if there's glass in the furnace how come the temperature of the glass doesn't rise

Answers

Answer 1

When glass is placed in a furnace, its temperature rises in tandem with the temperature of the furnace. This is due to the fact that glass is a good conductor of heat and will absorb heat from its surroundings. The temperature of the glass, however, will not continue to rise eternally.

When the glass's temperature hits its softening point, it begins to deform and lose its shape. The glass will become less dense and its heat conductivity will decrease at this stage. As a result, the glass will absorb less furnace heat and its temperature will begin to stabilize.

Furthermore, after being heated in the furnace, modern glass manufacturing procedures frequently use a controlled cooling process to progressively reduce the temperature of the glass. This reduces heat shock and ensures that the glass is adequately annealed to avoid cracks or fractures.

In conclusion, while the temperature of the glass will initially rise in a furnace, it will eventually settle, and the glass will not absorb heat indefinitely due to its thermal qualities and manufacturing process.

learn more about temperature here

https://brainly.com/question/26866637

#SPJ1


Related Questions

On which beach(es) would you create a turtle refuge? Cite evidence to support your response.​

Answers

Turtle refuges are usually created on beaches where turtles lay their eggs, hatch, and return to the sea. Therefore, beaches that are known as nesting grounds for sea turtles may be suitable for creating a turtle refuge.

In general, turtle nesting sites are characterized by sandy beaches, dunes, and undisturbed vegetation. Female sea turtles come ashore to lay their eggs on sandy beaches, and the hatchlings make their way to the ocean once they emerge from the nest.

Turtle refuges provide protection for these nesting sites, allowing the turtles to lay their eggs and for the hatchlings to safely make their way to the ocean.

It is important to note that the location of a turtle refuge should be based on careful research and consideration of a variety of factors, such as the species of turtles that inhabit the area, the presence of human and natural threats to the nesting sites, and the availability of resources and support for the conservation efforts.

For more question on Turtle click on

https://brainly.com/question/26173544

#SPJ11

write the net acid-base reaction that occurs when hbr is added to water. (use the lowest possible coefficients. omit states-of-matter in your answer.) chempadhelp

Answers

The net acid-base reaction that occurs when HBr is added to water can be represented as HBr + H₂O → H₃O + Br⁻

When HBr is added to water, it dissociates into its constituent ions, H+ and Br-. These ions then interact with the water molecules, leading to the formation of hydronium ions (H₃O⁺) and bromide ions (Br⁻). This reaction is known as a proton transfer reaction, as a proton (H+) is transferred from the acid (HBr) to the water molecule (H2O) to form a hydronium ion (H₃O⁺).

This reaction can also be understood in terms of the Arrhenius theory of acids and bases, which defines acids as compounds that release hydrogen ions (H⁺) when dissolved in water. In this case, HBr is an acid that releases H⁺ ions when dissolved in water, leading to the formation of the hydronium ion (H₃O⁺).

The reaction between HBr and water is an example of an acid-base reaction, where the acid (HBr) donates a proton to the water molecule (H₂O) to form the hydronium ion (H₃O⁺), which is the conjugate acid of water. The bromide ion (Br⁻) is the conjugate base of HBr.

To know more about the Acid-base reaction, here

https://brainly.com/question/29460273

#SPJ4

What volume of an hcl solution with a ph of 1. 3 can be neutralized by one dose of milk of magnesia?.

Answers

480 mL of the HCl solution with a pH of 1.3 can be neutralized by one dose of milk of magnesia assuming the concentration of magnesium hydroxide is 0.2 M.

To determine the volume of [tex]HCl[/tex] solution that can be neutralized by milk of magnesia, we need to know the concentration of the milk of magnesia.

Assuming milk of magnesia is a suspension of solid magnesium hydroxide in water, we need to know the concentration of magnesium hydroxide [tex](Mg(OH)2)[/tex] in the suspension.

Let's assume that the concentration of magnesium hydroxide in milk of magnesia is 0.2 M.

The balanced chemical equation for the neutralization reaction between [tex]HCl[/tex] and[tex]Mg(OH)2[/tex]is:

[tex]2HCl + Mg(OH)2 - > MgCl2 + 2H2O[/tex]

From the equation, we can see that two moles of [tex]HCl[/tex] react with one mole of [tex]Mg(OH)2[/tex].

To determine the volume of [tex]HCl[/tex] solution, we need to calculate the number of moles of [tex]Mg(OH)2[/tex] in one dose of milk of magnesia:

0.2 M = 0.2 moles / liter

Let's assume one dose of milk of magnesia is 30 mL, or 0.03 L. Then the number of moles of [tex]Mg(OH)2[/tex] in one dose is:

0.2 moles / L x 0.03 L = 0.006 moles Mg(OH)2

Therefore, this amount of [tex]Mg(OH)2[/tex] would require:

2 x 0.006 = 0.012 moles of [tex]HCl[/tex] for complete neutralization

Now, let's calculate the volume of [tex]HCl[/tex] solution needed to provide 0.012 moles of [tex]HCl[/tex].

The volume of [tex]HCl[/tex] solution can be calculated using the balanced chemical equation and the molarity of the [tex]HCl[/tex] solution:

2 moles HCl / 1 mole [tex]Mg(OH)2[/tex] x 0.012 moles [tex]Mg(OH)2[/tex] / 1 = 0.024 moles HCl

[tex]pH = -log[H+]1.3 = -log[H+]\\[H+] = 5 x 10^-2 M[/tex]

Now we can calculate the volume of the HCl solution using the equation:

moles = concentration x volume

0.024 moles = [tex]5 x 10^-2 M x volume[/tex]

volume = 0.48 L or 480 mL

To know more about  milk of magnesia refer to-

https://brainly.com/question/22066653

#SPJ11

Help what’s the answer?

Answers

We can deduce from the computations that the mass of the acetic acid produced is 28.2 g.

What is the limiting reactant?

