In the 30-60-90 triangle below side s has a length of And hypotenuse has a length of

Answers

Answer 1

Answer:

square root of (a^2 + b^2)

Step-by-step explanation:

According to the pythagorean theorem, the hypotenuse of a triangle is equal to its two shortest sides squared and added together. Then you get the square root to get rid of the squaring done in the equation.


Related Questions

if each customer takes minutes to check out, what is the probability that it will take more than minutes for all the customers currently in line to check out?

Answers

To calculate the probability that it will take more than X minutes for all the customers currently in line to check out, we would need to know the total number of customers in line. If we have that information, we can use probability theory to calculate the likelihood of the scenario you describe.

To answer your question, we need to know the number of customers currently in line and the average number of minutes each customer takes to check out:

1)Let's represent the number of customers as "N" and the average minutes per customer as "M".

2)We want to calculate the probability that it will take more than "X" minutes for all the customers in line to check out.

3) We can find this by first determining the total time needed for all customers to check out, which is N multiplied by M (N*M). Then, we need to find the probability that the total time taken is greater than X minutes.

Probability = (Total time taken > X minutes) / (All possible time outcomes)

Since we don't have specific values for N, M, or X, we cannot provide an exact probability. Please provide the necessary information, and we'll be happy to help you with the calculation.

To learn more about probability : brainly.com/question/30034780

#SPJ11

Let W be a symmetric positive definite matrix with Cholesky decomposition A= LLT = RTR. Prove that the lower triangular matrix L (or that the upper triangular matrix R) in the factorization is unique.

Answers

Proving the uniqueness of L (or R) in Cholesky decomposition of symmetric positive definite matrix A by assuming L1 and L2, and showing that L1 = L2 using A's positive definiteness and unique Cholesky decomposition.

To prove that the lower triangular matrix L in the Cholesky decomposition is unique, we assume that there exist two lower triangular matrices L1 and L2 such that [tex]A= L1L1^T = L2L2^T[/tex]. We need to show that L1 = L2.

We can start by observing that [tex]L1L1^T = L2L2^T[/tex] implies that[tex]L1^T = (L2L2^T)^{-1} L2[/tex]. Since L1 and L2 are both lower triangular, their transpose is upper triangular, and the inverse of an upper triangular matrix is also upper triangular. Thus, [tex]L1^T[/tex] and L2 are both upper triangular.

Now, let [tex]L = L1^T L2[/tex]. Since L1 and L2 are lower triangular, L is also lower triangular. Then we have:

[tex]LL^T = L1^T L2\;\; L2^T (L1^T)^T = L1^T L2\;\; L2^T L1 = L1 L1^T = A[/tex]

where we have used the fact that L1 and L2 are both lower triangular and their transposes are upper triangular. Thus, we have shown that L is also a lower triangular matrix that satisfies [tex]A = LL^T[/tex].

To show that L1 = L2, we use the fact that A is positive definite, which implies that all of its leading principal submatrices are also positive definite.

Let A1 be the leading principal submatrix of A of size k, and let L1,k and L2,k be the corresponding leading principal submatrices of L1 and L2, respectively. Then we have:

[tex]A1 = L1,k L1,k^T = L2,k L2,k^T[/tex]

Since A1 is positive definite, it has a unique Cholesky decomposition [tex]A1 = G G^T[/tex], where G is a lower triangular matrix. Thus, we have:

[tex]G G^T = L1,k L1,k^T = L2,k L2,k^T[/tex]

which implies that G = L1,k and G = L2,k, since both L1,k and L2,k are lower triangular. Therefore, we have shown that L1 = L2, and hence the lower triangular matrix L in the Cholesky decomposition of a positive definite matrix A is unique. A similar argument can be used to show that the upper triangular matrix R in the Cholesky decomposition is also unique.

In summary, we have proved that the lower triangular matrix L (or the upper triangular matrix R) in the Cholesky decomposition of a symmetric positive definite matrix A is unique.

This is done by assuming the existence of two lower triangular matrices L1 and L2 that satisfy [tex]A= L1L1^T = L2L2^T[/tex], and then showing that L1 = L2 using the fact that A is positive definite and has a unique Cholesky decomposition.

To know more about Cholesky decomposition refer here:

https://brainly.com/question/30764630#

#SPJ11

Given that s(−1/6)=0, factor as completely as possible: s(x)=(36(−1/6)^3)+(36(−1/6)^2) – 31(−1/6) – 6

Answers

The complete factorization of s(x) is:

s(x) = (-1/6)(x + 1/6)(32/3)

We can begin by simplifying the expression for s(x) using the fact that (-1/6) raised to an even power is positive, while (-1/6) raised to an odd power is negative.

We have:

36(-1/6)³ = 36(-1/216) = -1/6

36(-1/6)² = 36(1/36) = 1

31(-1/6) = -31/6

So, s(x) simplifies to:

s(x) = -1/6 + 1 - 31/6 - 6

s(x) = -32/6

s(x) = -16/3

Now, we can use the factor theorem to find factors of s(x). The factor theorem states that if a polynomial f(x) has a root of r, then (x-r) is a factor of f(x).

Since s(-1/6) = 0, we know that (-1/6) is a root of s(x). Therefore, (x + 1/6) is a factor of s(x).

We can use polynomial long division or synthetic division to divide s(x) by (x + 1/6). The result is:

s(x) = (-16/3) = (-1/6 + 1/6 - 31/6 - 6)/(x + 1/6)

Simplifying this expression gives:

s(x) = (-1/6)(x + 1/6)(32/3)

To learn more about the factorization;

https://brainly.com/question/29474540

#SPJ4

Use the functions to answer the question.

f(x)=27x−5
g(x)=−4x+25

At what value of x
do f(x)
and g(x)
intersect?

