------(i)

Where;

I = current on the wire

L = length of the wire

μ₀ = magnetic constant = 4π × 10⁻⁷ H/m

From the question,

I = 20A

L = 2.0cm = 0.02m

b = 5.0m

Substitute the necessary values into equation (i)

B = (4π × 10⁻⁷ x 20 x 0.02) / (4π x 5.0 [tex]\sqrt{5.0^2 + 0.02^2}[/tex])

B = (10⁻⁷ x 20 x 0.02) / (5.0 [tex]\sqrt{5.0^2 + 0.02^2}[/tex])

B = (10⁻⁷ x 20 x 0.02) / (5.0 [tex]\sqrt{25.0004}[/tex])

B = (10⁻⁷ x 20 x 0.02) / (25.0)

B = 1.6 x 10⁻⁹T

B = 1.6nT

Therefore, the magnetic field at the point x = 5.0m  on the x-axis is 1.6nT.

PS: Since the current is directed in the positive y direction, from the right hand rule, the magnetic field is directed in the negative z-direction.

Following a collision between a large spacecraft and an asteroid, a copper disk of radius 28.0 m and thickness 1.20 m, at a temperature of 850°C, is floating in space, rotating about its axis with an angular speed of 20.0 rad/s. As the disk radiates infrared light, its temperature falls to 20.0°C. No external torque acts on the disk.
A) Find the change in kinetic energy of the disk.
B) Find the change in internal energy of the disk.
C) Find the amount of energy it radiates.

Answers

Answer:

A. 9.31 x10^10J

B. -8.47x10 ^ 12J

C. 8.38x 10^12J

Explanation:

See attached file pls

What is the wave length if the distance from the central bright region to the sixth dark fringe is 1.9 cm . Answer in units of nm.

Answers

Complete Question

The complete question is shown on the first uploaded image  

Answer:

The  wavelength is  [tex]\lambda = 622 nm[/tex]

Explanation:

  From the question we are told that

    The distance of the slit to the screen is  [tex]D = 5 \ m[/tex]

    The order of the fringe is m  =  6

     The distance between the slit is  [tex]d = 0.9 \ mm = 0.9 *10^{-3} \ m[/tex]

    The fringe distance is  [tex]Y = 1.9 \ cm = 0.019 \ m[/tex]

Generally the for a dark fringe the fringe distance is  mathematically represented as

        [tex]Y = \frac{[2m - 1 ] * \lambda * D }{2d}[/tex]

=>     [tex]\lambda = \frac{Y * 2 * d }{[2*m - 1] * D}[/tex]

substituting values

=>      [tex]\lambda = \frac{0.019 * 2 * 0.9*10^{-3} }{[2*6 - 1] * 5}[/tex]

=>     [tex]\lambda = 6.22 *10^{-7} \ m[/tex]

       [tex]\lambda = 622 nm[/tex]

shows a mixing tank initially containing 2000 lb of liquid water. The tank is fitted with two inlet pipes, one delivering hot water at a mass flow rate of .8 lb/s and the other delivering cold water at a mass flow rate of 1.2 lb/s. Water exits through a single exit pipe at a mass flow rate of 2.5 lb/s. Determine the amount of water, in lb, in the tank after one hour

Answers

Answer:

the water that remain in the tank in one hour will be 200 lb

Explanation:

Initial mass of water in the tank = 2000 lb

hot water is delivered through the first inlet pipe at a rate of = 0.8 lb/s

cold water is delivered through the second inlet pipe at a rate of = 1.2 lb/s

exit pipe flow rate = 2.5 lb/s

amount of water in the tank after one hour = ?

In one hour, there are 60 x 60 seconds = 3600 sec, therefore

the water through the first inlet pipe in one hour = 0.8 x 3600 = 2880 lb

the water through the second inlet pipe in one hour = 1.2 x 3600 = 4320 lb

the water through the exit in one hour = 2.5 x 3600 = 9000 lb

The total amount of water in the tank = 2000 + 2880 + 4320 = 9200 lb

The total amount of water that leaves the tank = 9000 lb

therefore, in one hour, the water that remain in the tank will be

==> 9200 lb - 9000 lb = 200 lb

Two large non-conducting plates of surface area A = 0.25 m 2 carry equal but opposite charges What is the energy density of the electric field between the two plates?