The reactant that is totally consumed during a chemical reaction involving two or more reactants is known as the limiting reactant. This limits the amount of product that can be generated. Excess reactants are the additional reactant(s) that are still present after the limiting reactant has been completely consumed.

CH3CHO's molecular weight is 20.8 g/44 g/mol.

= 0.47 moles

O2 molecular weight is 14.5 g/32 g/mol.

= 0.45 moles

If 1 mole of O2 interacts with 2 moles of CH3CHO

CH3CHO containing 0.47 moles would react with 0.47 * 1/2.

= 0.24 moles

Thus, the limiting reactant is CH3CHO.

Acetic acid mass produced is 0.47 moles * 60 g/mol.

= 28.2 g

Learn more about acetic acid:brainly.com/question/15202177

#SPJ1

2. How much energy will be released when 152 grams of CH Ch condense at the boiling point?


(3 sig figs)

Answers

152 grams of [tex]C2H6[/tex]would release 152 kJ of energy when it condenses at its boiling point.

Assuming you meant "[tex]C2H6[/tex]" instead of "[tex]CH Ch[/tex]", the heat of vaporization of [tex]C2H6[/tex]is 30.1 kJ/mol. The molar mass of [tex]C2H6[/tex] is 30.07 g/mol.

To calculate the heat of vaporization for 152 g of [tex]C2H6[/tex], we need to first calculate the number of moles of [tex]C2H6[/tex]:

152 g / 30.07 g/mol = 5.05 mol

Then, we can calculate the energy released using the heat of vaporization:

5.05 mol x 30.1 kJ/mol = 152 kJ

Therefore, 152 grams of [tex]C2H6[/tex]would release 152 kJ of energy when it condenses at its boiling point.

To know more about boiling point refer to-

https://brainly.com/question/2153588

#SPJ11

A 35. 0 L sample of gas at 45. 0° C is cooled to 12. 0° C what is the final volume of the gas?

Answers

The final volume of the gas is 31.4 L when cooled from 45.0°C to 12.0°C.

The Charles's law states the relationship between the volume and the temperature of a gas when the pressure is constant. We can use the formula for the relationship between volume and temperature of a gas: [tex]\frac{V_{1} }{T_{1} }[/tex] = [tex]\frac{V_{2} }{T_{2} }[/tex]

where [tex]V_{1}[/tex] and [tex]T_{1}[/tex] are the initial volume and temperature, and [tex]V_{2}[/tex] and [tex]T_{2}[/tex] are the final volume and temperature.

We are given [tex]V_{1}[/tex] = 35.0 L and [tex]T_{1}[/tex] = 45.0°C = 45.0°C + 273.15 = 318.15 K,

and we need to find [tex]V_{2}[/tex] when [tex]T_{2}[/tex] = 12.0°C = 12.0°C + 273.15 = 285.15 K .  

Now by using the formula:

35.0 L / 318.15 K = [tex]V_{2}[/tex] / 285.15 K

[tex]V_{2}[/tex] = (35.0 L / 318.15 K) × 285.15 K

[tex]V_{2}[/tex] = 31.4 L

Therefore, the final volume of the gas is 31.4 L when cooled from 45.0°C to 12.0°C.

To know more about Charles's law visit:

https://brainly.com/question/16927784

#SPJ11

Help what’s the answer?

Answers

Can you show the choices?

How many moles of nitrogen gas will occupy a volume of 5L at 3. 85 atm and 27c?

Answers

The number of moles of nitrogen gas that will occupy a volume of 5L at 3.85 atm and 27°C is determined using the ideal gas law equation. After calculations, it is found to be approximately 0.7919 moles. Thus, 0.7919 moles of nitrogen gas occupy 5L at 3.85 atm and 27°C.

To calculate the number of moles of nitrogen gas that will occupy a volume of 5L at 3.85 atm and 27°C, we can use the ideal gas law equation:

PV = nRT

where P is the pressure in atmospheres, V is the volume in liters, n is the number of moles, R is the gas constant (0.08206 L·atm/K·mol), and T is the temperature in Kelvin.

First, we need to convert the temperature from Celsius to Kelvin:

T = 27°C + 273.15 = 300.15 K

Next, we can rearrange the ideal gas law equation to solve for the number of moles:

n = PV / RT

Plugging in the values, we get:

[tex]n = \frac{{(3.85 \, \text{atm}) \cdot (5 \, \text{L})}}{{(0.08206 \, \text{L} \cdot \text{atm/K} \cdot \text{mol}) \cdot (300.15 \, \text{K})}}[/tex]

Simplifying the expression, we get:

n = 0.7919 moles

Therefore, 0.7919 moles of nitrogen gas will occupy a volume of 5L at 3.85 atm and 27°C.

To know more about the ideal gas law equation refer here :

https://brainly.com/question/11544185#

#SPJ11

A gas occupies 900 mL at a temperature of 27. 0°C. What is the


Temperature of the gas if the volume of the container increases to 1074


mL?

Answers

The temperature of the gas when the volume of the container increases to 1074 mL is 358.15 K or 85.0°C

The behavior of gases is affected by several factors including temperature, pressure, and volume. One important principle that applies to gases is that they tend to occupy the entire volume of their container. Therefore, if the volume of the container increases, the gas will occupy more space.

In this particular scenario, the gas initially occupies 900 mL at a temperature of 27.0°C. When the volume of the container increases to 1074 mL, we need to determine the corresponding temperature of the gas. To do this, we can use the formula:

(V1/T1) = (V2/T2)

Where V1 and T1 represent the initial volume and temperature of the gas, respectively, and V2 and T2 represent the final volume and temperature of the gas, respectively.

Substituting the given values into the formula, we get:

(900/300.15) = (1074/T2)

Simplifying the equation, we can cross-multiply and solve for T2:

900T2 = 1074 x 300.15

T2 = 1074 x 300.15 / 900

T2 = 358.15 K

Therefore, the temperature of the gas when the volume of the container increases to 1074 mL is 358.15 K or 85.0°C (rounded to one decimal place).