Answers

The value of x for which the functions f(x) and g(x) intersect as required to be determined in the task content is; x = 30 / 31.

What value of x represents the intersection point of f(x) and g(x)?

It follows from the task content that the value of x for which f(x) and g(x) intersect is to be determined.

For f(x) and g(x) to intersect, it follows that; f(x) = g(x) ; so that we have;

27x - 5 = -4x + 25

27x + 4x = 25 + 5

31x = 30

x = 30 / 31.

Ultimately, the value of x for which f(x) and g(x) intersect is; x = 30 / 31.

Read more on intersection of functions;

https://brainly.com/question/23532566

#SPJ1

suppose and are positive integers such that is divisible by exactly distinct primes and is divisible by exactly distinct primes. if has fewer distinct prime factors than , then has at most how many distinct prime factors?

Answers

Positive integers such that is divisible by exactly distinct primes and is divisible by exactly distinct primes, and has fewer distinct prime factors than , then has at most distinct prime factors.

First, let's consider what it means for a number to be divisible by exactly distinct primes. This means that the number can be written as a product of those primes raised to some power.

For example, 24 is divisible by exactly 2 distinct primes (2 and 3), because 24 = 2^3 * 3^1. Now, let's use this understanding to solve the problem. We know that has fewer distinct prime factors than , which means that can be written as a product of fewer primes than can.

Let's say that has distinct prime factors, and has distinct prime factors. Since is divisible by exactly distinct primes, we can write it as a product of those primes raised to some power: =  

Similarly, we can write as:= Now, we can see that every factor of must be a product of some subset of the prime factors in . For example, if and , then the factors of are:



- (no primes)
- (only )
- (only )
- (both and )

Note that every factor of must be of this form, since any other product of primes would involve some prime that isn't a factor of. But we know that has fewer distinct prime factors than ,

which means that there are at most subsets of the prime factors in that can be used to form factors of . In other words, has at most distinct prime factors.



To see why this is true, suppose that there were distinct prime factors of that could be used to form factors of . Then there would be subsets of those prime factors that could be used to form factors of , and each of those subsets would correspond to a distinct factor of .

But since has fewer distinct prime factors than , there can be at most such subsets. Therefore, we've shown that if and are positive integers

such that is divisible by exactly distinct primes and is divisible by exactly distinct primes, and has fewer distinct prime factors than , then has at most distinct prime factors.

To know more about subsets click here

brainly.com/question/13266391

#SPJ11


What is the complete factorization of the polynomial below?
x3-4x²+x-4
A. (x-4)(x-1)(x-1)
B. (x+4)(x + 1)(x-1)
C. (x+4)(x-1)(x-1)
OD. (x-4)(x + 1)(x-1)

Answers

The factorization  of the polynomial is:

(x - 4)*(x + i)*(x - i)

How to factorize the polynomial?

If (x - x₁) is a factor of a polynomial, then x₁ is a zero of the polynomial.

Now we can evaluate the polynomial in the values of the options and see which ones are zeros.

if x = 4

p(4) = 4³ - 4*4² + 4 - 4 = 0

So (x-  4) is a factor.

if x  = i

p(i)= i³ - 4*i² + i - 4

     = -i + 4 + i - 4  = 0

(x - i) is not a factor.

if x = -i

p(-i) = (-i)³ - 4*(-i)² - i - 4

        = i + 4 - i - 4 = 0

Then the factorization is:

(x - 4)*(x + i)*(x - i)

Learn more about factorization of:

https://brainly.com/question/25829061

#SPJ1

recessions occur at irregular intervals and are almost impossible to predict with much accuracy. a. true b. false

Answers

the answer is A it's True

Find y as a function of t if 4y^u - 729y = 0 with y(0) = 2, y'(0) = 9. Y =___________________________-

Answers

The solution is,: y(t) = e^0.428t ( 8 cos 0.285t + 29.55 sin 0.285t), value of y as a function of t.

Given:

 49y''+42y'+13y=0    ,y(0)=8,y'(0)=5  

Lets take  a y''+by'+c=0  is a differential equation.

So auxiliary equation will be

am^2 + bm + c = 0

So according to given problem our  auxiliary equation will be

49m^2 + 42m +13 =0

Then the roots of above equation

m = -b±√b² - 4ac / 2a

But D in the above question is negative so the roots of equation will be imaginary (D = b² - 4ac).

By solving m= -0.428+0.285i  , -0.428-0.285i,

 m= α ± β

So now by using giving condition we will find

C1 = 8, C2 = 29.55

So,

y(t) = e^0.428t ( 8 cos 0.285t + 29.55 sin 0.285t)    

To learn more on function click:

brainly.com/question/21145944

#SPJ4  

complete question:

Find y as a function of t if 49y" + 42y' + 13y = 0, y(0) = 8, y'(0) = 5. y(t) =

Shape C is made by joining shape A and shape B together. How much shorter is the perimeter of C than the total perimeter of A and B? Give your answer in cm

shape a- 10 cm, 6cm
shape b-7,5 cms

Answers

The perimeter of C is 10 cm shorter than the total perimeter of A and B.

What is perimeter of a shape?

A perimeter is the sum of the length of each side of a given figure expressed in appropriate units.

In the given question, shapes A and B is in the form of a rectangle. So that;

perimeter of a rectangle = 2(length + width)

Then;

perimeter of shape A = 2(6 + 10)

                                    = 32 cm

perimeter of shape B = 2(7 + 5)

                                    = 24 cm

perimeter of A and B = 32 + 24

                                   = 56 cm

perimeter of shape C = 6 + 7 + 5 + 7 + 5 + 6 + 10

                                    = 46 cm

Thus,

perimeter of A and B - perimeter of C = 56 - 46

                    = 10

The perimeter of C is 10 cm shorter than the perimeter of A and B.

