In SEC, molecules that are much smaller than the fractionation range of the Sephadex SP will elute in the void volume, represented by the symbol (option E)Vo.
In SEC (Size Exclusion Chromatography), the separation of molecules is based on their size. Sephadex SP is a matrix with a specific fractionation range that separates molecules based on their size. Molecules that are much smaller than the fractionation range of the Sephadex SP will not interact with the matrix and will not be separated from the void volume (Vo). Therefore, they will elute in the void volume (Vo) which is the volume of the mobile phase that is not retained by the matrix. Hence, the correct option is E. Vo.
Learn more about molecules here: brainly.com/question/19556990
#SPJ4
why is it necessary to heat under reflux for this reaction, as opposed to simply boiling the mixture in an open flask?
As compared to simply boiling the mixture in an open flask, it is necessary to heat under reflux for this reaction because: During a reflux, the volatile solvent that evaporates from the reaction mixture condenses back into the reaction flask, allowing the reaction mixture to stay at a constant temperature.
During the reaction, a side product, water, is formed. Boiling in an open flask would cause the water to evaporate along with the solvent, leading to a lower yield of the desired product. In comparison, refluxing allows the water to condense and remain in the reaction mixture, ensuring that the reaction proceeds as intended and that the yield of the desired product is high. Aside from the aforementioned reasons, it is necessary to heat under reflux for this reaction since refluxing allows the reaction to proceed to completion. When the solvent vaporizes, the vapor carries with it the product, which condenses back into the flask due to the condenser's cooling effect. This allows the reaction to proceed to completion, resulting in a higher yield of the desired product. This technique also prevents the product from overheating, preventing its decomposition or degradation.
for more such questions on constant temperature.
https://brainly.com/question/28886417
#SPJ11
what are the numbers of bonding groups and lone pairs in each case? check all that apply. what are the numbers of bonding groups and lone pairs in each case?check all that apply. five electron groups, with four bonding groups and a lone pair. two electron groups, with both groups being bonding groups. five electron groups, with two bonding groups and three lone pairs. five electron groups, with a bonding group and four lone pairs. two electron groups, with a bonding group and a lone pair.
The number of bonding groups and lone pairs in each case is according to the number of electron groups.
1. In the case of five electron groups, with four bonding groups and a lone pair, there are 4 bonding groups and 1 lone pair.
2. In the case of two-electron groups, with both groups being bonding groups, there are 2 bonding groups and 0 lone pairs.
3. In the case of five electron groups, with two bonding groups and three lone pairs, there are 2 bonding groups and 3 lone pairs.
4. In the case of five electron groups, with a bonding group and four lone pairs, there is 1 bonding group and 4 lone pairs.
5. In the case of two-electron groups, with a bonding group and a lone pair, there is 1 bonding group and 1 lone pair.
Learn more about bonding groups at brainly.com/question/28416313
#SPJ11
7/which is true regarding excretion when tubular urine is more alkaline? a. both weak acids and weak bases are excreted more rapidly. b. weak acids are excreted more rapidly, and weak bases are excreted more slowly. c. weak acids are excreted more slowly, and weak bases are excreted more rapidly. d. both weak acids and weak bases are excreted more slowly.
When tubular urine is more alkaline, weak acids are excreted more slowly and weak bases are excreted more rapidly. This is because the pH of the urine affects the ionization state of these compounds, which in turn affects their ability to be excreted.
In an alkaline environment, weak acids will be more ionized and less likely to be excreted. This is because ionized molecules are less likely to be reabsorbed by the tubular cells and more likely to be excreted into the urine. On the other hand, weak bases will be less ionized and more likely to be excreted. This is because non-ionized molecules are more likely to diffuse across the tubular membrane and be excreted.
Therefore, option (c) is true: weak acids are excreted more slowly, and weak bases are excreted more rapidly when tubular urine is more alkaline. It is important to note that this is the opposite of what happens in acidic urine, where weak acids are excreted more rapidly and weak bases are excreted more slowly.
To learn more about weak acids refer to:
brainly.com/question/22104949
#SPJ4
uranium-235 has a half life of 58 minutes. if you have 1,000 grams, how much would be left in 2 hours?