To know more about temperature, visit:

https://brainly.com/question/11464844#

#SPJ11

The hydrogen gas needed to power a car for 400km would occupy a large volume. Suggest one way that this volume can be reduced

Answers

One way to reduce the volume of hydrogen gas needed to power a car for 400 km is to use a technology called on-board hydrogen storage.

This involves compressing the hydrogen gas to very high pressures, typically between 5,000 and 10,000 psi, which significantly reduces its volume.

Another method is to use liquid hydrogen storage, which involves cooling hydrogen gas to its boiling point (-423.17°F or -252.87°C) and storing it in a cryogenic tank. At this temperature, hydrogen gas is in its liquid state and takes up much less space than when it is in its gaseous state.

Both of these methods of hydrogen storage can greatly reduce the volume of hydrogen needed to power a car for 400 km, making hydrogen fuel cell cars more practical and feasible for everyday use.

To know more about hydrogen gas, refer here:

https://brainly.com/question/143551553#

#SPJ11

How many grams of protein are needed to produce 23,000 cal of energy? Every gram of protein can produce 17 KJ of energy

Answers

A total of 96,320 kJ / 17 kJ per gram of protein = 5,670 grams of protein.

To determine the grams of protein needed to produce 23,000 calories of energy, we need to convert the calories to kilojoules (kJ) and then divide by the energy produced by each gram of protein.

23,000 calories = 96,320 kJ (1 calorie = 4.184 kJ)
Each gram of protein produces 17 kJ of energy.


Protein is an important nutrient for our bodies, as it provides the building blocks for our muscles, bones, and other tissues. It also plays a role in many cellular functions and processes. One of the functions of protein is to provide energy for our bodies, although this is not its primary role.

When we eat protein, our bodies break it down into amino acids, which can then be used for various purposes. One of these purposes is to produce energy.

Every gram of protein contains 4 calories, or 17 kilojoules, of energy. This is less than the amount of energy provided by a gram of fat (9 calories or 37 kilojoules) or a gram of carbohydrate (4 calories or 17 kilojoules), but it is still significant.

To know more about cellular functions click on below link:

https://brainly.com/question/30112418#

#SPJ11

16. Silver reacts with hydrogen sulphide gas, and oxygen according to the reaction:


4Ag(s) + 2H,S(g) + O2(g) + 2Ag2S(s)+ 2H2O(g)


How many grams of silver sulphide are formed when 1. 90 g of silver reacts with 0. 280 g of


hydrogen sulphide and 0. 160 g of oxygen?

Answers

Total, 1.77 g of silver sulfide are formed, when 1. 90 g of silver reacts with 0.

Balanced chemical equation for the reaction is;

4Ag(s) + 2H₂S(g) + O₂(g) → 2Ag₂S(s) + 2H₂O(g)

To determine the limiting reactant, we need to compare the number of moles of each reactant to their stoichiometric ratio in the balanced equation.

First, we need to convert the given masses of silver, hydrogen sulfide, and oxygen to moles;

molar mass of Ag = 107.87 g/mol

moles of Ag = 1.90 g / 107.87 g/mol

= 0.0176 mol

molar mass of H₂S = 2(1.01 g/mol) + 32.06 g/mol = 34.08 g/mol

moles of H₂S = 0.280 g / 34.08 g/mol = 0.00821 mol

molar mass of O₂ = 2(16.00 g/mol) = 32.00 g/mol

moles of O₂ = 0.160 g / 32.00 g/mol = 0.00500 mol

Next, we need to compare the number of moles of each reactant to their stoichiometric ratio in the balanced equation;

Ag ; H₂S ; O₂ = 4 : 2 : 1

The stoichiometric ratio tells us that we need 2 moles of H2S and 0.5 moles of O₂ for every 4 moles of Ag.

Let's calculate the number of moles of each reactant we actually have, starting with H₂S;

H₂S is the limiting reactant if it produces fewer moles of Ag₂S than either of the other reactants. We can calculate the number of moles of Ag₂S that each reactant would produce, assuming that it is the limiting reactant;

If H₂S is the limiting reactant;

moles of Ag₂S = (0.00821 mol H₂S) x (2 mol Ag₂S / 2 mol H₂S)

= 0.00821 mol

If O₂ is the limiting reactant;

moles of Ag₂S = (0.00500 mol O₂) x (2 mol Ag2S / 1 mol O₂)

= 0.0100 mol

If Ag is the limiting reactant;

moles of Ag₂S = (0.0176 mol Ag) x (0.5 mol Ag₂S / 4 mol Ag)

= 0.00220 mol

Since H₂S produces the fewest moles of Ag₂S, it is the limiting reactant.

To calculate the mass of Ag₂S produced, we can use the number of moles of Ag₂S produced by the limiting reactant:

mass of Ag₂S = (0.00821 mol Ag₂S) x (2 x 107.87 g/mol)

= 1.77 g

Therefore, 1.77 g of silver sulfide are formed.

To know more about silver sulfide here

https://brainly.com/question/31158390

#SPJ4

Use this equation to answer the following two questions.


2 Mg + O2 → 2Mgo


5) If you have 7. 8 moles of magnesium and 4. 7 moles of oxygen, which one 2 points


will be the EXCESS reactant if they are allowed to react until ithe reaction


stops?


magnesium


oxygen


O magnesium oxide

Answers

The excess reactant will be oxygen.

To determine the excess reactant, we need to compare the amount of moles of each reactant to the stoichiometry of the balanced equation. The stoichiometric ratio between magnesium and oxygen is 2:1, which means that for every 2 moles of magnesium, 1 mole of oxygen is required for complete reaction.