Learn more about perimeter of a  shape at https://brainly.com/question/19749278

#SPJ1

Andrew bought a package of 6 chocolate cookies. Each cookie weighed 1.15 ounces. How much did the 6 cookies weigh all together?

Answers

Answer: 6.9 ounces

Step-by-step explanation:

1.15 ounces x 6 = 6.9 ounces

Answer:

195.612 grams which is 6.9 ounces

Step-by-step explanation:

one ounce equals 32.602 grams, and Andrew has a package of 6 cookies, so if you multiply 32.602 by 6 = 195.612 grams, which equals 6.9 ounces.

what is the definition of the standard error of estimate? multiple choice question. the dispersion (scatter) of observed values around the line of regression for a given x. the standard deviation of sample measures of the x variable. the standard deviation of sample measures of the y variable.\

Answers

The definition of the standard error of estimate is the dispersion (scatter) of observed values around the line of regression for a given x.

It represents the average amount that the predicted values of y from the regression line differ from the actual values of y for a given x. This measure helps to assess how well the regression equation fits the data points, and a smaller standard error of estimate indicates a better fit. The other options listed are not the correct definition of the standard error of estimate.

The standard deviation of sample measures of the x variable represents the variability of the x values, while the standard deviation of sample measures of the y variable represents the variability of the y values.



.To learn more about standard deviation click here

brainly.com/question/23907081

#SPJ11

Probability! Need help!

Answers

a. The two-way table is attached.

b. probability of lung cancer is 0.2.

d.  probability of a smoker is 0.625

How to calculate probability?

b. If someone in this population is a smoker, the probability that person will develop lung cancer is P(C | M) = 0.05/0.25 = 0.2 or 20%.

c. The general probability that an individual develops lung cancer is 0.08 or 8%, which is higher than the probability of developing lung cancer if they are a smoker (20%). This suggests that smoking is a significant risk factor for developing lung cancer.

d. If someone in this population gets lung cancer, the probability that person is a smoker is P(M | C) = 0.05/0.08 = 0.625 or 62.5%.

e. The general probability that an individual is a smoker is 0.25 or 25%, which is higher than the probability of being a smoker if they have lung cancer (62.5%). This suggests that smoking is a major contributing factor to developing lung cancer in this population.

Find out more on Probability here: https://brainly.com/question/24756209

#SPJ1

Matthew correctly compared the values of the digits in 588. 55. Which comparison could he have made? (Please help)

Answers

Matthew could have compared the values of the digits in the hundredths place, which are 8 and 5. He could have concluded that the digit 8 is greater than the digit 5, so the value of the digit in the hundredths place is greater than the value of the digit in the tenths place.

In the number 588.55, there are two digits in the ones place (8 and 5), one digit in the tenths place (5), and two digits in the hundredths place (8 and 5).

Matthew could have compared the values of the digits in the ones place, which are 8 and 5. He could have concluded that the digit 8 is greater than the digit 5, so the value of the digit in the tens place is greater than the value of the digit in the hundredths place.

Alternatively, Matthew could have compared the values of the digits in the hundredths place, which are 8 and 5. He could have concluded that the digit 8 is greater than the digit 5, so the value of the digit in the hundredths place is greater than the value of the digit in the tenths place.

To know more about digits  here

https://brainly.com/question/26856218

#SPJ4

whaaaat
help please! por favor

Answers

The values of the other 5 trigonometric functions of x is shown below:

cos x = -sqrt(15)/4tan x = -1/sqrt(15)csc x = 4sec x = -4/sqrt(15)cot x = -sqrt(15)

How to solve for other trigonometric functions

Given that sin x = 1/4, solve for cos x using the identity

cos^2 x + sin^2 x = 1

substituting for sin x

cos^2 x + (1/4 )^2 = 1

cos^2 x + 1/16 = 1

cos^2 x = 1 - 1/16

cos^2 x = 15/16

cos x = ± sqrt(15/16)

Since x lies in the second quadrant and cosine is negative here

cos x = -sqrt(15)/4

For tangent

tan x = sin x / cos x

tan x = (1/4) / (-sqrt(15)/4)

tan x = -1/sqrt(15)

For cosec x

csc x = 1 / sin x

csc x = 1 / (1/4)

csc x = 4

For sec x

sec x = 1 / cos x

sec x = 1 / (-sqrt(15)/4)

sec x = -4/sqrt(15)

For cot x

cot x = 1 / tan x

cot x = 1 / (-1/sqrt(15))

cot x = -sqrt(15)

Learn more about trigonometry at

https://brainly.com/question/13729598

#SPJ1

The value of cos θ is √15/4.

The value of tan θ is  1/√15.

The value of sec θ is 4/√15.

The value of cosec θ is 4.

The value of cot θ is √15.

What is the value of other trigonometry function of θ?

The value of other trigonometry function of θ is calculated as follows;

sinθ = opposite side / hypotenuse side = 1/4

The adjacent side of the right triangle is calculated as follows;

x = √ (4² - 1²)

x = √15

The value of cos θ is calculated as follows;

cos θ = √15/4

The value of tan θ is calculated as follows;

tan θ = sin θ / cosθ

tan θ = 1/4 x 4/√15

tan θ  = 1/√15

The value of sec θ is calculated as follows;

sec θ = 1/cos θ

sec θ = 1/( √15/4)

sec θ = 4/√15

The value of cosec θ is calculated as follows;

cosec θ = 1 / sinθ

cosec θ  = 1/(1/4)

cosec θ = 4

The value of cot θ is calculated as follows

cot θ = 1/tan θ

cot θ = 1/( 1/√15)

cot θ = √15

Learn more about trigonometry functions here: https://brainly.com/question/24349828

#SPJ1

Find a positive value c, for x, that satisfies the conclusion of the Mean Value Theorem for Derivatives for f(x) = 3x^2 - 5x + 1 on the interval [2, 5].
O 1
O 11/6
O 23/6 O 7/2

Answers

A positive value c, for x, that satisfies the conclusion of the Mean Value Theorem for Derivatives for f(x) = 3x² - 5x + 1 on the interval [2, 5] is 23/6. The correct answer is C.