Given that uranium-235 has a half-life of 58 minutes and initially there is 1000 grams of it. To find out how much would be left after 2 hours.
we need to convert the 2 hours into minutes which is as follows:1 hour = 60 minutes Thus, 2 hours = 2 * 60 minutes = 120 minutes After the first half-life period of 58 minutes, half of the uranium-235 will decay and there will be 1000/2 = 500 grams of it remaining. After the second half-life period of 58 minutes, half of the 500 grams will decay and there will be 250 grams of uranium-235 remaining.
Now, we have 120/58 = 2.07 half-life periods of uranium-235. Therefore, the amount of uranium-235 remaining after 2 hours can be calculated using the following formula: Amount Remaining = Initial Amount × (1/2)².07= 1000 × 0.153= 153 grams. So, after 2 hours, there will be 153 grams of uranium-235 remaining.
Learn more about half life of uranium-235 at: brainly.com/question/30876041
#SPJ11
Give the ion notation for an atom with 6 protons and 2 electrons
An atom with 6 protons and 2 electrons would have a net charge of +4, indicating that it has lost two electrons. This atom is now referred to as a cation, specifically a helium cation (He₂⁺). The ion notation for this atom would be written as He₂⁺.
The notation is a shorthand way of representing the atomic structure of an ion. It includes the chemical symbol of the element followed by the charge of the ion written as a superscript. In this case, the chemical symbol is He, which represents helium. The superscript of 2+ indicates that the helium atom has lost two electrons, leaving it with a net positive charge.
It is important to note that the number of protons in the nucleus of the helium ion remains the same as in a neutral helium atom. However, the number of electrons in the ion has decreased, resulting in a change in its chemical and physical properties. This ion is now more likely to bond with other ions or atoms to regain its lost electrons and become more stable.
To learn more about ion notation refer to:
brainly.com/question/23716253
#SPJ4
Obi is trying to determine if a powdery, solid substance is an element or a compound. After recording some observations, he strongly heats a sample of the solid over a burner flame. After fifteen minutes, he turns off the flame and allows the sample to cool. He records his final observations in the data table. Which is the best explanation of his results? The heating changed some of the sample to gas, causing the mass to decrease without breaking down the sample. Therefore, the original sample is a compound. The appearance stayed the same, showing that the sample was not broken down by heating. Therefore, the original substance is an element. The mass decreased during heating and some of the impurities escaped. Therefore, the original substance is an element. The chemical reaction with acid changed, showing that the sample was broken down by heating. Therefore, the original substance is a compound
Since an element only contains one type of atom and cannot be divided into simpler substances using physical or chemical processes, it is most probable that the sample is an element.
The best explanation of Obi's results is that the appearance stayed the same, showing that the sample was not broken down by heating.
Therefore, the original substance is an element. When a substance is heated, it can undergo different types of changes depending on its composition. In this case, since the appearance of the sample did not change after heating, it indicates that the sample did not break down into simpler substances.
Therefore, the sample is most likely an element, since elements are composed of only one type of atom and cannot be broken down into simpler substances by physical or chemical means.
To learn more about sample refer to:
brainly.com/question/14328413
#SPJ4
The best explanation of Obi's results is: The appearance stayed the same, showing that the sample was not broken down by heating. Therefore, the original substance is an element.
If the appearance of the sample remained the same after heating, it indicates that the sample did not undergo any chemical changes and did not decompose into simpler substances. This suggests that the sample is an element, which is a pure substance made up of only one type of atom that cannot be broken down into simpler substances by chemical means. The other options do not explain the observation that the appearance of the sample stayed the same after heating, which is a crucial observation in identifying whether the sample is an element or a compound.
To learn more about element visit;
https://brainly.com/question/13794764
#SPJ4
Which one of the following would form a precipitate with PO3-ions in aqueous solution? A) K+ B) NH4+ C) Ca2+ D) None of these would form a precipitate.
The compound which forms a precipitate with PO3- ions in aqueous solution is Ca2+. The correct option is (C) Ca2+.