In this case, we have 7.8 moles of magnesium and 4.7 moles of oxygen. Based on the stoichiometric ratio, we can see that 7.8 moles of magnesium require 3.9 moles of oxygen (2 moles of oxygen for every 1 mole of magnesium). Since we only have 4.7 moles of oxygen, it is the limiting reactant, and magnesium will be in excess.

Therefore, after the reaction is complete, all of the magnesium will be consumed, and some oxygen will be left over. The product of the reaction will be 7.8 moles of magnesium oxide.

To learn more about reactions, here

https://brainly.com/question/28984750

#SPJ4

If I contain 25 grams of argon in a container with a volume of 60 liters and


at a temperature of 400 K, what is the pressure inside the container?

Answers

The pressure inside a container that contains 25 grams of argon is 0.34 atm.

How to calculate pressure?

The pressure inside a container can be calculated using the following expression;

PV = nRT

Where;

P = pressureV = volumeT = temperaturen = no of molesR = gas law constant

According to this question, 25 grams of argon in a container has a volume of 60 liters and at a temperature of 400 K.

P × 60 = 0.625 × 0.0821 × 400

60P = 20.525

P = 0.34 atm

Learn more about pressure at: https://brainly.com/question/18124975

#SPJ1

How many moles of gas are in a room with a volume of 85. 0 L? A light bulb in the same room at the same temperature and pressure has a volume of 61. 0 L and a 9. 00 moles of gas

Answers

The number of moles in the room depends on the temperature.

Assuming that the temperature and volume in the room are the same as those outside, we can use the ideal gas law to calculate the number of moles of gas in the room.

Ideal gas law is given by:

PV = nRT

Number of moles:

n = PV/RT

Since the temperature and pressure are the same in both cases, we can write:

n(room) = (P × V(room)) / RT

n(bulb) = (P × V(bulb)) / RT

We are given that the bulb contains 9.00 moles of gas at the same temperature and pressure as the room. Therefore, we can use the number of moles in the bulb to find the pressure and temperature:

n(bulb) = (P × V(bulb)) / RT

9.00 mol = (P × 61.0 L) / (R × T)

Similarly, for the room, we can write:

n(room) = (P × V(room)) / RT

n(room) = (P × 85.0 L) / (R × T)

P = (n × RT) / V

P = (PV / RT) × RT / V

P = nRT / V

We can use the value of n from the bulb to find the pressure and temperature:

9.00 mol × R × T / 61.0 L = P

P = 3.17 atm

Now we can use this value of pressure to find the number of moles in the room:

n(room) = (P × V(room)) / RT

n(room) = (3.17 atm × 85.0 L) / (R × T)

n(room) = (3.17 atm × 85.0 L) / (0.08206 L atm/mol K × T)

n(room) = 129.3 L atm / (R × T)

Therefore, the number of moles in the room depends on the temperature.

Learn more about volume Visit: brainly.com/question/27710307

#SPJ4

How many kj are released when 4.30 mol mg reacts with an excess of oxygen?



if 6.40 mol magnesium oxide are produced, how much energy is released?



if 68.9 g mg react with an excess of oxygen, how much energy is released?



the reaction produces 5,356 kj of energy. how many grams of mgo are formed?

Answers

The reaction of 4.30 mol of magnesium with an excess of oxygen produces 6.40 mol of magnesium oxide (MgO).

What is magnesium oxide ?

Magnesium oxide is a white, odorless inorganic compound composed of magnesium and oxygen atoms. It is a strong basic oxide and an important mineral component of many rocks and soils. It has a wide range of industrial uses, such as in the production of cement, ceramics, and glass. It is also used as an antacid and laxative, and as a supplement to increase dietary magnesium intake.

The energy released in this reaction can be determined using the following equation:E = ΔHf (MgO) x (6.40 mol MgO)

In this equation, ΔHf (MgO) is the molar enthalpy of formation of magnesium oxide. The molar enthalpy of formation of magnesium oxide is -601.8 kJ/mol. Therefore, the total energy released in this reaction is:

E = -601.8 kJ/mol x (6.40 mol MgO)

E = -3,854.7 kJ.To determine the number of grams of MgO produced, we can use the following equation: Mass (MgO) = (6.40 mol MgO) x (Molar mass MgO) .

The molar mass of MgO is 40.3 g/mol. Therefore, the mass of MgO produced is: Mass (MgO) = (6.40 mol MgO.

To learn more about magnesium oxide

https://brainly.com/question/30333465

#SPJ4

What change in volume results if 50.0 mL of gas is cooled from 48.0 °C to
3°C?

Answers

Answer:

-2.6 mL.

Explanation:

To solve this question, we need to use the formula:

V1/T1 = V2/T2

where V1 and T1 are the initial volume and temperature of the gas, and V2 and T2 are the final volume and temperature of the gas. We also need to convert the temperatures from degrees Celsius to kelvins by adding 273.15. Plugging in the given values, we get:

50.0 mL / (48.0 + 273.15) K = V2 / (3 + 273.15) K

Solving for V2, we get:

V2 = 50.0 mL x (3 + 273.15) K / (48.0 + 273.15) K V2 = 47.4 mL

Therefore, the change in volume is:

ΔV = V2 - V1 ΔV = 47.4 mL - 50.0 mL ΔV = -2.6 mL

The negative sign indicates that the volume decreases when the gas is cooled.

The answer is -2.6 mL.

How do the bond types at the atomic level relate to the structure of the material at the macroscopic level?

Answers

The types of chemical bonds present in a material determine the arrangement of atoms or molecules at the microscopic level, which in turn determines the properties of the material at the macroscopic level.

For example, materials with ionic bonds tend to have high melting and boiling points due to the strong electrostatic attraction between positively and negatively charged ions. Covalently bonded materials tend to have lower melting and boiling points due to the weaker intermolecular forces between molecules.

Metallic bonding leads to high electrical and thermal conductivity due to the delocalization of electrons within the metal lattice. These different bond types and resulting material properties are important in understanding the behavior and applications of different materials.

