If x = -3, then which inequality is true?

Answers

Answer 1

The inequailty y < x + 3 would be true when x = -3 and all values of y are less than 0

If x = -3, then which inequality is true?

From the question, we have the following parameters that can be used in our computation:

The statement that x = -3

The above value implies that we substitute -3 for x in an inequality and solve for the variable y

Take for instance, we have

y < x + 3

Substitute the known values in the above equation, so, we have the following representation

y < -3 + 3

Evaluate

y < 0

This means that the inequailty y < x + 3 would be true when x = -3 and all values of y are less than 0

Read mroe about inequailty at

https://brainly.com/question/25275758

#SPJ1


Related Questions

How many of the shapes below are trapeziums?​

Answers

Answer:

2

Step-by-step explanation:

The K and N are the trapeziums and the two lines opposite to them go in a parallel line

WILL GIVE BRAINLIEST



Tamara has decided to start saving for spending money for her first year of college. Her money is currently in a large suitcase under her bed, modeled by the function s(x) = 325. She is able to babysit to earn extra money and that function would be a(x) = 5(x − 2), where x is measured in hours. Explain to Tamara how she can create a function that combines the two and describe any simplification that can be done

Answers

To create a function that combines the two scenarios, we need to add the amount of money you earn from babysitting to the amount of money you have in your suitcase. We can represent this with the following function:

f(x) = s(x) + a(x)

Where f(x) represents the total amount of money you have after x hours of babysitting. We substitute s(x) with the given function, s(x) = 325, and a(x) with the given function, a(x) = 5(x-2):

f(x) = 325 + 5(x-2)

Simplifying this expression, we can distribute the 5 to get:

f(x) = 325 + 5x - 10

And then combine the constant terms:

f(x) = 315 + 5x

So the function that combines the two scenarios is f(x) = 315 + 5x. This function gives you the total amount of money you will have after x hours of babysitting and taking into account the initial amount of money you have in your suitcase.

In summary, to create a function that combines the two scenarios, we simply add the amount of money earned from babysitting to the initial amount of money in the suitcase. The function f(x) = 315 + 5x represents this total amount of money.

To know more about function refer here

https://brainly.in/question/9181709#

#SPJ11

Mrs. Dominguez has $9,400 to deposit into two different investment accounts. Mrs. Dominguez will deposit $3,500 into Account I, which earns 6. 5% annual simple interest She will deposit $5,900 into Account II, which earns 6% interest compounded annually. Mrs. Dominguez will not make any additional deposits or withdrawals. What is the total balance of these two accounts at the end of ten years? DE 10​

Answers

Answer:

Step-by-step explanation:

The total balance of the two investment accounts at the end of ten years will be $16,564.08. To calculate the total balance of the two accounts at the end of ten years,

we need to use the formulas for simple interest and compound interest.

For Account I, the simple interest formula is:

I = Prt

where I is the interest earned, P is the principal (the amount deposited), r is the annual interest rate as a decimal, and t is the time in years.

Plugging in the values for Account I, we get:

I = (3500)(0.065)(10) = $2,275

So, after ten years, the balance in Account I will be:

B1 = P + I = 3500 + 2275 = $5,775

For Account II, the compound interest formula is:

A = P(1 + r/n)^(nt)

where A is the balance at the end of the time period, P is the principal, r is the annual interest rate as a decimal, n is the number of times the interest is compounded per year, and t is the time in years.

Plugging in the values for Account II, we get:

A = 5900(1 + 0.06/1)^(1*10) = $10,789.08

So, after ten years, the balance in Account II will be $10,789.08.

Therefore, the total balance of the two accounts at the end of ten years will be:

Total balance = Balance in Account I + Balance in Account II

= $5,775 + $10,789.08

= $16,564.08

In summary, by using the formulas for simple interest and compound interest, we can calculate that the total balance of the two investment accounts at the end of ten years will be $16,564.08.

To know more about  two investment accounts refer here:

https://brainly.com/question/25296057#

#SPJ11

Complete the sentences about the expressions 3x+4 –2x
, and 5x+2x+x
.


CLEAR CHECK
In the expression 3x+4 –2x
, you can combine
like terms, and the simplified expression is
.
In the expression 5x+2x+x
, you can combine
like terms, and the simplified expression is

Answers

For the expressions  3x+4 –2x, and 5x+2x+x the simplified expression after combining like terms is x+4 and 8x.

The given expressions are  3x+4 –2x, and 5x+2x+x

We have to simplify these expressions by combining the like terms

For the expression 3x+4 –2x

We have to combine like terms

x+4

Now for expression  5x+2x+x

Combine the like terms to get

8x

To learn more on Expressions click:

https://brainly.com/question/14083225

#SPJ1

For the class party, Josue and Pho each brought 1 3/5 liters of lemonade. How many liters of lemonade did they bring altogether?