When there is a reaction of phosphate (PO43-) with calcium (Ca2+) or magnesium (Mg2+) cations present in the solution, it creates an insoluble compound that will precipitate out of the solution. Aqueous solutions are solutions that are mixed with water. They are usually clear, but they can produce precipitates if certain conditions are met. If a substance is insoluble in water, it will not dissolve in it. As a result, the solution's concentration of that substance will be less than the saturation concentration. If a solution is heated or its pH is altered, the substance's solubility in water can vary. To create a precipitate, two aqueous solutions must combine to produce a solid substance that falls out of solution.
for more such question on precipitate
https://brainly.com/question/30344509
#SPJ11
12.
11.
10.
Ethanol, C₂H5OH, is the alcohol that is present in alcoholic drinks.
Ethanol is soluble in water. Complete the diagram below to show why ethanol is soluble in
water. You should include relevant lone pairs and dipoles and label the bond responsible
for this solubility.
[3]
H₂C₂
H
Petroleum, which is a mixture of hydrocarbons, is an important source of chemicals. These
chemicals can be obtained by fractional distillation and further processing such as cracking and
isomerisation.
(a) During fractional distillation, explain why hydrocarbons containing few carbon atoms distil
at lower temperatures than hydrocarbons with many carbon atoms.
[3]
QWC[1]
Modern artificial fertilisers contain many ions that are used by plants to help their growth. These
include potassium ions, ammonium ions, nitrate ions and phosphate ions.
(a) Ammonium ions are tetrahedral. The formula of an ammonium ion is NH..
(i) Draw a dot-and-cross diagram to show the bonding in an ammonium ion.
[1]
E
Answer:
During fractional distillation, hydrocarbons with fewer carbon atoms have weaker intermolecular forces of attraction between molecules due to their smaller size and fewer electrons. This results in a lower boiling point and they vaporize more easily at lower temperatures. In contrast, hydrocarbons with more carbon atoms have stronger intermolecular forces of attraction due to their larger size and more electrons. As a result, they require higher temperatures to vaporize and separate from other hydrocarbons in the mixture during fractional distillation.
I'm sorry, but it seems like there might be a typo in your question. You have written "NH.." as the formula for an ammonium ion, which is incomplete. The correct formula is NH4+. However, I can provide you with the dot-and-cross diagram for NH4+.
The dot-and-cross diagram for NH4+ is as follows:
H
|
H — N — H
|
H+
In this diagram, each hydrogen atom shares a single electron with the nitrogen atom, forming a covalent bond. The nitrogen atom also has a lone pair of electrons. The ammonium ion is positively charged because it has lost one electron, which is represented by the + sign.
(Please could you kindly mark my answer as brainliest you could also follow me so that you could easily reach out to me for any other questions)
among the following h atom transitions, which would emit a photon of light with the greatest energy? a) n = 5 to n = 3. b) n = 4 to n = 2. c) n = 2 to n = 1. d) n = 5 to n = 4.
The following H atom transitions, that would emit the photon of the light with the greatest energy is n = 2 to n = 1. The correct option is c.
The largest energy is given as :
ΔE = 13.6 ( 1/nf² - 1/ ni²)
a) n = 5 to n = 3
ΔE = 13.6 ( 1/3² - 1/ 5²)
ΔE = 0.97 eV
b) n = 4 to n = 2
ΔE = 13.6 ( 1/2² - 1/ 4²)
ΔE = 2.4 eV
c) n = 2 to n = 1
ΔE = 13.6 ( 1/1² - 1/ 2²)
ΔE = 10.2 eV
d) n = 5 to n = 4
ΔE = 13.6 ( 1/4² - 1/ 5²)
ΔE = 0.7 eV
Thus, the transition would emit the photon of light with the greatest energy is n= 2 to n= 1. The correct option is c.
To learn more about transition here
https://brainly.com/question/14649497
#SPJ4
How was James Oliver's iron plow an improvement over John Deere's steel plow?
James Oliver's iron plow was an improvement over John Deere's steel plow because it was less expensive and lasted longer.
The iron plow was made by casting iron in a mold, which was cheaper and easier than the process used to make steel plows.
Additionally, iron was more durable than steel at the time, meaning it lasted longer and required less maintenance.
This allowed farmers to use the plow for a longer period before having to replace it. While John Deere's steel plow was an improvement over earlier plows, Oliver's iron plow was a significant improvement that revolutionized farming.