To know more about the Covalently bonded refer here :

https://brainly.com/question/14509196#

#SPJ11

Carbon and Silicon are in the same group in the periodic table. Silicon oxide melts at 2440 degrees Celsius while solid carbon dioxide sublimes at -70 degrees Celsius. In terms of structure and bonding, explain the difference​

Answers

Answer:

Carbon and silicon are both in Group 14 of the periodic table, which means they have similar electronic configurations and therefore similar bonding properties. However, the difference in melting and sublimation temperatures of their oxides, silicon oxide and solid carbon dioxide, respectively, can be attributed to differences in their structure and bonding.

Silicon oxide (SiO2) has a giant covalent structure, in which each silicon atom is covalently bonded to four oxygen atoms and each oxygen atom is covalently bonded to two silicon atoms. This gives rise to a three-dimensional network of strong covalent bonds, which requires a large amount of energy to be broken. Therefore, silicon oxide has a high melting point of 2440°C because a lot of energy is required to overcome the strong covalent bonds and melt the solid.

On the other hand, solid carbon dioxide (CO2) has a molecular structure, in which each carbon atom is double bonded to two oxygen atoms. The carbon dioxide molecules are held together by weak intermolecular forces, such as Van der Waals forces, which are much weaker than the strong covalent bonds present in silicon oxide. As a result, solid carbon dioxide can sublime at -70°C, without melting into a liquid, because the intermolecular forces can be overcome by relatively low energy input.

In summary, the difference in melting and sublimation temperatures of silicon oxide and solid carbon dioxide can be explained by the difference in their bonding types and structures. Silicon oxide has a giant covalent structure with strong covalent bonds that require a large amount of energy to break, resulting in a high melting point. Solid carbon dioxide has a molecular structure held together by weak intermolecular forces, which can be overcome by relatively low energy input, resulting in a low sublimation point.

If a person had 100 g of pure radioactive nuclei with a half-life of 100 years, then after 100 years he or she would have _____ of radioactive nuclei

Answers

After 100 years, a person who had 100 g of pure radioactive nuclei with a half-life of 100 years would have 50 g of radioactive nuclei left.

The half-life of a radioactive substance is the time it takes for half of the substance's original amount to decay. In this case, since the half-life is 100 years, after 100 years, half of the original amount of radioactive nuclei would have decayed.

After the first 100 years, 50 g of radioactive nuclei would remain, and the other 50 g would have decayed. If we wait for another 100 years, half of the remaining 50 g, which is 25 g, would decay, leaving only 25 g of the original amount. This process will continue until all the radioactive nuclei have decayed.

It's worth noting that the rate of decay is exponential, which means that the amount of radioactive substance remaining decreases at a constant rate over time. Knowing the half-life of a radioactive substance is important in determining the amount of time it takes for the substance to decay to a safe level.

To know more about radioactive nuclei refer to-

https://brainly.com/question/30304562

#SPJ11

Explain with words how the parent nucleus’s changes in gamma decay

Answers

The changes that occur in the parent nucleus during gamma decay are limited to the emission of a gamma ray and the associated decrease in energy. The mass and atomic number of the nucleus remain unchanged.

In gamma decay, the parent nucleus does not undergo any changes in terms of its mass or atomic number. Instead, the nucleus emits a gamma ray, which is a high-energy photon. This gamma ray is released as the nucleus transitions from an excited state to a lower energy state.

The emission of a gamma ray does not affect the number of protons or neutrons in the nucleus. This means that the atomic number and mass number of the nucleus remain the same before and after gamma decay.

However, the emission of a gamma ray does result in a decrease in the energy of the nucleus. This is because gamma rays have a very high frequency and carry a lot of energy. By releasing a gamma ray, the nucleus is able to shed some of this excess energy and move to a lower energy state.

For more such questions on nucleus

https://brainly.com/question/5223117

#SPJ11

What was the mass of zinc used in the first reaction of the experiment? note: depending on the actual amount of substances dispensed in the lab, there is a range of possible answers. Pick the value that is closest to yours

Answers

When zinc reacts with hydrochloric acid, the response bubbles vigorously as hydrogen fueloline is produced.

The manufacturing of a fueloline is likewise an illustration that a chemical response is occurring. When dilute hydrochloric acid is introduced to granulated zinc positioned in a take a look at tube, zinc metallic is transformed to zinc chloride and hydrogen fueloline is developed withinside the response. In the response we will see that a zinc chloride salt is fashioned and hydrogen fueloline is developed. The developed hydrogen fueloline is colourless and odourless. When Zinc granules reacts with Hydrochloric acid ,it'll produces hydrogen fueloline and zinc chloride.

To learn more about hydrochloric acid check the link below-

https://brainly.com/question/24586675

#SPJ4

2 MnI2 + 13 F2 - 2 MnF3 + 4 IF5


Write the conversion factor to use when converting moles of MnIz to moles of F2

Answers

The balanced chemical equation is:

2 MnI2 + 13 F2 → 2 MnF3 + 4 IF5

According to the stoichiometry of the reaction, for every 13 moles of F2 that react, 2 moles of MnI2 are consumed. Therefore, the conversion factor to use when converting moles of MnI2 to moles of F2 is:

13 moles F2 / 2 moles MnI2

This conversion factor can be used to convert moles of MnI2 to moles of F2 or vice versa, by multiplying the number of moles of the starting substance by the conversion factor.

To know more about chemical refer here

https://brainly.com/question/29237397#

#SPJ11

Help with chemistry please!!

Answers

Answer:

15717.124

Explanation:

124 moles of FeCl2.

The molar mass of FeCl2 is 126.751 g/mol.

To find grams of FeCl2, multiply the number of moles by its molar mass.

124 moles * 126.751 g/mol  = 15717.124 grams.

You can check the ending unit. moles * grams / moles leaves just grams, which is the answer you're looking for.

Find the balance and net ionic equation for the statements below.