The Mean Value Theorem for Derivatives states that there exists a value c in the open interval (a, b) such that:

f'(c) = (f(b) - f(a))/(b - a)

Here, f(x) = 3x² - 5x + 1 and the interval is [2, 5]. Therefore, a = 2 and b = 5.

First, we find f'(x) by differentiating f(x) with respect to x:

f'(x) = 6x - 5

Then, we find f(b) and f(a):

f(b) = 3(5)² - 5(5) + 1 = 61

f(a) = 3(2)² - 5(2) + 1 = 7

Now we can plug in these values to the Mean Value Theorem:

f'(c) = (f(b) - f(a))/(b - a)

6c - 5 = (61 - 7)/(5 - 2)

6c - 5 = 18

6c = 23

c = 23/6

Therefore, the value of c that satisfies the conclusion of the Mean Value Theorem for Derivatives for f(x) = 3x² - 5x + 1 on the interval [2, 5] is 23/6. The correct answer is C.

Learn more about function here

brainly.com/question/29633660

#SPJ11

Consider the differential equation d y d x = ( y − 1 ) x 2 where x ≠ 0 . A) Find the particular solution y = f ( x ) to the differential equation with the initial condition f ( 2 ) = 1 .B) For the particular solution y = f ( x ) described in part A) find lim x → [infinity] f ( x )

Answers

a) The particular solution y = f ( x ) to the differential equation with the initial condition f ( 2 ) = 1 is y = e¹/₃x³ + 1.

b) The value of the  lim x → [∞] f ( x ) is (y-1)x²

To find the particular solution y = f(x) to the given differential equation with the initial condition f(2) = 1, we need to integrate both sides of the equation with respect to x. This gives:

∫dy / (y - 1) = ∫x² dx

We can evaluate the integral on the right-hand side to get:

∫x² dx = (1/3)x³ + C1,

where C1 is the constant of integration. To evaluate the integral on the left-hand side, we can use a substitution u = y - 1, which gives du = dy. Then the integral becomes:

∫dy / (y - 1) = ∫du / u = ln|u| + C2,

where C2 is another constant of integration. Substituting back for u, we get:

ln|y - 1| + C2 = (1/3)x³ + C1.

We can rewrite this equation as:

ln|y - 1| = (1/3)x³ + C,

where C = C1 - C2 is a new constant of integration. Exponentiating both sides of the equation gives:

|y - 1| = e¹/₃x³ + C'.

Since we are given that f(2) = 1, we can use this initial condition to determine the sign of the absolute value. We have:

|1 - 1| = e¹/₃(2)³ + C',

which simplifies to:

C' = 0.

Therefore, the particular solution to the differential equation with the initial condition f(2) = 1 is:

y - 1 = e¹/₃x³,

or

y = e¹/₃x³ + 1.

To find the limit of f(x) as x approaches infinity, we can use the fact that eˣ grows faster than any polynomial as x approaches infinity. This means that the dominant term in the expression e¹/₃x³ will be e¹/₃x³ as x approaches infinity, and all the other terms will become negligible in comparison. Therefore, we have:

lim x → [∞] f(x) = lim x → [∞] (e¹/₃x³ + 1) = ∞.

In other words, the limit of the particular solution as x approaches infinity is infinity, which means that the function grows without bound as x gets larger and larger.

In this case, an equilibrium solution would satisfy dy/dx = 0, which implies that y = 1.

To see if this solution is stable, we can examine the sign of the derivative dy/dx near y = 1. In particular, we can compute:

dy/dx = (y-1)x² = (y-1)(x)(x),

which is positive when y > 1 and x > 0, and negative when y < 1 and x > 0.

To know more about differential equation here

https://brainly.com/question/30074964

#SPJ4

Aaliyah is taking a multiple choice test with a total of 20 points available. Each question is worth exactly 2 points. What would be Aaliyah's test score (out of 20) if she got 3 questions wrong? What would be her score if she got x x questions wrong?

Answers

In a multiple choice test where each question is worth exactly 2 points, The correct answer is Aaliyah's test score (out of 20) would be [tex]\frac{(40-2x)}{20}[/tex].

The maximum score a student can get is the sum of the points available for all the questions. In this case, Aaliyah can get a maximum score of 20 points. If Aaliyah got 3 questions wrong, that means she got 17 questions right. Each right answer is worth 2 points, so her score would be:[tex]17 * 2=34[/tex]

Therefore, Aaliyah's test score (out of 20) would be [tex]\frac{34}{20}[/tex][tex]= 1.7.[/tex]

If Aaliyah got x questions wrong, that means she got (20-x) questions right. Each right answer is worth 2 points, so her score would be:

[tex](20-x) * 2 = 40 - 2x[/tex]

To learn more about test score, visit here

https://brainly.com/question/30470978

#SPJ4

Consider the the following series. [infinity] 1 n3 n = 1 (a) Use the sum of the first 10 terms to estimate the sum of the given series. (Round the answer to six decimal places.) s10 = (b) Improve this estimate using the following inequalities with n = 10. (Round your answers to six decimal places.) sn + [infinity] f(x) dx n + 1 ≤ s ≤ sn + [infinity] f(x) dx n ≤ s ≤ (c) Using the Remainder Estimate for the Integral Test, find a value of n that will ensure that the error in the approximation s ≈ sn is less than 10-7

Answers

The estimate for the sum of the series is s ≈ 3025. We can improve our estimate to s ≈ 1.52. If we take n = 4472, then the error in the approximation s ≈ sn will be less than 10^-7.