Answers

Answer:

5.1*10^3 J/m^3

Explanation:

Using E = q/A*eo

And

q =75*10^-6 C

A = 0.25

eo = 8.85*10^-12

Energy density = 1/2*eo*(E^2) = 1/2*eo*(q/A*eo)^2 = [q^2] / [2*(A^2)*eo]

= [(75*10^-6)^2] / [2*(0.25)^2*8.85*10^-12]

= 5.1*10^3 J/m^3

A spherical shell has inner radius 1.5 m, outer radius 2.5 m, and mass 850 kg, distributed uniformly throughout the shell. What is the magnitude of the gravitational force exerted on the shell by a point mass particle of mass 2.0 kg a distance 1.0 m from the center

Answers

Answer:

The magnitude of the gravitational force is 4.53 * 10 ^-7 N

Explanation:

Given that the magnitude of the gravitational force is F = GMm/r²

mass M = 850 kg

mass m = 2.0 kg

distance d = 1.0 m , r = 0.5 m

F = GMm/r²

Gravitational Constant G = 6.67 × 10^-11 Newtons kg-2 m2.

F = (6.67 × 10^-11 * 850 * 2)/0.5²

F = 0.00000045356 N

F = 4.53 * 10 ^-7 N

Suppose a point charge is located at the center of a spherical surface. The electric field at the surface of the sphere and the total flux through the sphere are determined. Now the radius of the sphere is halved. What happens to the flux through the sphere and the magnitude of the electric field at the surface of the sphere

Answers

Answer:

The magnitude of flux remains the same, and the field increases.

Explanation:

This is because the number of field lines leaving the sphere remains constant and the electric field increases because the line density increases

If an object is placed at a distance of 10 cm in front of a concave mirror of focal length 4 cm, find the position and characteristics of the image formed. Also, find the magnification.

Answers

Answer:

Explanation:

Focal length f = - 4 cm

Object distance u = - 10 cm

v , image distance = ?

Mirror formula

[tex]\frac{1}{v} +\frac{1}{u} = \frac{1}{f}[/tex]

Putting the given values

[tex]\frac{1}{v} - \frac{1}{10} = - \frac{1}{4}[/tex]

[tex]\frac{1}{v}= - \frac{3}{20}[/tex]

v = - 6.67 cm .

magnification

m = v / u

= - 6.67 / - 10

= .667

so image will be smaller in size in comparison with size of object .

Characteristics will be that ,

1 ) it will be inverted and

2 ) it will be real image .

The planets how and block are near each other in the Dorgon system. the Dorgons have very advanced technology, and a Dorgon scientist wants to increase the pull of gravity between the two planets. Which proposals would the scientist make to accomplish this goal? check all that apply.

Answers

Answer:

Decreasing the distance between Hox and Blox, increasing the mass of Hox, or increasing the mass of Hox and Blox.

Explanation:

The gravity force is directly proportional to the mass of the bodies and inversely proportional to the square of the distance that separates them.

Or

If we decrease the distance between both planets (Hox and Blox), the gravitational pull between them will increase.  

On the other hand, if we keep the distance between Hox and Blox, but we increase the mass of one of them, or increase the mass of both, the gravitational pull between them will also increase.

A single slit 1.4 mmmm wide is illuminated by 460-nmnm light. Part A What is the width of the central maximum (in cmcm ) in the diffraction pattern on a screen 5.0 mm away

Answers

Answer:

1.643*10⁻⁴cm

Explanation:

In a single slit experiment, the distance on a screen from the centre point is expressed as y = [tex]\frac{\delta m \lambda d}{a}[/tex] where;

[tex]\delta m[/tex] is the first two diffraction minima = 1

[tex]\lambda[/tex] is light wavelength

d is the distance of diffraction pattern from the screen

a is the width of the slit

Given [tex]\lambda[/tex] = 460-nm = 460*10⁻⁹m

d = 5.0mm = 5*10⁻³m

a = 1.4mm = 1.4*10⁻³m

Substituting this values into the formula above to get width of the central maximum y;

y = 1*460*10⁻⁹ * 5*10⁻³/1.4*10⁻³

y = 2300*10⁻¹²/1.4*10⁻³

y = 1642.86*10⁻⁹

y = 1.643*10⁻⁶m

Converting the final value to cm,

since 100cm = 1m

x = 1.643*10⁻⁶m

x = 1.643*10⁻⁶ * 100

x = 1.643*10⁻⁴cm

Hence, the width of the central maximum in the diffraction pattern on a screen 5.0 mm away is  1.643*10⁻⁴cm

A wire carries current in the plane of this screen toward the top of the screen. The wire experiences a magnetic force toward the right edge of the screen. Is the direction of the magnetic field causing this force

Answers

Answer:

The direction of the magnetic field causing this force is

In the plane of the screen and towards the bottom of the egde

Explanation:

This is by applying Fleming s right hand rule which explains that

When a conductor such as a wire attached to a circuit moves through a magnetic field, an electric current is induced in the wire due to Faraday's law of induction. The current in the wire can have two possible directions. Fleming's right-hand rule gives which direction the current flows.

The right hand is held with the thumb, index finger and middle finger mutually perpendicular to each other (at right angles), as shown in the diagram.[1]

The thumb is pointed in the direction of the motion of the conductor relative to the magnetic field.