1. Calcium + bromine —>

2. Aqueous nitric acid, HNO3, is mixed with aqueous barium chloride

3. Heptane, C7H16, reacts with oxygen

4. Chlorine gas reacts is bubbles through aqueous potassium iodide (write both the balanced and net ionic equation)

5. Zn (s) + Ca (NO3)2 (aq) —>

6. Aqueous sodium phosphate mixes with aqueous magnesium nitrate (write both the balanced and net ionic equation)

7. Aluminum metal is placed in aqueous zinc chloride

8. Iron (III) oxide breaks down


9. Li(OH) (ag) + HCI (aq) —>
(write both the balanced and net ionic equation)


10A. Solid sodium in water. Hint: Think water, H2O, as H(OH)

10B. What would happen if you bring a burning splint to the previous reaction?
A- The burning splint continues to burn.
B - The burning splint would make a "pop" sound.
C - The burning splint would go out.

Answers

The balance and net ionic equation are;

1. Ca (s) + Br2 (l) → CaBr2 (s)

2. HNO3 (aq) + BaCl2 (aq) → Ba(NO3)2 (aq) + 2HCl (aq)

3. C7H16 (l) + 11O2 (g) → 7CO2 (g) + 8H2O (l)

4. balanced equation:Cl2 (g) + 2KI (aq) → 2KCl (aq) + I2 (s),

Net ionic equation:

Cl2 (g) + 2I- (aq) → 2Cl- (aq) + I2 (s)

5. Zn (s) + Ca(NO3)2 (aq) → No reaction (since Ca is less reactive than Zn)

6. 2Na3PO4 (aq) + 3Mg(NO3)2 (aq) → Mg3(PO4)2 (s) + 6NaNO3 (aq)

Net ionic equation: 2PO4^3- (aq) + 3Mg^2+ (aq) → Mg3(PO4)2 (s)

7. 2Al (s) + 3ZnCl2 (aq) → 2AlCl3 (aq) + 3Zn (s)

8. 2Fe2O3 (s) → 4Fe (s) + 3O2 (g)

9. Balanced equation: LiOH (aq) + HCl (aq) → LiCl (aq) + H2O (l)

Net ionic equation: OH- (aq) + H+ (aq) → H2O (l)

10A. Solid sodium in water.

2Na (s) + 2H2O (l) → 2NaOH (aq) + H2 (g)

10B. What would happen if you bring a burning splint to the previous reaction?

10 C - The burning splint would go out (since the H2 produced in the reaction may ignite and cause a "pop" sound, but the burning splint itself would go out).

What does the terms balance and net ionic equation mean?

A balanced equation is a chemical equation with equal numbers of atoms for each element on both sides, following the law of conservation of mass.

A net ionic equation is a simplified version of a balanced equation that only shows species participating in the reaction as ions, excluding spectator ions that remain unchanged throughout the reaction. This highlights the actual chemical changes occurring in the reaction.

Find more exercises on net ionic equation;

https://brainly.com/question/22885959

#SPJ1

Classify each type bifunctional molecule as being a material used in the synthesis of polyesters, nylons, both, or neither. ​
dialcohol
diester
dinitro
diacid
diamine
diether

Answers

- Dialcohol: used in polyester synthesis
- Diester: used in polyester synthesis
- Dinitrodiacid: neither polyester nor nylon synthesis
- Diamine: used in nylon synthesis
- Diether: neither polyester nor nylon synthesis


1. Dialcohol: This type of bifunctional molecule is used in the synthesis of polyesters. Polyesters are formed through the condensation reaction between a dialcohol and a diacid or diester.

2. Diester: Diesters are also used in the synthesis of polyesters. They react with dialcohols to form polyester chains.

3. Dinitrodiacid: Dinitrodiacids are not commonly used in the synthesis of either polyesters or nylons. Their nitro functional groups make them less reactive for the condensation reactions required for these polymer types.

4. Diamine: Diamines are used in the synthesis of nylons. Nylons are formed through the condensation reaction between a diamine and a diacid or a diester with a specific type of functional groups, such as adipoyl chloride.

5. Diether: Diethers are not used in the synthesis of polyesters or nylons. They lack the necessary functional groups (alcohol, ester, or amine) for the condensation reactions needed to form these polymers.

Learn more about polyesters at https://brainly.com/question/13094865

#SPJ11

Apart from dead organisms, what process returns carbon from living animals to the cycle?

Answers

Answer:

cellular respiration

Explanation:

Living animals release carbon back into the carbon cycle through the process of respiration. During respiration, animals take in oxygen and release carbon dioxide as a waste product. This carbon dioxide can be taken up by plants during photosynthesis and used to build organic compounds, which can then be consumed by other animals, continuing the carbon cycle. Additionally, when animals defecate or when their bodies naturally decompose after death, the organic matter can be broken down by decomposers, such as bacteria and fungi, which release carbon back into the cycle as well.

I just finished my biology class in high school with an A. Trust me lol

Hope you have a nice day

Answer:

One process that returns carbon from living animals to the cycle is cellular respiration. Cellular respiration converts the organic carbon in the food molecules into carbon dioxide gas, which is released into the atmosphere or water. Another process that returns carbon from living animals to the cycle is excretion1. Excretion removes waste products that contain carbon, such as urea and uric acid, from the body of animals. These waste products can be decomposed by bacteria and fungi, releasing carbon dioxide back into the environment.

Explanation:

Calculate the molarity of 0. 50 moles of CaCl2 in 3500 mL of solution

Answers

The molarity of 0.50 moles of CaCl₂ in 3500 mL of solution is approximately 0.143 M.