(a) To estimate the sum of the given series using the sum of the first 10 terms, we can plug in n = 1 to 10 and add up the results:
s10 = 1^3 + 2^3 + 3^3 + ... + 10^3
Using the formula for the sum of consecutive cubes, we can simplify this expression to:
s10 = 1/4 * 10^2 * (10 + 1)^2 = 3025
So the estimate for the sum of the series is s ≈ 3025.

(b) To improve this estimate using the given inequalities, we first need to find a function f(x) that satisfies the conditions of the integral test. The integral test states that if f(x) is positive, continuous, and decreasing for x ≥ 1, and if a_n = f(n) for all n, then the series ∑a_n converges if and only if the improper integral ∫f(x) dx from 1 to infinity converges.
One function that satisfies these conditions and is convenient to work with is f(x) = 1/x^3. We can verify that f(x) is positive, continuous, and decreasing for x ≥ 1, and that a_n = f(n) for all n in our series.
Using this function, we can use the following inequalities:
sn + ∫10∞ 1/x^3 dx ≤ s ≤ sn + ∫10∞ 1/x^3 dx
We can evaluate the integrals using the power rule:
sn + [(-1/2x^2)]10∞ ≤ s ≤ sn + [(-1/2x^2)]10∞
sn + 1/2000 ≤ s ≤ sn + 1/1000
Substituting s10 = 3025, we get:
3025 + 1/2000 ≤ s ≤ 3025 + 1/1000
1.513 ≤ s ≤ 1.526
So we can improve our estimate to s ≈ 1.52.

(c) To use the Remainder Estimate for the Integral Test to find a value of n that will ensure that the error in the approximation s ≈ sn is less than 10^-7, we first need to find an expression for the remainder term Rn = s - sn. The Remainder Estimate states that if f(x) is positive, continuous, and decreasing for x ≥ 1, and if Rn = ∫n+1∞ f(x) dx, then the error in the approximation s ≈ sn is bounded by |Rn|.
Using our function f(x) = 1/x^3, we can write:
Rn = ∫n+1∞ 1/x^3 dx
Using the power rule again, we can evaluate this integral as:
Rn = [(-1/2x^2)]n+1∞ = 1/2(n+1)^2
So the error in the approximation is bounded by |Rn| = 1/2(n+1)^2.
To find a value of n that makes |Rn| < 10^-7, we can solve the inequality:
1/2(n+1)^2 < 10^-7
(n+1)^2 > 2 x 10^7
n+1 > sqrt(2 x 10^7)
n > sqrt(2 x 10^7) - 1
Using a calculator, we get n > 4471.
So if we take n = 4472, then the error in the approximation s ≈ sn will be less than 10^-7.

Learn more about the series here: brainly.com/question/15415793

#SPJ11

The rectangular floor of a church is going to be painted with Bear's Blue paint. Each gallon can covers 50 square feet of flooring. If the floor of the church measures 80 ft by 40 ft, how many gallons of paint are needed to cover the entire floor with Bear's blue paint?

Answers

Answer:

To find out how many gallons of Bear's Blue paint are needed to cover the entire floor of the church, we need to calculate the total area of the floor and divide that by the coverage area of one gallon of paint.

The floor of the church measures 80 ft by 40 ft, so its total area is:

Area = Length x Width = 80 ft x 40 ft = 3200 square feet

Each gallon of Bear's Blue paint covers 50 square feet, so the number of gallons needed is:

Gallons = Total Area ÷ Coverage per Gallon

Gallons = 3200 sq ft ÷ 50 sq ft/gallon

Gallons = 64 gallons

Therefore, 64 gallons of Bear's Blue paint are needed to cover the entire floor of the church.

solve this problem and I will give u a brainlst.

Answers

The sine, cosine and the tangent of angle M are shown below.

What is the ratios of the right triangle?

The trigonometric functions sine, cosine, and tangent provide the ratios of the sides in a right triangle.

The ratio of the length of the side directly opposite the angle to the length of the hypotenuse is known as the sine of an angle in a right triangle. The equation sin(angle) = opposite/hypotenuse can be used to express it.

For the problem;

Sin M = 6√35/36

= 0.986

Cos M = 6/36

= 0.167

Tan M =  6√35/6

= √35

= 5.916

Learn more about right triangle:https://brainly.com/question/30341362

#SPJ1

Test the series for convergence or divergence 1/5 + 1 . 5/5 . 8 + 1 . 5 . 9 / 5 . 8 .11 + 1 . 5 . 9 . 13 /5 . 8 . 11 . 14

Use the Ratio Test and evaluate: lim = ___

n→[infinity] (Note: Use INF for an infinite limit.) Since the limit is ___

Answers

Since the limit is 1, the Ratio Test is inconclusive. Therefore, we cannot determine the convergence or divergence of the series using the Ratio Test.

To test the series for convergence or divergence, we can use the Ratio Test.

The Ratio Test states that if lim |an+1/an| = L, then the series converges if L < 1 and diverges if L > 1. If L = 1, the test is inconclusive.

Let's apply the Ratio Test to our series:

|a(n+1)/an| = |(1.5n+1)/(5n+3)(8n+5)/(1.5n+4)|

Taking the limit as n approaches infinity:

lim |a(n+1)/an| = lim |(1.5n+1)/(5n+3)(8n+5)/(1.5n+4)|
= lim (1.5n+1)/(5n+3) * (1.5n+4)/(8n+5)
= (3/5) * (3/8)
= 9/40

Since the limit is less than 1, we can conclude that the series converges by the Ratio Test.