Answers

Josue and Pho brought 3 1/5 liters of lemonade altogether

Josue and Pho brought 1 3/5 liters of lemonade each, so the total amount of lemonade they brought is:

1 3/5 + 1 3/5 = 3 1/5

To add the two mixed numbers, we first need to find a common denominator. In this case, the common denominator is 5. Then we convert both mixed numbers into fractions with a denominator of 5:

1 3/5 = (5 × 1 + 3) / 5 = 8/5

1 3/5 = (5 × 1 + 3) / 5 = 8/5

Now we can add the fractions:

8/5 + 8/5 = (8 + 8) / 5 = 16/5

Finally, we can convert the fraction back to a mixed number:

16/5 = 3 1/5

Therefore, Josue and Pho brought 3 1/5 liters of lemonade altogether.

To learn more about litres, click here:

https://brainly.com/question/25546396

#SPJ11

Prove the following 2 trig identities. Show all steps!

Answers

Answer:

  a) multiply by cos²/cos², move sin/cos inside parentheses, simplify

  d) multiply by (cot+cos); use cot=cos·csc, csc²-1=cot² in the denominator

Step-by-step explanation:

You want to prove the identities ...

sin²(x)(cot(x) +1)² = cos²(x)(tan(x) +1)²cos(x)cot(x)/(cot(x)-cos(x) = (cot(x)+cos(x)/(cos(x)cot(x))

Identities

Usually, we want to prove a trig identity by providing the steps that transforms one side of the identity to the expression on the other side. Here, each of these identity expressions can be simplified, so it is actually much easier to simplify both expressions to one that is common.

a) sin²(x)(cot(x) +1)² = cos²(x)(tan(x) +1)²

We are going to use s=sin(x), c=cos(x), (s/c) = tan(x), and (c/s) = cot(x) to reduce the amount of writing we have to do.

  [tex]s^2\left(\dfrac{c}{s}+1\right)^2=c^2\left(\dfrac{s}{c}+1\right)^2\qquad\text{given}\\\\\\\dfrac{s^2(c+s)^2}{s^2}=\dfrac{c^2(s+c)^2}{c^2}\qquad\text{use common denominator}\\\\\\(c+s)^2=(c+s)^2\qquad\text{cancel common factors; Q.E.D.}[/tex]

d) cos(x)cot(x)/(cot(x)-cos(x) = (cot(x)+cos(x)/(cos(x)cot(x))

Using the same substitutions as above, we have ...

  [tex]\dfrac{c(c/s)}{(c/s)-c}=\dfrac{(c/s)+c}{c(c/s)}\qquad\text{given}\\\\\\\dfrac{c^2}{c(1-s)}=\dfrac{c(1+s)}{c^2}\qquad\text{multiply num, den by s}\\\\\\\dfrac{c(1+s)}{(1-s)(1+s)}=\dfrac{c(1+s)}{c^2}\\\\\\\dfrac{c(1+s)}{1-s^2}=\dfrac{c(1+s)}{c^2}\\\\\\\dfrac{c(1+s)}{c^2}=\dfrac{c(1+s)}{c^2}\qquad\text{Q.E.D.}[/tex]

__

Additional comment

The key transformation in (d) is multiplying numerator and denominator by (1+sin(x)). You can probably prove the identity just by doing that on the left side, then rearranging the result to make it look like the right side.

For (a), the key transformation seems to be multiplying by cos²(x)/cos²(x) and rearranging.

Sometimes it seems to take several tries before the simplest method of getting from here to there becomes apparent. The transformations described in the top "Answer" section may be simpler than those shown in the "Step-by-step" section.

A spinner with repeated colors numbered from 1 to 8 is shown. Sections 1 and 8 are purple. Sections 2 and 3 are yellow. Sections 4, 5, and 6 are blue. Section 7 is red.

Spinner divided evenly into eight sections with three colored blue, one red, two purple, and two yellow.

Determine the theoretical probability of the spinner not landing on yellow, P(not yellow).

Answers

The theoretical probability of the spinner not landing on yellow, would be 75 %.

How to find the probability ?

In order to calculate the likelihood of the spinner not landing on yellow, it is necessary to initially identify the quantity of non-yellow partitions and subsequently divide this by the full tally of sections. The spinner comprises a total of 8 individual segments.

Of these, two (i.e., sections 2 and 3) are colored in shades of yellow, hence totaling two yellow sectors. This leaves a further six compartments - numbered 1, 4, 5, 6, 7 and 8, that do not fall into the category of "yellow."

The probability is therefore :

= ( Number of not yellow sections ) / ( Total number of sections )

= 6 / 8

= 3 / 4

= 75 %

Find out more on probability at https://brainly.com/question/30846562

#SPJ1

the line whose equation is 3x-5y=4 is dilated by a scale factor of 5/3 centered at the origin. Which statement is correct?

Answers

The correct statement is: "The line whose equation is 3x-5y=4 is dilated by a scale factor of [tex]y= (\frac{5}{3} )x[/tex] centered at the origin, and the equation of the dilated line is y= (\frac{5}{3} )x

When a line is dilated by a scale factor of k centered at the origin, the equation of the dilated line is given by y = kx, if the original line passes through the origin. If the original line does not pass through the origin, then the equation of the dilated line is obtained by finding the intersection point of the original line with the line passing through the origin and the point of intersection of the original line with the x-axis, dilating this intersection point by the scale factor k, and then finding the equation of the line passing through this dilated point and the origin.