To calculate the molarity of 0.50 moles of CaCl₂ in 3500 mL of solution, follow these steps:

1. Convert the volume of the solution from milliliters (mL) to liters (L). There is 1000 mL in 1 L, so divide the given volume by 1000:
  3500 mL ÷ 1000 = 3.5 L

2. Use the formula for molarity (M), which is the number of moles of solute (in this case, CaCl₂) divided by the volume of the solution in liters (L):
  M = moles of solute/volume of solution in L

3. Plug in the values given in the problem: 0.50 moles of CaCl₂ and 3.5 L of solution:
  M = 0.50 moles / 3.5 L

4. Calculate the molarity:
  M ≈ 0.143 M

Learn more about molarity at https://brainly.com/question/30404105

#SPJ11

Write the following chemical reactions and balance:



Potassium reacts with sodium oxide to produce potassium oxide and sodium

Answers

The chemical reaction is

2 K + Na2O -> K2O + 2 Na

The given chemical equation represents a reaction between potassium (K) and sodium oxide (Na2O). The products formed in this reaction are potassium oxide (K2O) and sodium (Na).

On the reactant side, we have two atoms of potassium and two atoms of sodium, while on the product side, we have two atoms of potassium and two atoms of sodium as well.

Therefore, the equation is already balanced with respect to the number of potassium and sodium atoms.

However, we need to balance the oxygen atoms. On the reactant side, we have one molecule of Na2O, which contains two atoms of oxygen. On the product side, we have one molecule of K2O, which also contains two atoms of oxygen. Thus, the equation is balanced.

Finally, we can write the balanced equation as:

2 K + Na2O → K2O + 2 Na

To know more about  chemical equation refer here:

https://brainly.com/question/30087623

#SPJ11

What mass of copper (II) sulfate was in the hydrate? Show your work or explain your reasoning

Answers

To determine the mass of copper (II) sulfate in the hydrate, we need to understand the concept of a hydrate. A hydrate is a compound that has water molecules bound to it. Copper (II) sulfate is a hydrate, meaning it has water molecules attached to it. To find the mass of copper (II) sulfate in the hydrate, we need to remove the water molecules from the compound and calculate the remaining mass of the anhydrous salt.

To do this, we need to use the molar mass of the hydrate and the molar mass of the anhydrous salt. The molar mass of copper (II) sulfate pentahydrate is 249.68 g/mol, and the molar mass of anhydrous copper (II) sulfate is 159.61 g/mol. This means that the water molecules in the hydrate account for 90.07 g/mol of the total mass.

Now, let's assume we have 5 grams of the hydrate. We can use this information to calculate the mass of copper (II) sulfate in the hydrate. First, we need to calculate the number of moles of the hydrate by dividing the mass by the molar mass:

5 g / 249.68 g/mol = 0.02002 mol
Next, we need to calculate the number of moles of water in the hydrate by multiplying the total number of moles by the molar mass of water:

0.02002 mol x 18.015 g/mol = 0.3609 g
Finally, we can calculate the mass of anhydrous copper (II) sulfate by subtracting the mass of water from the total mass of the hydrate:
5 g - 0.3609 g = 4.6391 g

Therefore, the mass of copper (II) sulfate in the hydrate is:

4.6391 g * (159.61 g/mol / 249.68 g/mol) = 2.9647 g

In conclusion, to find the mass of copper (II) sulfate in the hydrate, we need to subtract the mass of water from the total mass of the hydrate and then convert the remaining mass to the mass of anhydrous copper (II) sulfate.