To know more about revolutionized farming, visit :
https://brainly.com/question/2007737
#SPJ1
Example 4: How many joules are required to boil 150. grams of water? (The heat of vaporization of water
is 40.67 kJ/mole.)
The joules required to boil 150. grams of water, given the heat of vaporization of water is 338,400 J.
How to find the energy required ?To calculate the amount of energy required to boil 150 grams of water, we can use the following formula:
q = m × ΔHvap
First, we need to convert the heat of vaporization from kJ/mol to J/g:
40.67 kJ/mol = 40.67 × 10^3 J/mol
40.67 × 10^3 J/mol / 18.02 g/mol = 2256 J/g
So the heat of vaporization of water is 2256 J/g.
Now we can plug in the values:
q = 150 g × 2256 J/g
q = 338,400 Joules
Find out more on joules at https://brainly.com/question/8848314
#SPJ1
if you are walking along a sandy beach and grab a handful of sand, which contained some zircon crystal, could you determine the age of the sand?
Yes, if you are walking along a sandy beach and grab a handful of sand that contains some zircon crystals, you could determine the age of the sand.
Zircon is a mineral that contains a radioactive isotope called zirconium-90. It decays into lead-206 with a half-life of 4.5 billion years.
By analyzing the amount of lead 206 and zirconium 90 in a rock or mineral, scientists can calculate the age of the rock or mineral through a process called radiometric dating.
Radiometric dating is a technique that uses the natural decay rate of unstable isotopes to determine the age of rocks and minerals. Scientists can measure the amount of each isotope in a sample to calculate the age of the sample.
The half-life of a radioactive isotope is the amount of time it takes for half of the parent isotope to decay into the daughter isotope. By knowing the half-life of an isotope, scientists can calculate the age of the sample.
Zircon is a mineral that contains zirconium-90, which decays into lead-206 with a half-life of 4.5 billion years. By measuring the amount of lead-206 and zirconium-90 in a rock or mineral, scientists can calculate the age of the rock or mineral.
This process is called radiometric dating.
Therefore, if you are walking along a sandy beach and grab a handful of sand that contains some zircon crystals, you could determine the age of the sand by analyzing the amount of lead-206 and zirconium-90 in the zircon crystals.
To know more about the radiometric dittoing https://brainly.com/question/14799339
#SPJ11
Match the following definitions to the most appropriate term: a substance that donates one proton when dissolved in water [ Choose] a substance that donates two protons when dissolved in water [ Choose ] a substance that donates three protons when dissolved in water any ionic compound whose cation comes from a base and whose anion comes from an acid [Choose] the solution in the buret [ Choose] the solution in the flask [Choose]analyte diprotic acid salt triprotic acid monoprotic acid titrant
In acid-base titrations, the titrant is a solution of known concentration that is added to the analyte, which is the solution being analyzed.
The endpoint of the titration is the point at which the reaction between the titrant and analyte is complete, and the amount of titrant required to reach the endpoint is used to calculate the concentration of the analyte. Monoprotic acids donate one proton, diprotic acids donate two protons, and triprotic acids donate three protons when dissolved in water. Salts are formed by the reaction between an acid and a base, resulting in an ionic compound with a cation from the base and an anion from the acid.
Monoprotic acid donates one proton when dissolved in water.
Diprotic acid donates two protons when dissolved in water.
Triprotic acid donates three protons when dissolved in water.
Salt ionic compound whose cation comes from a base and whose anion comes from an acid.
The solution in the buret: titrant
The solution in the flask: analyte
To learn more about Monoprotic acid visit;
https://brainly.com/question/22497931
#SPJ4
Which solution will have the greatest boiling point? Remember ionic > covalent AND more ions > less ions
a) 0.5 M C₁₁H₂₂O₁₁
b) 1 M NaCl
c) 0.5 M NaCl
d) 1 M C₁₁H₂₂O₁₁
b) 1 M NaCl will have the highest boiling point because it has the highest number of solute particles present.
When comparing the boiling points of various solutions, the number of solute particles present in the solution is the most important consideration. Ionic substances tend to have higher boiling points than covalent substances since they contain strong electrostatic forces between the ions.