In this case, the equation of the original line is 3x - 5y = 4. To find the intersection point of this line with the x-axis, we set y = 0 and solve for x:

3x - 5(0) = 4
3x = 4
[tex]x = \frac{4}{3}[/tex]

Therefore, the intersection point of the original line with the x-axis is (4/3, 0). Dilating this point by a scale factor of 5/3 centered at the origin, we obtain the dilated point:

[tex](\frac{5}{3} ) (\frac{4}{3},0) = (\frac{20}{9},0)[/tex]

The equation of the dilated line passing through this point and the origin is given by [tex]y= (\frac{5}{3} )x[/tex]. Therefore, the correct statement is: "The line whose equation is 3x-5y=4 is dilated by a scale factor of [tex]\frac{5}{3}[/tex] centered at the origin, and the equation of the dilated line is [tex]y= (\frac{5}{3} )x[/tex]."

To know more about "Dilated line" refer here:

https://brainly.com/question/30241444#

#SPJ11

What is 43% , 2/5 , 3/7 , and 0. 42 remaining in ascending order ?

Answers

Answer:

2/5 < 0.42 < 43% < 3/7

Step-by-step explanation:

Let's convert them all to decimals:

43% = 0.43

2/5 = 0.4

3/7 = 0.428571...

0.42 = 0.42

Now we can arrange them in ascending order:

0.4

0.42

0.43

0.428571...

What is the value of 45 nickels as a decimal number ?

Answers

Answer:

2.25

Step-by-step explanation:

45 nickels

45*5=225

225 cents

2.25

The value of 45 nickels in decimal number can be 2.25.

In the decimal system, each digit's value depends on its position or place value within the number.

A nickel is worth 0.05 dollars.

To find the value of 45 nickels, multiply the number of nickels by the value of each nickel:

So, Value = Number of nickels × Value of each nickel

                = 45 × 0.05

                = 2.25

Therefore, the value of 45 nickels is $2.25 as a decimal number.

Learn more about Decimal here:

https://brainly.com/question/30958821

#SPJ6

For each of the following equations, • find general solutions; solve the initial value problem with initial condition y(0)=-1, y'0) = 2; sketch the phase portrait, identify the type of each equilibrium, and determine the stability of each equilibrium. (a) 2y" +9y + 4y = 0 (b) y" +2y - 8y=0 (c) 44" - 12y + 5y = 0 (d) 2y" – 3y = 0 (e) y" – 2y + 5y = 0 (f) 4y" +9y=0 (g) 9y' +6y + y = 0

Answers

(a) y(x) = c1 e^(-4x/3) cos(2x) + c2 e^(-4x/3) sin(2x), stable node at the origin;

(b) y(x) = c1 e^(2x) + c2 e^(-4x), unstable node at the origin;

(c) y(x) = c1 e^(-x/22) cos(sqrt(119)x/22) + c2 e^(-x/22) sin(sqrt(119)x/22), stable node at the origin;

(d) y(x) = c1 e^(sqrt(3)x/2) + c2 e^(-sqrt(3)x/2), unstable saddle at the origin;

(e) y(x) = c1 e^x cos(2x) + c2 e^x sin(2x), stable spiral at the origin;

(f) y(x) = c1 cos(3x/2) + c2 sin(3x/2), stable limit cycle around the origin;

(g) y(x) = c1 e^(-x/3) + c2 e^(-x), stable node at the origin.

(a) The characteristic equation is 2r^2 + 9r + 4 = 0, with roots r1 = -4/3 and r2 = -1/2. The general solution is y(x) = c1 e^(-4x/3) cos(2x) + c2 e^(-4x/3) sin(2x). The equilibrium at the origin is a stable node since both eigenvalues have negative real parts.

(b) The characteristic equation is r^2 + 2r - 8 = 0, with roots r1 = 2 and r2 = -4. The general solution is y(x) = c1 e^(2x) + c2 e^(-4x). The equilibrium at the origin is an unstable node since both eigenvalues have positive real parts.

(c) The characteristic equation is 44r^2 - 12r + 5 = 0, with roots r1 = (3 + sqrt(119))/22 and r2 = (3 - sqrt(119))/22. The general solution is y(x) = c1 e^(-x/22) cos(sqrt(119)x/22) + c2 e^(-x/22) sin(sqrt(119)x/22). The equilibrium at the origin is a stable node since both eigenvalues have negative real parts.

(d) The characteristic equation is 2r^2 - 3 = 0, with roots r1 = sqrt(3)/2 and r2 = -sqrt(3)/2. The general solution is y(x) = c1 e^(sqrt(3)x/2) + c2 e^(-sqrt(3)x/2). The equilibrium at the origin is an unstable saddle since the eigenvalues have opposite signs.

(e) The characteristic equation is r^2 - 2r + 5 = 0, with roots r1 = 1 + 2i and r2 = 1 - 2i. The general solution is y(x) = c1 e^x cos(2x) + c2 e^x sin(2x). The equilibrium at the origin is a stable spiral since both eigenvalues have negative real parts and non-zero imaginary parts.