To kno wmore about hydrate refer here

https://brainly.com/question/11202174#

#SPJ11

Other Questions
divide $300 in ratio 9 : 1 Assume a merchandising company provides the following information from its master budget for the month of May: Cash balance, May 1 $20,000 Cash collections from customers $80,000 Cash disbursements for merchandise purchases $35,000 Cash disbursements for selling and administrative expenses $40,000 If the company wishes to maintain a minimum cash balance of $30,000 at the end of every month, then its borrowings at the beginning of May will equal: _________ Complete the sentence. Noise pollutionO raises hearing acuityOincreases stress hormoneslowers blood pressureleads to complete deafness 9. An unknown gas has a volume of 200L at 5 atm and -140C. What is its volume at STP?10. A Los Angeles class nuclear sub has an internal volume of eleven million liter at apressure of 1. 250 atm. If a crewman were to open one of the hatches to the outsideocean while it was underwater (pressure of 15. 75 atm), what would be the new volumeof the air inside?11. A man heats a balloon in the oven (Why?. Who knows?. It is a crazy world we live in). If the balloon initially has a volume of 0. 40 L and a temperature of 20 C, what is itsvolume after he heats it to 250 C?Mixed Gas Laws12. A gas has a pressure of 1. 26 atm and occupies a volume of 7. 40 L. If the gas iscompressed to a volume of 2. 93 L, what is its new pressure?13. People who are angry sometimes say that they feel as if they'll explode. If a calmperson with a lung capacity of 3. 5 liters and a body temperature of 36 C gets angry,what is the volume of their lungs if their temperature rises to 39 C. Do you think theywill really explode? Find the distance traveled by the top of second hand of a clock in 4 minute if the hand is 8 cm long In target pricing, ______. Multiple choice question. Management charges different prices to maximize revenue for a set amount of capacity at any given time. Management marks up all products in a similar fashion since it is impossible to estimate demand for each. Manufacturers deliberately adjust the composition of a product to achieve the estimated price that consumers are willing to pay for it. Management offers a line of products at a number of different specific pricing points Question 6 of 10 According to the article "How Did World War Il Begin," what was one c first political actions? Sarah is twice Jans age. Henry is 5 years younger than Jan. The sum of all their ages is 35. How old is Sarah? Describe the two representative types of members of congress. ( book, p. 424). if you were a member of congress, which type would you prefer? why? Please help giving brainliest to whoever is right! Thanks Lampierre makes silver and gold candlesticks. The company computed this information to decide whether to switch from the traditional allocation method to ABC. Silver and Gold, respectively. Units planned 500, 250. Material moves 250, 750. Machine setups 5,600, 4,400. Direct labor hours 500, 1,500. The estimated overhead for the material cost pool is estimated as $45,000, and the estimate for the machine setup pool is $55,000. Calculate the allocation rate per unit of silver and per unit of gold using:Silver GoldUnits planned 500 250Material moves 250 750 Machine setups 5,600 4,400Direct labor hours 500 1,500What the Overhead per unit for Silver, using ABC?What the Overhead per unit for Gold, using Traditional? As confirmed Christians, the gifts and fruits of the Holy Spirit enable us to become effective witnesses of the faith. What gifts or fruits do you already exercise? What gifts or fruits of the Spirit do you lack in your life? How can you develop them? Complete the balanced chemical equation for the following reaction between a weak acid and a strong base. HClO(aq) + Ba (OH)(aq) a)Create a list of your 10 friends in python where you include the first name, last name and food preference, include yourself in that listb)Use the basic structures you have learn in this chapterSolution1. (5 pts) Draw the flowchart (in a Word document) 2. (10 pts) Submit the code of the program that you have written and run and also the results (in a Word document) the cost of a taxi ride is $3.00 plus $0.75 for every 0.5km. represent the relation in a table (up to 10km), a graph and an equation Economic Development in BangladeshOPENING CASEWhen Bangladesh gained independence from Pakistan in 1971 after a brutal civil war that may have left as many as 3 million dead, the U.S. National Security Adviser, Henry Kissinger, referred to the country as a "basket case." Kiss inger's assessment was accurate enough. At the time, Bangladesh was one of the world's poorest nations. Al though most of the country is dominated by the Ferte Ganges-Brahmaputra delta, a lack of other natural re sources, coupled with poor infrastructure, political instability, and high levels of corruption, long held the country back. To compound matters, Bangladesh is prone to natu ral disasters. Most of Bangladesh is less than 12 meters above sea level. The extensive low-lying areas are vulner able to tropical cyclones, floods, and tidal bores.Beginning in the mid 1990s, however, Bangladesh be gan to climb the ladder of economic progress. From the early 2000s onward, the country grew its economy at around 6 percent per annum compounded. Today, this Muslim majority country of 160 million people has joined the ranks of lower-middle-income nations. Poverty reduction has been dramatic, with the percentage of the population living in poverty falling from 44.2 percent in 1991 to 18.5 percent in 2010, an achievement that raised 20.5 million people out of abject poverty. Today the country ranks 64th out of the 154 countries included in the World Bank's global poverty database. Yes, it has a considerable way to go, but it is no longer one of the world's poorest countries.Several reasons underlie Bangladesh's relative eco nomic success. In its initial post-independence period, Bangladesh adopted socialist policies, nationalizing many companies and subsidizing the costs of agricultural production and basic food products. These policies failed to deliver the anticipated gains. Policy reforms in the 1980s were directed toward the withdrawal of food and agricul tural subsidies, the privatization of state-owned compa nies, financial liberalization, and the withdrawal of some import restrictions. Further reforms aimed at liberalizing the economy were launched in the 1990s. These included. making the currency convertible (which led to a floating exchange rate in 2003), reducing import duties to muchlower levels, and removing most of the controls on the movement of foreign private capital (which is allowed for more foreign direct investment). The reforms of the 1990s. coincided with the transition to a parliamentary democracy. from semi-autocratic rule.Bangladesh's private sector has expanded rapidly since then. Leading the growth has been the country's vibrant textile sector, which is now the second-largest exporter of ready-made garments in the world after China. Textiles ac count for 80 percent of Bangladesh's exports. The development of the textile industry has been helped by the availability of low-cost labor, managerial skills, favorable trade agreements, and government policies that elimi nated import duties on inputs for the textile business, such as raw materials. The Bangladesh economy has also ben efited from its productive agricultural sector and remit tences from more than 10 million Bangladesh citizens who work in other nations. Bangladesh is also home of the mi crofinance movement, which has enabled entrepreneurs with no prior access to the banking system to borrow small amounts of capital to start businesses.This being said, the country still faces considerable impediments to sustaining its growth. Infrastructure re mains poor, corruption continues to be a major problem; and the political system is, at best, an imperfect democ racy where opposition is stified. The country is too depen dent upon its booming textile sector and needs to diversify its industrial base. Bangladesh is also one of the countries most prone to the adverse effects of climate change. A one-meter rise in sea level would leave an estimated 10 percent of the country under water and increase the po tential for floods in much of the remainder. travel, according to the U.S. Investment bank Gold man Sachs, Bangladesh is one of the 11 lower-middle income nations posed for sustained growth.Please answer the following Qs:What were the principal reasons for the economic stagnation of Bangladesh after its war for independence?Explain how the liberalization program in the 1990s enabled Bangladesh to start climbing the ladder of economic progress. What are the main lessons here that can be applied to economic development in other nations?Bangladesh is dependent for its prosperity upon agriculture and textile exports. What are the risks here? How might Bangladesh diversify its industrial and commercial base? a rectangular poster is to contain 392 square inches of print. the margins at the top and bottom of the poster are to be 2 inches, and the margins on the left and right are to be 1 inch. what should the dimensions of the poster be (in inches) so that the least amount of poster is used? (enter your answers as a comma-separated list.) 10% of a competitions contestants like dogs. 60% of them like rabbits. 90% of them like cats. Liking each of these animals is independent. That means, for example, that whether or not you like dogs does not affect whether you like cats. If we choose a random contestant:a. What is the probability of this contestantliking cats and dogs, but not rabbits?b. What is the most likely outcome of this contestants preferences? As in, which animals does s/he like, and which does s/he not like? Imagine that you are a representative to the UN from the nation of Chad. In a well composed essay, create a proposal which details the reasons that your nation should be able to engage in industrial activities no matter the impact on environmental issues. Make sure to include at least three reasons this should be allowed. How do lines 15-21 act as a flashback? what clues do they give about the rest of the story? Provide specific evidence in your response.