Therefore, the series 1/5 + 1 . 5/5 . 8 + 1 . 5 . 9 / 5 . 8 .11 + 1 . 5 . 9 . 13 /5 . 8 . 11 . 14 converges.
To test the series for convergence or divergence, we will use the Ratio Test. The series is:

1/5 + 1 . 5/5 . 8 + 1 . 5 . 9 / 5 . 8 .11 + 1 . 5 . 9 . 13 /5 . 8 . 11 . 14

Let a_n be the general term of the series. Then, we evaluate the limit:

lim (n→infinity) |a_(n+1) / a_n|

If the limit is less than 1, the series converges; if the limit is greater than 1, the series diverges; if the limit equals 1, the Ratio Test is inconclusive.

After simplifying the terms, the series becomes:

1/5 + 1/8 + 1/11 + 1/14...

Now, let a_n = 1/(5 + 3n). Then, a_(n+1) = 1/(5 + 3(n+1)) = 1/(8 + 3n).

lim (n→infinity) |a_(n+1) / a_n| = lim (n→infinity) |(1/(8 + 3n)) / (1/(5 + 3n))|

lim (n→infinity) (5 + 3n) / (8 + 3n) = 1

Learn more about limit at: brainly.com/question/29795597

#SPJ11

given one of the coin shows heads and was thrown on the second day, what is the probability the other coin shows heads?

Answers

The probability the other coin shows heads is 0.5, given when one of the coins shows heads and was thrown on the second day

This issue includes conditional likelihood. Let's characterize the taking after occasions:

A: The primary coin appears as heads.

B: The moment coin appears heads.

C: The two coins were tossed on distinctive days.

We are given that one of the coins appears head, which it was tossed on the moment day. Ready to utilize this data to upgrade our earlier probabilities for A, B, and C.

First, note that in case both coins were tossed on distinctive days, at that point the probability that the primary coin appears heads and the moment coin appears heads is 1/4. This can be because there are four similarly likely results:

HH, HT, TH, and TT. Of these, as it were one has both coins appearing heads.

In the event that we know that the two coins were tossed on diverse days, at that point the likelihood that the primary coin appears heads is 1/2 since there are as it were two similarly likely results:

HT and TH.

So, let's calculate the likelihood of each occasion given that one coin appears heads and was tossed on the moment day:

P(A | C) = P(A and C) / P(C) = (1/4) / (1/2) = 1/2

P(B | C) = P(B and C) / P(C) = (1/4) / (1/2) = 1/2

Presently ready to utilize Bayes' theorem to discover the likelihood of B given A and C:

P(B | A, C) = P(A and B | C) / P(A | C) = (1/4) / (1/2) = 1/2

This implies that given one coin shows heads and it was tossed on the moment day, the likelihood that the other coin appears heads is 1/2.

To know more about probability refer to this :

https://brainly.com/question/24756209

#SPJ4 

edge of a cube is ,,a". find perimeter of a A1C1D triangle

Answers

The perimeter of triangle in a cube is 2a(1 + √3) units.

First, we need to find the length of the diagonal AC of the face A₁C₁D. We can do this by using the Pythagorean theorem on the right triangle A₁AC

AC² = AA₁² + A₁C₁²

Since AA₁ and A₁C₁ are both diagonals of the cube with length a√2, we can substitute those values in

AC² = (a√2)² + (a√2)²

AC = 4a²

Taking the square root of both sides, we get

AC = 2a

Now that we know the length of AC, we can find the perimeter of the triangle A₁C₁D. The perimeter is simply the sum of the lengths of the three sides

Perimeter = AC + A₁D + C₁D

We already know the length of AC is 2a. To find A₁D and C₁D, we can use the Pythagorean theorem again on the triangles A₁AD and C₁CD

A₁D² = AA₁² + AD²

A₁D² = (a√2)² + a²

A₁D² = 3a²

A₁D = a√3

C₁D² = CC₁² + CD²

C₁D² = (a√2)² + a²

C1D² = 3a²

C1D = a√3

So now we can substitute in the values for AC, A₁D, and C₁D

Perimeter = 2a + a√3 + a√3

Perimeter = 2a + 2a√3

Perimeter = 2a(1 + √3)

Therefore, the perimeter of triangle A₁C₁D is 2a(1 + √3) units.

To know more about perimeter of triangle:

https://brainly.com/question/29507476

#SPJ1

--The given question is incomplete, the complete question is given

" edge of a cube is "a". find perimeter of a A1C1D triangle "--

WILL GIVE BRAINLIESTS A piece of stone art is shaped like a sphere with a radius of 4 feet. What is the volume of this sphere? Let 3. 14. Round the answer to the nearest tenth.

0 67. 0 ft

O 85. 31

0 201. 0 ft

O 267. 9 A3

Answers

A piece of stone art is shaped like a sphere with a radius of 4 feet. The volume is 267.9 A3" (rounded to the nearest tenth).

The formula for the volume of a sphere is:

V = (4/3)πr³

Volume is a measure of the amount of space occupied by a three-dimensional object. It is typically measured in cubic units, such as cubic feet, cubic meters, or cubic centimeters. The formula for finding the volume of different shapes varies depending on the shape.

where r is the radius of the sphere and π is approximately 3.14.

Substituting the given value of r = 4, we have:

V = (4/3)π(4)³

V = (4/3)π(64)

V = 268.08 (rounded to the nearest tenth)

Therefore, the volume of the sphere is approximately 268.1 cubic feet.