(f) The characteristic equation is 4r^2 + 9 = 0, with roots r1 = 3i/2 and r2 = -3i/2. The general solution y(x) = c1 cos(3x/2) + c2 sin(3x/2), stable limit cycle around the origin.

For more questions like Equation click the link below:

https://brainly.com/question/14598404

#SPJ11

(3x^3 y^2)^3 (2x^4 y^2)^2

Answers

Answer:

108y^10x^17

Step-by-step explanation:

!!PLEASE HELPP!! (check if I’m right pls)

Answers

Answer: It's correct

Step-by-step explanation:

Yes it’s correct everything is very well. Contracts

3. What is the largest number that divides 626, 3127 and 15628 and leaves remainders of 1, 2 and 3 respectively?​

Answers

Answer:

Step-by-step explanation:

625

If Sarah uses 3/4 yard of ribbon to make a hair bow. How many yards of ribbon will Sarah use to make 9 hair bows?

Answers

If Sarah uses 3/4 yard of ribbon to make a hair bow, she will need 6 and 3/4 yards of ribbon to make 9 hair bows.

To find out how many yards of ribbon Sarah will use to make 9 hair bows, we need to multiply the amount of ribbon used for one hair bow (3/4 yard) by the number of hair bows she wants to make (9).

So, the equation we need to use is:

3/4 yard of ribbon per hair bow x 9 hair bows = ? yards of ribbon

To solve for the answer, we can simplify the equation:

3/4 x 9 = 27/4

So Sarah will need 27/4 yards of ribbon to make 9 hair bows.

To convert this fraction to a mixed number, we can divide the numerator (27) by the denominator (4) and write the remainder as a fraction:

27 ÷ 4 = 6 with a remainder of 3

In summary, Sarah will need 6 and 3/4 yards of ribbon to make 9 hair bows, if she uses 3/4 yard of ribbon to make one hair bow.

To know more about amount, refer to the link below:

https://brainly.com/question/18800890#

#SPJ11

A voltage V across a resistance R generates a current I=V/R. If a constant voltage of 10 volts is put across a resistance that is increasing at a rate of 0.2 ohms per second when the resistance is 8 ohms, at what rate is the current changing? (Give units.)
rate = ???

Answers

The rate at which the current is changing is -1/32 amperes per second (A/s).

To find the rate at which the current is changing, we will use the given information and apply the differentiation rules. The terms we will use in the answer are voltage (V), resistance (R), current (I), and rate of change.

Given the formula for current: I = V/R
We have V = 10 volts (constant) and dR/dt = 0.2 ohms/second.

We need to find dI/dt, the rate at which the current is changing. To do this, we differentiate the formula for current with respect to time (t):

[tex]dI/dt = d(V/R)/dt[/tex]
Since V is constant, its derivative with respect to time is 0.

dI/dt = -(V * dR/dt) / R^2 (using the chain rule for differentiation)

Now, substitute the given values:

[tex]dI/dt = -(10 * 0.2) / 8^2[/tex]
[tex]dI/dt = -2 / 64[/tex]
[tex]dI/dt = -1/32 A/s[/tex]

The rate at which the current is changing is -1/32 amperes per second (A/s).

To know more about current, refer here:

https://brainly.com/question/13076734

#SPJ11

From a Word Problem
Jack has $10 in his lunch account. He plans to
spend $2 a week on snacks. How long until
Jack's lunch account reaches zero?

Answers

Answer:

Sure, here's the solution to the word problem:

Jack has $10 in his lunch account and plans to spend $2 a week on snacks. To find out how long it will take his lunch account to reach zero, we can divide the total amount of money in his account by the amount he spends each week.

```

$10 / $2 = 5 weeks

```

Therefore, it will take Jack 5 weeks to spend all of the money in his lunch account.

Here's another way to solve the problem:

We can also set up an equation to represent the situation. Let x be the number of weeks it takes Jack's lunch account to reach zero. We know that Jack starts with $10 and spends $2 each week, so we can write the equation:

```

$10 - $2x = 0

```

Solving for x, we get:

```

x = 5

```

Therefore, it will take Jack 5 weeks to spend all of the money in his lunch account.

Answer:

in 5 weeks he will have 0$ in his account

Step-by-step explanation:

In circle P, if mQR = 80 , and m QRT = 39 , find each measure

Answers

In circle P, if m(QR) = 80 , and m(QRT) = 39 , m(QPR) = 39 and m(PT) = 78

Based on the information given, we know that:

- m(QR) = 80 (this is the measure of arc QR)
- m(QRT) = 39 (this is the measure of angle QRT)

To find the other measures, we can use the following formulas:

- The measure of a central angle is equal to the measure of its intercepted arc
- The measure of an inscribed angle is half the measure of its intercepted arc

Using these formulas, we can find the measure of angle QPR and the measure of arc PT as follows:

- m(QPR) = m(QRT) = 39 (since angle QRT and angle QPR intercept the same arc QR)
- m(PT) = 2 * m(QRT) = 78 (since angle QRT and angle PQT intercept the same arc PT, and the measure of an inscribed angle is half the measure of its intercepted arc)

So the final answers are:

- m(QR) = 80
- m(QRT) = 39
- m(QPR) = 39
- m(PT) = 78

To know more about angle, refer to the link below:

https://brainly.com/question/23709091#

#SPJ11

the college board sat college entrance exam consists of two sections: math and evidence-based reading and writing (ebrw). sample data showing the math and ebrw scores for a sample of students who took the sat follow. click on the datafile logo to reference the data. student math ebrw student math ebrw 1 540 474 7 480 430 2 432 380 8 499 459 3 528 463 9 610 615 4 574 612 10 572 541 5 448 420 11 390 335 6 502 526 12 593 613 a. use a level of significance and test for a difference between the population mean for the math scores and the population mean for the ebrw scores. what is the test statistic? enter negative values as negative numbers. round your answer to two decimal places.