The first finger is pointed in the direction of the magnetic field. (north to south)

Then the second finger represents the direction of the induced or generated current within the conductor (from the terminal with lower electric potential to the terminal with higher electric potential, as in a voltage source)

Other Questions
I need the answers to B and C please and thank you! :) Kate has put a lot of time and effort into streamlining the process to design and produce a greet-ing card. She has documented the entire process in a QuickTime video she produced on her iMac. The video takes the viewer through the step-by-step process of selecting hardware and software, and shows how to design and produce the card. Kate has met many people who would like to get into the production of greeting cards, but are overwhelmed by the process. Kate has decided to sell the entire package (hardware, software, and video tutorial) to aspiring card producers. The cost of the entire package to Kate is $4,500 and she plans to mark it up by $500 and sell it for $5,000. John Stevens, an individual Kate met recently at a greeting card conference, would like to buy the pack-age from Kate. Unfortunately, John does not have this much cash and would like for Kate to extend credit.Kate believes that many of her customers will not be able to pay cash and, therefore, she will need to find some way to provide financing. One option she is exploring is to accept credit cards. She learned that the credit card provider charges a 2.5 percent fee and provides immediate cash upon receiving the sales receipts.Kate would like you to answer the following questions: 1. What are the advantages and disadvantages of offering credit Justin hires Miguel to sell his baseball glove for $560. As part of their contract, Justin will pay him $100 to conduct the sale. Justin is a _______________________. Group of answer choices there are three oranges in 200g of bag . if the weight of them with bag is 1.4kg. find the weight of an orange.i want full methods A vertically polarized light wave of intensity 1000 mW/m2 is coming toward you, out of the screen. After passing through this polarizing filter, the wave's intensity is I REALLY NEED HELP PLZZZ. I WILL MARK YOU AS THE BRAINLIEST ANSWER IF U GIVE A GOOD RESPONSE TO THE QUESTIONS!!!! Please help. I will give out brainliest Iron man wears an awesome ironsuit.He is flying over high current carrying wire. Will he be affected? Judith is planning a birthday party at her house. she has 36 slices of pizza and 24 Capri Suns. What is the maximum number of people she can have at the party so that each person gets the same number of slices of pizza and the same number of Capri Suns? show all work What is the first thing that comes to mind when you think of the term Middle East? Make a list of questions that you want to answer about the region here is the picture pls answer another for my lil friend lol Aja has $30 to spend on a new backpack for the upcoming school year. She goes to Target, where all students receive a 15% discount. Aja finds a backpack at target that comes to $29.50 plus 6% sales tax. Does Aja have enough money? By how much or how little? (Add the sales tax to the cost before you take away the discount) Can a child with a disability be fully exempt from gym in school? What happens when carbon dioxide is passed over lime water? What happens when excess carbon dioxide is passed over lime water? Explain in 2-3 statements and write two balanced chemical equations. A resistor, capacitor, and switch are all connected in series to an ideal battery of constant terminal voltage. Initially, the switch is open and the capacitor is uncharged. What is the voltage across the resistor and the capacitor at the moment the switch is closed The automatic opening device of a military cargo parachute has been designed to open when the parachute is 155 m above the ground. Suppose opening altitude actually has a normal distribution with mean value 155 and standard deviation 30 m. Equipment damage will occur if the parachute opens at an altitude of less than 100 m. What is the probability that there is equipment damage to the payload of at least one of five independently dropped parachutes Why did America enter World War I? A. Congress saw that it "was the right time to jump in." B. Germany declared a policy of unlimited submarine warfare and sank a ship with 139 Americans on board. C. Germany was threatening to bomb America. D. Britain convinced them of their need to join the Triple Entente. Earthquake damage causes two rabbits to be separated from the rest of the rabbits in their large habitat. They have no way to get back to their original habitat. The two rabbits mate with each other. Over time, all the offspring in the new habitat are descendants of the original two rabbits. What are the outcomes of this situation? A.The rabbits in the new habitat will have lower genetic variation than the rabbits in the original habitat. B. The rabbits in the new habitat will have a higher risk of random genetic mutations than the rabbits in the original habitat. C. The rabbits in the original habitat have a greater likelihood of choosing an unrelated mate than the rabbits in the new habitat. D.The rabbits in the original habitat will be less likely to reproduce than the rabbits in the new habitat. To find the number of units that gives break-even for the product, solve the equation R C. Round your answer to the nearest whole unit A manufacturer has total revenue given by the function R = 90x and has total cost given by C 35x + 17,000, where x is the number of units produced and sold. A, 55 units B. 125 units C. 136 units D. 309 units In a short essay whats your inspiration. Ill mark brainliest