To determine which of the given solutions has the highest boiling point, we must first consider the number of solute particles present in each of the given solutions.
a) 0.5 M C₁₁H₂₂O₁₁C₁₁H₂₂O₁₁ is a covalent substance that does not ionize in water. Thus, only one molecule of C₁₁H₂₂O₁₁ is present in the solution. As a result, it has the lowest boiling point
.b) 1 M NaClNaCl is an ionic compound, which breaks down into two ions in water: Na+ and Cl-. There are twice as many solute particles in the solution as there are in the 0.5 M C₁₁H₂₂O₁₁ solution. As a result, NaCl has a higher boiling point than 0.5 M C₁₁H₂₂O₁₁.
c) 0.5 M NaCl0.5 M NaCl contains the same number of solute particles as 1 M NaCl. As a result, both solutions have the same boiling point.
d) 1 M C₁₁H₂₂O₁₁C₁₁H₂₂O₁₁ is a covalent substance that does not ionize in water. Thus, only one molecule of C₁₁H₂₂O₁₁ is present in the solution.
for more questions on solute :
https://brainly.com/question/23946616
#SPJ11
the half-life of uranium-238 is 4.5 billion years. what is its decay rate? express the rate as a percentage per billion years rounded to four decimal places.
The decay rate is 0.0015 percent per billion years
The decay rate of a radioactive substance refers to the rate at which it undergoes radioactive decay, which is typically measured as the number of radioactive decays per unit time. The decay rate of uranium-238 can be calculated using its half-life, which is the time it takes for half of the original amount of uranium-238 to decay.
The formula for calculating the decay rate of a substance is:
decay rate = (ln 2) / half-life
Substituting the half-life of uranium-238 into the formula, we get:
decay rate = (ln 2) / 4.5 billion years
Using a calculator, we can evaluate the natural logarithm of 2 and divide it by the half-life to get:
decay rate = 0.0000154011 per year
To express this rate as a percentage per billion years, we can multiply the decay rate by 100 and divide it by one billion:
decay rate = (0.0000154011 per year) x (100 / 1 billion years)
decay rate = 0.00154011 percent per billion years
Rounding this value to four decimal places, we get:
decay rate = 0.0015 percent per billion years.
So, The decay rate is 0.0015 percent per billion years
To learn more about decay rate refer to:
brainly.com/question/30068164
#SPJ4
how many grams are there in a sample of calcium containing 2.71 x 10^20 particles?
Therefore, there are 0.018 grams of calcium in the sample containing [tex]2.71 * 10^2^0[/tex] particles.
What is Avogadro's number?To calculate the number of grams in a sample of calcium containing 2.71 x 10^20 particles, we need to use the Avogadro's number and the molar mass of calcium.
First, we need to determine the number of moles of calcium in the sample:
Number of particles = [tex]2.71 * 10^2^0[/tex]
Avogadro's number =[tex]6.022 * 10^2^3[/tex]particles/mole
Number of moles = Number of particles / Avogadro's number
[tex]= 2.71 * 10^2^0 / 6.022 * 10^2^3\\= 0.000450 mol[/tex]
The molar mass of calcium is 40.08 g/mol.
Finally, we can calculate the mass of calcium in the sample using the following formula:
Mass (g) = Number of moles x Molar mass
= 0.000450 mol x 40.08 g/mol
= 0.018 g
To know more about calcium visit:-
brainly.com/question/8768657
#SPJ1
How are particles in air arranged in a Compression?
Answer:
the molecular space between the molecules of air is decreased
10Li + Hd2O5->5Li2O+2HD+Energy
How many moles of lithium are needed to fully react with the 29 gram dosage of hordium oxide
that turns people into zombies (10 points)?
How many grams of lithium would this be (5 points)?
To prevent the element from becoming a gas when heated again, the element is placed in 3
liters of water, forming a solution. What phase of matter is the element now in (5 points)?
What would the molarity of this solution be (10 points)?
To fully react with 29 grams of hordium oxide, 0.648 moles of lithium are needed.This would be equivalent to 6.67 grams of lithium.
Why is it important to balance a chemical equation?Balancing a chemical equation ensures that the number of atoms of each element on the reactant side is equal to the number of atoms of each element on the product side.
This is significant because the rule of conservation of mass mandates that in a chemical reaction, the total masses of the reactants and products must be equal.