To know more about volume  here

https://brainly.com/question/463363

#SPJ4


Which of the following equations is equivalent to 2/3 a-7 = 3?
3а - 7 = 1
3а - 7 = 3
за - 21 = 3
2a - 21 = 1

Answers

The equation which is equivalent to the given equation; 2/3 a - 7 = 1/3 as required to be determined is; 2a - 21 = 1.

Which equation is equivalent to the given equation?

It follows from the task content that the correct form of the given equation is; 2/3 a - 7 = 1/3.

Therefore, in a bid to find an equivalent equation; one must multiply both sides of the equation by 3 so that we have;

2a - 21 = 1.

On this note, it can be inferred that the equation which is equivalent to the given equation is; 2a - 21 = 1

Read more on equivalent equation;

https://brainly.com/question/29827889

#SPJ1

what is the shortest distance between the circles defined by $x^2-24x +y^2-32y+384=0$ and $x^2+24x +y^2+32y+384=0$?

Answers

The shortest distance between the two circles is 32 units.The shortest distance between two circles can be found by calculating the distance between their centers and subtracting the sum of their radii. First, we'll identify the centers and radii of the given circles.

Circle 1: dollars x^2-24x +y^2-32y+384=0dollars
Completing the square for both x and y terms, we get dollars(x-12)^2 + (y-16)^2 = R_1^2dollars. The center is dollars(12, 16)dollars, and by comparing the equation, we see that dollarsR_1^2 = 144 + 256 - 384 = 16dollars, so dollarsR_1 = 4dollars

Circle 2: dollarsx^2+24x +y^2+32y+384=0dollars
Similarly, we complete the square for both x and y terms, resulting in dollars(x+12)^2 + (y+16)^2 = R_2^2dollars. The center is dollars(-12, -16)dollars, and by comparing the equation, we find that dollarsR_2^2 = 144 + 256 - 384 = 16$, so dollarsR_2 = 4dollars.

Now, we calculate the distance between the centers:
dollarsd = \sqrt{(12-(-12))^2 + (16-(-16))^2} = \sqrt{24^2 + 32^2} = \sqrt{576 + 1024} = \sqrt{1600} = 40dollars.

Finally, we find the shortest distance between the circles by subtracting the sum of their radii from the distance between their centers:
Shortest distance = dollarsd - (R_1 + R_2) = 40 - (4 + 4) = 32dollars.

So, the shortest distance between the two circles is 32 units.

learn more about radii here: brainly.com/question/3142232

#SPJ11

Solve the right triangle. Round decimal answers to the nearest tenth.

A right triangle X Y Z with base X Y is drawn. The length of side Y Z is 18 units and length of side X Z is 25 units. Angle X Y Z is a right angle.

$m\angle X\approx$
$\degree$ , $m\angle Z\approx$
$\degree$ , $XY\approx$

Answers

The value of XY to the nearest tenth is 17.3

What is Pythagoras theorem?

Pythagoras theorem states that the sum of the squares on the legs of a right triangle is equal to the square on the hypotenuse.

C² = a²+b²

where c is the hypotenuse and a and b are the legs of the triangle. Pythagoras theorem can only work in right angle.

c = XZ

a = XY

b = YZ

25² =a²+ 18²

a² = 25² - 18²

a² = 625 - 324

a² = 301

a = √ 301

a = 17.3 ( nearest tenth)

therefore the value of side XY is 17.3 units

learn more about Pythagoras theorem from

https://brainly.com/question/343682

#SPJ1

Im stuck on these two please help

Answers

Answer:

1. 13 Miles

2. 32

Step-by-step explanation:

1. 8+5=13

2. 40-8=32

a waste management company is designing a rectangular construction dumpster that will be twice as long as it is wide and must hold of debris. find the dimensions of the dumpster that will minimize its surface area.

Answers

The dimensions of the dumpster that will minimize its surface area are approximately 2.924 feet by 5.848 feet by 3.33 feet.

To find the dimensions of the dumpster that will minimize its surface area, we need to use optimization techniques. Let's start by defining our variables:

Let x be the width of the dumpster (in feet)
Then, the length of the dumpster is 2x (twice as long as it is wide)

Let V be the volume of the dumpster (in cubic feet)
Then, we know that V = x * (2x) * h (where h is the height of the dumpster)

The problem states that the dumpster must hold 100 cubic feet of debris, so we can write:

x * (2x) * h = 100
h = 100 / (2x^2)

Next, we need to find the surface area of the dumpster. This is given by:

A = 2lw + 2lh + 2wh

Substituting in our expressions for l and h, we get:

A = 2(x * 2x) + 2(x * 100 / 2x^2) + 2(2x * 100 / 2x^2)
A = 4x^2 + 200/x

To minimize the surface area, we need to take the derivative of A with respect to x and set it equal to zero:

dA/dx = 8x - 200/x^2 = 0
8x = 200/x^2
x^3 = 25
x = 25^(1/3) = 2.924 feet (rounded to 3 decimal places)

Therefore, the width of the dumpster is approximately 2.924 feet and the length is twice as long, or 5.848 feet. To find the height, we can use our expression for h:

h = 100 / (2x^2) = 3.33 feet (rounded to 2 decimal places)

So, the dimensions of the dumpster that will minimize its surface area are approximately 2.924 feet by 5.848 feet by 3.33 feet.

Learn more about :

surface area : brainly.com/question/30945207

#SPJ11

00 Q) Determine whether {(und)"} 3" Converges or diverges no

Answers

We can say that {(und)"} 3" diverges because it is a geometric sequence with a common ratio of 3, which is greater than 1.

To determine whether the sequence {(und)"} 3" converges or diverges, we need to look at the behavior of the terms as n gets larger.

We can start by writing out the first few terms of the sequence:

{(und)"} 3" = 3, 9, 27, 81, ...