Answers

A t-test with a level of significance of 0.05 results in a test statistic of -2.09, indicating a significant difference between the population mean for the math scores and the population mean for the EBRW scores.

To test for a difference between the population mean for the math scores and the population mean for the ebrw scores, we can conduct a two-sample t-test.

Using a calculator or software, we can find that the sample mean for math scores is 520.5 and the sample mean for ebrw scores is 485.5.

The sample size is n = 12 for both groups.

The sample standard deviation for math scores is s1 = 48.50 and for ebrw scores is s2 = 87.63.

Using a level of significance of 0.05, and assuming unequal variances, we can find the test statistic as:

t = (520.5 - 485.5) / sqrt(([tex]48.50^2/12[/tex]) + ([tex]87.63^2/12[/tex]))

t = 0.851

Rounding to two decimal places, the test statistic is 0.85.

Learn more about standard deviation

https://brainly.com/question/23907081

#SPJ4

Farmer John is building a new pig sty for his wife on the side of his barn.   The area that can be enclosed is modeled by the function A(x) = - 4x^2 + 120x, where x is the width of the sty in meters and A(x) is the area in square meters.   

What is the MAXIMUM area that can be enclosed?

Answers

the MAXIMUM area that can be enclosed is 900 m²

To find the maximum area that can be enclosed, we need to find the vertex of the parabolic function A(x) = -4x^2 + 120x. The vertex represents the maximum point on the parabola.

The x-coordinate of the vertex can be found using the formula x = -b/2a, where a is the coefficient of the x^2 term and b is the coefficient of the x term. In this case, a = -4 and b = 120, so x = -120/(2*(-4)) = 15.

To find the y-coordinate of the vertex, we can substitute x = 15 into the function: A(15) = -4(15)^2 + 120(15) = 900. Therefore, the maximum area that can be enclosed is 900 square meters.

Learn more about maximum area at https://brainly.com/question/9602349

#SPJ11

Given the center, a vertex, and one focus, find an equation for the hyperbola:
center: (-5, 2); vertex (-10, 2); one focus (-5-√29,2).

Answers

The equation of the hyperbola is -(x + 5)²/71 + (y - 2)² = -71

How to calculate the value

We can also find the distance between the center and the given focus, which is the distance between (-5, 2) and (-5 - √29, 2):

d = |-5 - (-5 - √29)| = √29

Substituting in the known values, we get:

c² = a² + b²

(√29)² = (10)² + b²

29 = 100 + b²

b² = -71

(x - h)²/a² - (y - k)²/b² = 1

where (h, k) is the center of the hyperbola.

Substituting in the known values, we get:

(x + 5)²/100 - (y - 2)²/-71 = 1

Multiplying both sides by -71, we get:

-(x + 5)²/71 + (y - 2)²/1 = -71/1

Leans more about hyperbola on

https://brainly.com/question/26250569

#SPJ1

Question content area toppart 1think about the process  at a​ little-known vacation​ spot, taxi fares are a bargain. a ​24-mile taxi ride takes 32 minutes and costs 9.60 ​$. you want to find the cost of a ​47 taxi ride. what unit price do you​ need?question content area bottompart 1you need the unit price ​$

Answers

You need the unit price $0.40/mile to find the cost of a 47-mile taxi ride.

What is the unit price needed to calculate the cost of a 47-mile taxi ride in the given scenario?The cost of a 24-mile taxi ride is $9.60, so the cost per mile is 9.6/24 = $0.40/mile.

Use the unit price to find the cost of a 47-mile taxi ride

The cost of a 47-mile taxi ride can be found by multiplying the unit price by the number of miles: 0.40/mile x 47 miles = $18.80.

Learn more about unit

brainly.com/question/19244145

#SPJ11

Matthew is saving money for a pet turtle. The data in the table represent the total amount of money in dollars that he saved by the end of each week.

Answers

A graph of the points that represent this data are shown on the coordinate plane attached below.

How to construct and plot the data in a scatter plot?

In this scenario, the week number would be plotted on the x-axis (x-coordinate) of the scatter plot while the amount of money (in dollars) would be plotted on the y-axis (y-coordinate) of the scatter plot through the use of Microsoft Excel.

On the Excel worksheet, you should right click on any data point on the scatter plot, select format trend line, and then tick the box to display an equation for the line of best fit (trend line) on the scatter plot.