What is the significance of the release of energy in a chemical reaction?The release of energy in a chemical reaction indicates that energy is being transferred from the reactants to the surroundings. This can occur in various ways, such as the production of heat, light, or sound.
The release of energy can also indicate that the reaction is exothermic, which means that the products have a lower energy level than the reactants. On the other hand, if the reaction absorbs energy, it is endothermic, and the products have a higher energy level than the reactants.
To know more about chemical reaction,visit:
https://brainly.com/question/29039149
#SPJ1
numerically speaking is the rate of disappearance of reactants always the same number as the rate of the appearance of products?
Numerically speaking, the rate of disappearance of reactants is not always the same number as the rate of the appearance of products.
The reason behind it is that in a chemical reaction, both reactants and products are involved. Reactants transform into products over time, and this transformation is measured by the rate of reaction. The rate of reaction may be determined by the rate at which reactants disappear or products appear. However, the rate of disappearance of reactants may not be equal to the rate of appearance of products numerically because different numbers of moles of reactants and products may be involved in the chemical reaction. As a result, the stoichiometric coefficients of the reactants and products in the chemical equation play an important role in determining the rate of disappearance of reactants and the rate of appearance of products.
Learn more about reactants here.https://brainly.com/question/16966928
#SPJ11
Identify the type and then write the balanced chemical equation for the reaction described below aluminum oxide breaks down when D heated
According to this equation, two moles of aluminium oxide decompose into three moles of oxygen gas, four moles of aluminium, and two moles of aluminium. Because each element has the equal amount of atoms on both sides of the equation, the reaction is balanced.
What is the equation for the balance of Al h2o to Al2O3 h2?Aluminum oxide and hydrogen gas are created when aluminium metal, or Al, interacts with water. Three moles of water and two moles of aluminium metal, or Al, are combined in this reaction to create one mole of aluminium oxide and three moles of hydrogen gas.
Is the equation h2o2 H2O o2 balanced or unbalanced?This reaction is the result of hydrogen peroxide's spontaneous breakdown into water and oxygen. Because oxygen is a naturally diatomic element, the total number of atoms in each element on both sides of the equation equals one, making the equation balanced.
To know more about aluminum oxide visit:-
https://brainly.com/question/25869623
#SPJ1
**NEED QUICKLY***
if there are 300,000 servicemen buried on 624 acres wut is the unit rate of average number of servicemen buried for acre
Answer:
To find the unit rate of the average number of servicemen buried per acre, you can divide the total number of servicemen (300,000) by the total number of acres (624).
Here's the calculation:
```
300,000 servicemen / 624 acres = 480.7692307692308
```
So, on average, there are approximately 480.77 servicemen buried per acre.
zeolites have structures that contain cages which are ideal for absorbing materials. true/false
The given statement, "Zeolites have structures that contain cages which are ideal for absorbing materials," is true (T) because zeolites have porous structures with cages that are suitable for adsorbing materials.
Zeolites are a group of porous materials with a crystalline structure consisting of interconnected tetrahedra. This structure results in a network of interconnected channels and cavities, which create cages that are ideal for absorbing and exchanging materials.
The regular size and shape of these cages allow zeolites to selectively adsorb molecules based on their size and shape, making them useful in a wide range of applications such as catalysis, gas separation, and water purification. Furthermore, the high surface area of zeolites enhances their adsorption and exchange capabilities.
Overall, the unique properties of zeolites make them effective materials for various industrial and environmental applications.
Learn more about Zeolites https://brainly.com/question/14976531
#SPJ11
what is the major impurity in silicon used to make semiconductors?
The major impurity in silicon used to make semiconductors is Boron.
Boron is a chemical element that is used to create an electrical imbalance in the silicon, allowing for the flow of electricity. This imbalance is necessary for the semiconductors to function properly. Silicon has four valence electrons, whereas Boron has only three, which creates the necessary imbalance.
The more Boron that is added to the silicon, the higher the electron-hole concentration and the greater the conductivity of the semiconductor. The amount of Boron used will depend on the type of semiconductor and the application it is used for.
For example, a higher concentration of Boron will be needed for higher-speed circuits than for lower-speed ones. In addition to Boron, other impurities, such as Aluminum and Phosphorous, may also be added to the silicon in order to achieve the desired properties.