We can see that each term is simply the previous term multiplied by 3. This means that the sequence is a geometric sequence with a common ratio of 3.

In general, a geometric sequence with a common ratio r will converge if |r| < 1 and diverge if |r| ≥ 1.

In the case of {(und)"} 3", the common ratio is 3, which is greater than 1. Therefore, the sequence diverges.

To summarize, we can say that {(und)"} 3" diverges because it is a geometric sequence with a common ratio of 3, which is greater than 1.

Learn more about diverges  here:

https://brainly.com/question/30889536

#SPJ11

Other Questions
Beyond binary Merkle trees: Alice can use a binary Merkle tree to commit to a set of elements = {T1, , T} so that later she can prove to Bob that some T is in using a proof containing at most log hash values. In this question your goal is to explain how to do the same using a y tree, that is, where every non-leaf node has up to children. The hash value for every non-leaf node is computed as the hash of the concatenation of the values of its children. a. Suppose = {T1, , T9}. Explain how Alice computes a commitment to S using a ternary Merkle tree (i.e. = 3). How can Alice later prove to Bob that T4 is in . b. Suppose contains elements. What is the length of the proof that proves that some T is in , as a function of and ? c. For large , what is the proof size overhead of a y tree compared to a binary tree? Can you think of any advantage to using a > 2? (Hint: consider computation cost) 5. A July 4th promotion included a $5. 00 mail-in rebate for thepurchase of a picnic cooler and a store coupon for $0. 50 off theprice of a case of 24 cans of soda. For the company picnic,Carl Rhiel purchased a 48-quart cooler for $32. 99 and a case ofsoda for $6. 99. What did the cooler cost after the rebate if anenvelope costs $0. 20 and a Forever stamp costs $0. 41? Which is least likely to be a reason for a company to maintain a blog? A.to answer consumer concerns and questions B.to defend corporate reputation C. to eliminate blogs that cast the company in a negative light. conclusion question: carefully consider all of the calculated torques in your table. what can you conclude from your results? carefully explain your answer using well-written complete sentences. digital capabilities that make possible a highly interactive and individualized information and exchange environment for shoppers and buyers is referred to as according to a recent survey, voter turnout for young people is at an all-time low. from a random sample, it was found that 35% of young people voted in the last primary election. if three people are interviewed, what is the probability that none of them voted in the primary election? what is the probability that only one of them voted in the primary election? what is the probability that 2 of them voted in the primary election? what is the probability that all three of them voted in the primary election? the graph above represents the data collected under certain conditions for the decomposition of n2o4(g) according to the chemical equation above. based on the graph, at approximately which time is equilibrium established? a persuasive appeal that uses _____ may be supported by including a small or free gift. as of 2015, approximately ______ of u.s. homes had at least one hdtv set. List four tasks performed by a typical file system. List three folders normally found at the root of a Linux file system and what the folder is typically used for the present atmospheric concentration of carbon dioxide is approximately 396 ________. Evaluate the following expression. Leave the answer in exact form.arctan (tan(-33pi/10)) [tex]x + 6x + 3y + 4y[/tex]but it will be [tex]7x + 7y[/tex]then what do I do next?? please answer correctlyDetermine the interval and radius of convergence for the power series *+2 k21k+2 k1 The interval is [ 1). The radius is r= Teenage boys who are ______ are just as likely as girls to form intimate same-sex ties. A. strongly masculine. B. androgynous. C. identity-foreclosed We'd like to evaluate what discounts a policy is eligible for. Each driver will have their own discounts they are applicable for. Defensive driving, Accident free, low mileage, and senior. To qualify for defensive driving, the driver needs to have taken a safety course and be 19 or older. For Accident free, the driver cannot have an accident within the past 5 years. For low mileage, their yearly average needs to be less than 5,000. Low mileage is only applicable if they are not new on the policy. Senior discount is provided for all drivers over 55. You are given an array of strings containing data for each driver: Within each string, the driver's data will be included. The data will be separated by a comma ("") The information provided will be in the following order, driverName, driverAge, odometerFrom6MonthsPrior, currentOdometer, monthsSinceLastAccident, safetyCourse Taken Example provided String array: ["Alice,22,3435,5423,-1,true", "Ralph,33,33,333,33,true"]Once each driver's discount has been determined, return an array of strings. The format for each driver needs to be:Driver's Name, Defensive driving discount, Accident free discount, low mileage discount, senior discount Example return result: ["Alice,false, false, false,false",Ray,false,false,false,false"] Note: The safety Course Taken will be given as the String "true" or "false".For the discounts, their return value will need a String value as well. A value of -1 for monthsSinceLastAccident indicates no previous accidents. You are provided a method createDrivers that will take in the String driversArray and return a list of drivers. Your solution should make use of this function and implement the Driver class. If they are new on the policy, odometerFrom6MonthsPrior will be an empty string. the entropy of the universemultiple choiceis always decreasing.is conserved.is impossible to calculate.can only increase or remain constant. which of the following developments has resulted in a transfer of power from manufacturers to retailers? group of answer choices a significant decrease in promotional sensitivity and time sensitivity among consumers has occurred since the early 2000s. emergence of larger chains with greater buying power and clout. the advent of optical scanners and computers has given manufacturers access to sales information. an increase in brand loyalty among consumers has led to an increase in sales promotion activities. increasingly, manufacturers are introducing more private-label brands into the market. Below, a two-way table is givenfor a class of students.MaleFemaleTotalFreshman Sophomore Junior462346Senior23TotalFind the probability the student is a freshman,given that they are a male.P(freshman | male) = P(freshman and male) = [?]%P(male)Round to the nearest whole percent.Enter which type of algorithm is used when two different keys, one to encrypt and one to decrypt, are used in encryption?