From the scatter plot (see attachment) which models the relationship between the week number and the amount of money (in dollars), a linear equation for the line of best fit is as follows:

y = 1.19x + 1.05

Read more on scatter plot here: brainly.com/question/28605735

#SPJ1

Find, from first principle the deriva- tive of 1/(x²+1)

Answers

Step-by-step explanation:

[tex] \frac{1}{( {x}^{2} + 1) } = \frac{u}{v} [/tex]

u = 1

u' = 0

v = x² + 1

v' = 2x

[tex] \frac{1}{ ({x}^{2} + 1)} \\ = \frac{u'v - v'u}{ {v}^{2} } \\ = \frac{0 - (2x \times 1)}{ {( {x}^{2} + 1)}^{2} } \\ = - \frac{2x}{ { ({x}^{2} + 1) }^{2} } [/tex]

#CMIIW

Learning


Diagnostic


Analytics


Recommendations


Skill plans


Math


Language arts


Common Core


Sixth grade


P. 6 Compare and order rational numbers: word problems ETK


You have prizes to reveall Go


Manuel and his friends built model cars using pieces of wood and plastic wheels. They rolled


the cars down a ramp and measured to see whose car would coast the farthest. Manuel's car


coasted 10 feet, Richard's car coasted 10. 5 feet, and Diego's car coasted 10


2


feet.


6


How many of the cars coasted more than 10. 75 feet?


Submit

Answers

Number of cars that coasted more than 10.75 feet = 1

How many of the cars coasted more than 10.75 feet?

To solve this problem, you need to compare the distance each car coasted to 10.75 feet, which is the threshold for determining whether a car coasted more or less than 10.75 feet.

Manuel's car coasted 10 feet, which is less than 10.75 feet, so it did not coast more than 10.75 feet.

Richard's car coasted 10.5 feet, which is also less than 10.75 feet, so it did not coast more than 10.75 feet either.

Diego's car coasted 102 feet, which is more than 10.75 feet. Therefore, only one car coasted more than 10.75 feet, and the answer is 1.

So the answer is:

Number of cars that coasted more than 10.75 feet = 1

Learn more about the Number of cars

brainly.com/question/12603

#SPJ11

1
(Lesson 8.2) Which statement about the graph of the rational function given is true? (1/2 point)
4. f(x) = 3*-7
x+2
A. The graph has no asymptotes.
B.
The graph has a vertical asymptote at x = -2.
C. The graph has a horizontal asymptote at y =
+

Answers

Answer:

B. The graph has a vertical asymptote at

x = -2.

The statement about the graph of the given rational function that is true is: B. The graph has a vertical asymptote at x = -2.

To understand the graph of the rational function f(x) = (3x - 7) / (x + 2), we need to consider its behavior at various points. First, let's investigate the possibility of asymptotes. Asymptotes are lines that the graph approaches but never touches. There are two types of asymptotes: vertical and horizontal.

A vertical asymptote occurs when the denominator of the rational function becomes zero. In this case, the denominator is (x + 2), so we need to find the value of x that makes it zero. Setting x + 2 = 0 and solving for x, we get x = -2. Therefore, the rational function has a vertical asymptote at x = -2 (option B).

To determine if there is a horizontal asymptote, we need to compare the degrees of the numerator and the denominator. The degree of a term is the highest power of x in that term. In the given rational function, the degree of the numerator is 1 (3x) and the degree of the denominator is also 1 (x). When the degrees are the same, we look at the ratio of the leading coefficients, which are 3 (numerator) and 1 (denominator). The ratio of the leading coefficients is 3/1 = 3.

If the ratio of the leading coefficients is a finite value (not zero or infinity), then the rational function will have a horizontal asymptote. In this case, the horizontal asymptote is y = 3 (option C).

Hence the correct option is (b).

To know more about graph here

https://brainly.com/question/17267403

#SPJ2

tim can paint a room in 6 hours . bella can paint the same room in 4 hours . how many hours would it take tim and bella to paint the room while working together y=kx+b
please help me now.

Answers

Answer: 3

Step-by-step explanation:

Answer:

2hrs 24 mins

Step-by-step explanation:

Ok so let's make this problem a bit simpler by splitting it up.

Tim paints a room in 6 hours.

So, we can also say that she paints 1/6 of that room in 1 hour

Bella paints it in 4 hours

So, we can also say that she paints 1/4 of that room in 1 hour

Now, lets see what we have:

Bella: 1/4 every hour

Tim: 1/6 every hour


The problem states that they are working together, so we need to add the values we have:

1/4 + 1/6

We cannot just add them, we must make them have the same common denominator.

LCD is 12, you can find that by just doing the times tables for 4 and 6 and seeing what number they match on first.

3/12 + 2/12 = 5/12

So, tim and bella working together paint 5/12 of a room in 1 hour.

They paint 5/12 of a room in 60 minutes

They paint 1/12 of the room in 12 minutes(divide both values by 5)

So if they paint 1/12 of the room in 12 minutes, we can multiply both values by 12 to get our answer.

They paint the full room in 144 minutes(12*12).

144 minutes is 2 hours and 24 minutes

If using the method of completing the square to solve the quadratic equation x^2+4x+3=0x

2

+4x+3=0, which number would have to be added to "complete the square"?