To know more about semiconductors refer here:
https://brainly.com/question/18132856#
#SPJ11
g which of the following are considerations that should be taken when choosing solvents for recrystallization?the desired compound should be significantly more soluble in one solvent than the other.the solvents should be more basic than the desired compound.the two solvents should have significantly different polarity.
The considerations that should be taken when the choosing solvents for the recrystallization is the desired compound should be the significantly more soluble in one solvent than the other.
The Recrystallization is the process to purify the chemicals in the chemistry. We will mix the compound with impurity then we will purify it again by the using recrystallization method. So. the normal procedure is that to dissolve the substance that is to be purified in the suitable solvent, at the very high temperature, to form the almost saturated solution.
In the recrystallization, the solution is created by the dissolving the solute in the solvent at or the near its boiling point.
To learn more about recrystallization here
https://brainly.com/question/29215760
#SPJ4
by definition, exergonic reactions (reactions with a negative dg) occur spontaneously. what keeps the molecules of an exergonic reaction from breaking apart and cell chemistry from racing out of control?
By definition, exergonic reactions (reactions with a negative dg) occur spontaneously. To prevent the molecules of an exergonic reaction from breaking apart and cell chemistry from racing out of control, enzymes keep them in check.
An exergonic reaction is one in which the free energy of the products is lower than the free energy of the reactants. Exergonic reactions are often referred to as spontaneous reactions because they are spontaneous and do not require energy to proceed.Examples of exergonic reactionsA reaction that breaks a large molecule into two smaller ones, releasing energy in the process, is an example of an exergonic reaction. The breakdown of glucose into carbon dioxide and water is one such reaction.
The breakdown of ATP to ADP is another example. Enzymes, which are catalysts that speed up chemical reactions, keep the molecules of an exergonic reaction in check, preventing them from breaking apart and cell chemistry from going out of control. Without enzymes, many exergonic reactions would take place too slowly to sustain life, while others would go too quickly, causing cell damage or even death.
Learn more about exergonic reaction at:
https://brainly.com/question/11064909
#SPJ11
oil does not dissolve in water because . group of answer choices water is nonpolar oil is polar water is saturated oil is hydrated oil is nonpolar
Oil does not dissolve in water because oil is nonpolar.
Thus, the correct option is E (oil is nonpolar).
What is oil?Oil is а non-polаr hydrophobic substаnce, meаning it cаnnot mix with polаr solvents such аs wаter. Wаter is а polаr solvent, аnd it is cаpаble of dissolving polаr substаnces. The molecules of wаter аre chаrged, which mаkes them cаpаble of sticking to polаr molecules like sаlts аnd sugаrs, resulting in а homogenous solution.
Oil, on the other hаnd, is а non-polаr substаnce thаt cаnnot dissolve in wаter becаuse it lаcks polаr chаrges. The forces thаt hold oil molecules together аre weаk аnd nonpolаr, аnd аs а result, oil cаnnot mix with polаr solvents like wаter. Hence, oil sepаrаtes from wаter аnd forms two distinct lаyers.
For more information about oil refers to the link: https://brainly.com/question/30672944
#SPJ11
cars run on gasoline, where octane (c8h18) is the principle component. this combustion reaction is responsible for generating enough energy to move a vehicle, or do other work. how much co2 and h2o (in grams) are produced in the combustion of 0.87 gallons of octane? (density of octane
The combustion of 0.87 gallons of octane produces approximately 6.98 kg of CO₂ and 3.21 kg of H₂O.
To calculate the amount of CO₂ and H2O produced in the combustion of octane, we need to first convert the volume of octane from gallons to moles using its density and molar mass.
The density of octane is around 0.703 g/mL and its molar mass is 114.23 g/mol. One gallon is approximately 3.785 liters.
So, the amount of moles of octane in 0.87 gallons is:
moles of octane = (0.87 gallons) x (3.785 L/gallon) x (0.703 g/mL) / (114.23 g/mol) = 19.8 moles
The balanced chemical equation for the combustion of octane is:
2 C₈H₁₈ + 25 O₂ → 16 CO₂ + 18 H₂O
From this equation, we see that 2 moles of octane reacts with 25 moles of oxygen to produce 16 moles of CO₂ and 18 moles of H₂O.