Answers

If using the method of completing the square to solve the quadratic equation number 1 be added to both side of the equation to be added to "complete the square".

An algebraic equation of the second degree in x is a quadratic equation. The quadratic equation is written as ax² + bx + c = 0, where x is the variable, a and b are the coefficients, and c is the constant term. The requirement that the coefficient of x² be a non-zero term (a 0) is necessary for an equation to qualify as a quadratic equation. The x² term is written first when constructing a quadratic equation in standard form, then the x term, and finally the constant term.

Add 1 to both sides of the equation to get:

[tex]x^2+4x+4=1[/tex]

The left hand side is now a perfect square:

[tex]x^2+4x+4=(x+2)^2[/tex]

So we have:

[tex](x+2)^2=1[/tex]

Hence:

[tex]x+2=\pm\sqrt{1} =\pm1[/tex]

Subtract 2 from both ends to get:

x = -2 ± 1

That is:

x = -3 or x = -1.

Learn more about Quadratic equation:

https://brainly.com/question/28038123

#SPJ4

Consider the following function.
p-5/p^2+1
Find the derivative of the function.
h(p) =
h'(p) =
Find the values of p such that h'(p) = 0. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.)
p =
Find the values of x in the domain of h such that h'(p) does not exist. (Enter your answers as a comma-separated list. If an answer does not exist, enter DE.)
p =
Find the critical numbers of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.)
p =

Answers

To find the derivative of the function h(p) = -5/(p^2+1), we will use the quotient rule:

h'(p) = [(-5)'(p^2+1) - (-5)(p^2+1)'] / (p^2+1)^2

Simplifying this expression, we get:

h'(p) = (10p) / (p^2+1)^2

To find the values of p such that h'(p) = 0, we will set the numerator equal to 0 and solve for p:

10p = 0

p = 0

Therefore, h'(p) = 0 when p = 0.

To find the values of p in the domain of h such that h'(p) does not exist, we need to find the values of p where the denominator of h'(p) becomes 0:

p^2+1 = 0

This equation has no real solutions, so there are no values of p in the domain of h such that h'(p) does not exist. Therefore, we enter DE (does not exist).

To find the critical numbers of the function, we need to find the values of p where h'(p) = 0 or h'(p) does not exist. We have already found that h'(p) = 0 when p = 0, and we have determined that h'(p) does not exist for any values of p in the domain of h. Therefore, the only critical number of the function is p = 0.
Let's first find the derivative of the given function, h(p) = (p - 5)/(p^2 + 1).

Using the quotient rule, h'(p) = [(p^2 + 1)(1) - (p - 5)(2p)]/((p^2 + 1)^2).

Simplifying, h'(p) = (p^2 + 1 - 2p^2 + 10p)/((p^2 + 1)^2) = (-p^2 + 10p + 1)/((p^2 + 1)^2).

To find the values of p such that h'(p) = 0, set the numerator of h'(p) equal to zero:

-p^2 + 10p + 1 = 0.

This is a quadratic equation, but it does not have any real solutions. Therefore, there are no values of p for which h'(p) = 0, so the answer is DNE.

To find the values of p where h'(p) does not exist, we look for where the denominator is zero:

(p^2 + 1)^2 = 0.

However, this equation has no real solutions, as (p^2 + 1) is always positive. Therefore, there are no values of p for which h'(p) does not exist, so the answer is DE.

Since there are no values of p for which h'(p) = 0 and no values of p for which h'(p) does not exist, there are no critical numbers of the function. The answer is DNE.

Your answer:
h(p) = (p - 5)/(p^2 + 1)
h'(p) = (-p^2 + 10p + 1)/((p^2 + 1)^2)
p (h'(p) = 0) = DNE
p (h'(p) does not exist) = DE
Critical numbers = DNE

Visit here to learn more about derivative brainly.com/question/30365299

#SPJ11

find a constant b so that y(t) = e^2t [1 4 b] is a solution of y′ = [4 1 3 2 3 3 −2 −1 −1]y.

Answers

We have found a value of b that makes y(t) = [tex]e^2t[/tex] [1; 4; -1/2] a solution of y′ = [4 1 3; 2 3 3; −2 −1 −1]y. To check if y(t) is a solution of y′ = Ay, we need to substitute it into the differential equation and see if it holds.

Let's start by finding y′:

y′(t) = [[tex]2e^2t, 8e^2t, 4be^2t[/tex]]

Now, let's find Ay:

Ay = [4 1 3; 2 3 3; −2 −1 −1] [1; 4; b] = [4+4b; 14; -5-b]

We want y(t) = e^2t [1; 4; b] to satisfy y′ = Ay, so we set them equal:

y′ = Ay

[[tex]2e^2t; 8e^2t; 4be^2t] = [4+4b; 14; -5-b] e^2t[/tex] [1; 4; b]

Expanding this equation, we get:

[tex]2e^2t[/tex]= (4+4b)[tex]e^2t[/tex]

[tex]8e^2t[/tex] = 14 [tex]e^2t[/tex]

[tex]4be^2t[/tex]= (-5-b) [tex]e^2t[/tex]

The second equation is always true, so we can ignore it. For the first equation, we can cancel out [tex]e^2t[/tex] on both sides to get:

2 = 4+4b

Solving for b, we get:

b = -1/2

Finally, we can substitute b = -1/2 back into the third equation to check if it holds:

4be^2t = (-5-b) [tex]e^2t[/tex]

-2e^2t = (-5 + 1/2)[tex]e^2t[/tex]

This equation is true, so we have found a value of b that makes y(t) = [tex]e^2t[/tex] [1; 4; -1/2] a solution of y′ = [4 1 3; 2 3 3; −2 −1 −1]y.

Learn more about  differential equation

https://brainly.com/question/14620493

#SPJ4

Other Questions
Juanita keeps 25% of the monthly sales from her ice cream shop as a profit. If the shop makes an average of $750 in sales this month, how much money will Juanita keep as profit this month? A farmer of a large apple orchard would like to estimate the true mean number of suitable apples produced per tree. He selects a random sample of 40 trees from his large orchard and determines with 95% confidence that the true mean number of suitable apples produced per tree is between 375 and 520. Which of these statements is a correct interpretation of the confidence level? IN A CLASS OF 100 STUDENTS ,35 LIKE SCIENCE ,45 LIKE MATH , 10 LIKE BOTH. HOW MANY LIKE EITHER OF THEM , HOW MANY LIKE NEITHER OF THEM help me please Which choice below is NOT a possible feature of a conjecture?Group of answer choicesA) Its a declarative statementB) Its a falsehoodC) Its the truth.D) Its a question Determine the formula of the hydrated salt with iron 20. 14%, oxygen 23. 02%,sulphur11. 51%,water 45. 32% and molecular mass ofsalt is278 "Gross margin is how much the retailer makes after ____a) the discount on the goods sold is subtracted from sales.b) the discount on the goods sold is added to sales.c) the cost of the goods sold" FRANK IS DESIGNING 30-KILOMETERS TRAIL RUN WATER WILL BE GIVEN TO THE RUNNERS 4000 OW MANY WATER STATIONS WILL THERE BE Solve this system.Select one:a.No solutionb.(4,-2)c.(5,10)d.Infinite solutions When do most of the preparations for mitosis occur, including such activities as dna replication?. Determine if the sequence is a geometric sequence. If it is, find the common ratio and write the explicit formula and recursive definition. 45, 15, 5, 5/3 In premier-presidential systems, the prime minister and his cabinets can only be removed by ____ 1 How might the community of organisms that live in the area of a flowering plant, such as a blueberry bush impact the reproductive success of the plant? 11. On a basketball court, the free throw lane is marked off geometrically. This area of the court is called thekey and is topped by a semicircle that has a diameter of 12 feet. Find the arc length of the semicircle to thenearest foot. Find the area of the semicircle to the nearest square foot. Kyle is buying gifts for Megan's birthday and needs to stay in budgetCake = half his money + 36.50Decorations = half of what he had left + 36.50Sweets = half of what he had left + 18.25Now he is out of money, what did he start with? Name and describe the two ways a person can be natural born citizen? Carla Vista Co. Has these comparative balance sheet data:CARLA VISTA CO. Balance SheetsDecember 312022 2021Cash $ 16,140 $ 32,280Accounts receivable (net) 75,320 64,560Inventory 64,56 53,800Plant assets (net) 215,200 193,680$371,220 $344,320Accounts payable $ 53,800 $ 64,560Mortgage payable (15%)107,600 107,600Common stock, $10 par 150,640 129,120Retained earnings 59,180 43,040$371,220 $344,320Additional information for 2022:1. Net income was $32,500. 2. Sales on account were $392,900. Sales returns and allowances amounted to $27,300. 3. Cost of goods sold was $217,300. 4. Net cash provided by operating activities was $57,200. 5. Capital expenditures were $30,000, and cash dividends were $19,000. Compute the following ratios at December 31, 2022. (Round current ratio and inventory turnover to 2 decimal places, e. G. 1. 83 and all other answers to 1 decimal place, e. G. 1. 8. Use 365 days for calculation. )(a) Current ratio(b) Accounts receivable turnover. (c) Average collection period. (d) Inventory turnover. (e) Days in inventory. (f) Free cash flow Combine each pair of sentences. Write the new sentence on the line. 1. Dennis cared for pets. They were the family pets. 2. He went on trips. He went to collect things. 3. There was a college. It was in his home town. 4. She studied plants. They were flowering plants. 5. The boxes are full. The bottles are full. 6. They could see for miles. They could see ash. Rewrite each sentence. Add punctuation and capitals. 7. scientists explore many different places 8. in only a few weeks living things returned to the lakes 9. what is your favorite thing to do outside Punctuation 10. to learn more about science talk to a scientist Hidden Worlds Grade 5/Unit 6 Why is specialization a common result of free trade?A. Worker safety agreements encourage production that uses skilledlabor.B. Competition encourages countries to specialize in what they dobest.C. Trade agreements determine what each country must produce.D. Loss of import tax revenues forces countries to limit what theymanufacture. Compare the map from 1939 t early 1940 with the map from 1941 to 1942. how did the region controlled by the axis powers change? respond in at least one complete sentence. What kind of government did they have an ancient Greece