Using stoichiometry, we can calculate the amount of CO₂ and H₂O produced from 19.8 moles of octane:
moles of CO₂ produced = 16/2 x 19.8 moles = 158.4 molesmoles of H₂O produced = 18/2 x 19.8 moles = 178.2 molesTo convert moles to grams, we can use the molar mass of each compound:
mass of CO₂ produced = 158.4 moles x 44.01 g/mol = 6,979 g or 6.98 kg (rounded to 2 decimal places)mass of H₂O produced = 178.2 moles x 18.02 g/mol = 3,209 g or 3.21 kg (rounded to 2 decimal places)Therefore, the combustion of 0.87 gallons of octane produces approximately 6.98 kg of CO₂ and 3.21 kg of H₂O.
Learn more about combustion on:
https://brainly.com/question/10458605
#SPJ11
What happens to the ability of a solid to dissolve when temperature decreases?
answer choices
There is no change in the solubility of the solid.
The solubility of most solids will increase.
The only factor that affects the solubility of a solid is polarity.
The solubility of most solids will decrease.
The ability of a solid to dissolve when temperature decreases is that : The solubility of most solids will decrease.
What happens to the ability of solid to dissolve when temperature decreases?Solubility of most solids will decrease as temperature decreases. This is because solubility of a solid increases with increasing temperature, as higher temperatures provide more energy for solvent molecules to break apart solute particles and form solution.
Decreasing temperature reduces the energy available for solute-solvent interactions, which leads to decrease in solubility. There are some exceptions to this general trend, however and solubility of some solids may remain relatively constant or even increase slightly as temperature decreases, depending on factors such as nature of the solute and solvent, and specific conditions of the solution.
To know more about solubility, refer
https://brainly.com/question/23946616
#SPJ1
Identify the type or types of reactions the reaction between zinc and iodine is/are.a. synthesis reactionb. acid base reactionc. double displacement reactiond. single replacement reactione. ombustion reactionf. precipitation reactiong. halogen replacement reactionh. redox reaction
the reaction involves a transfer of electrons from the zinc atoms to the iodine molecules, indicating a redox reaction.
The reaction between zinc and iodine is a single replacement reaction, also known as a redox reaction.
In this reaction, zinc metal (Zn) reacts with iodine (I2) to form zinc iodide (ZnI₂). The zinc atoms lose two electrons to form Zn²⁺ ions, while the iodine molecules gain two electrons to form iodide ions (I-). The reaction can be represented by the following equation:
Zn + I₂ → ZnI₂
Overall, the reaction involves a transfer of electrons from the zinc atoms to the iodine molecules, indicating a redox reaction.
To know more about redox reaction, visit: brainly.com/question/13293425
#SPJ4
Arrange these ions according to ionic radius. Largest radius Sr2+ Rb+ Se2- Br As3- Smallest radius Arrange these elements according to atomic radius. Largest radius Smallest radius Answer Bank Mg Sr Ca Ba Be Rank the elements by effective nuclear charge, Zeff, for a valence electron. Highest Zeff Lowest Zeff Answer Bank In Sb Rb Sr Sn
Ionic radius: Largest radius > Se2- > Br- > Rb+ > Sr2+ > As3- > Smallest radius
Atomic radius: Largest radius > Ba > Sr > Ca > Mg > Be > Smallest radius
Nuclear charge: Highest Zeff > In > Sn > Sb > Rb > Sr > Lowest Zeff
1. Arrange these ions according to ionic radius.
To arrange these ions, we need to consider the periodic table trends for ionic radii. Ionic radii generally decrease across a period and increase down a group.
Largest radius > Se2- > Br- > Rb+ > Sr2+ > As3- > Smallest radius
2. Arrange these elements according to atomic radius.
We will follow the trend of atomic radii, which typically increase down a group and decrease across a period.
Largest radius > Ba > Sr > Ca > Mg > Be > Smallest radius
3. Rank the elements by effective nuclear charge (Zeff) for a valence electron.
Effective nuclear charge generally increases across a period and decreases down a group.
Highest Zeff > In > Sn > Sb > Rb > Sr > Lowest Zeff
Know more about ion
https://brainly.com/question/13692734
#SPJ11