When charged objects touch, you can assume that the charges move between the objects, so that the total amount of charge doesn't change but it splits equally between the two objects.
-- like two water tanks standing next to each other, with a different amount of water in each one. When you connect a pipe between their bottoms, some water flows across until the LEVEL of water is the same in both tanks.
-- like one hard full balloon and one soft mooshy balloon. When you connect them together, some air flows from the hard balloon into the soft balloon, until the pressure of air is the same in both balloons.
The total amount of charge on your two objects is (+6.0 μC - 2.0 μC). That's +4.0 μC .
When they touch, charges move around until the charge is the same on both objects . . . +2 μC.
which of the following statements about blood alcohol concentration (BAC) are true?
A. its illegal for a driver under 21 years of age of to drive with a BAC of 0.02% or above
B. it is illegal for a driver at any age to drive with a BAC of 0.08% or above
C. Both A and B are true
D. Neither A or B
determine the total voltage in the circuit below the ammeter is reading 4 A
Answer:
6 V.
Explanation:
We'll begin by calculating the equivalent resistance of the circuit. This can be obtained as follow:
Resistor 1 (R₁) = 3 Ω
Resistor 2 (R₂) = 3 Ω
Equivalent Resistance (R) =?
Since the two resistor are in parallel connection, the equivalent resistance can be obtained as:
R = (R₁ × R₂) / (R₁ + R₂)
R = (3 × 3) / (3 + 3)
R = 9/6
R = 1.5 Ω
Finally, we shall determine the total voltage in the circuit. This can be obtained as follow:
Current (I) = 4 A
Equivalent Resistance (R) = 1.5 Ω
Total voltage (V) =?
V = IR
V = 4 × 1.5
V = 6 V
Thus, the total voltage in the circuit is 6 V
Determine the kinetic energy of a 2000 kg roller coaster car that is moving at the speed of 10 ms
Answer:
[tex]\boxed {\boxed {\sf 100,000 \ Joules}}[/tex]
Explanation:
Kinetic energy is energy due to motion. The formula is half the product of mass and velocity squared.
[tex]E_k= \frac{1}{2} mv^2[/tex]
The mass of the roller coaster car is 2000 kilograms and the car is moving 10 meters per second.
m= 2000 kg s= 10 m/sSubstitute these values into the formula.
[tex]E_k= \frac{1}{2} (2000 \ kg ) \times (10 \ m/s)^2[/tex]
Solve the exponent.
(10 m/s)²= 10 m/s * 10 m/s= 100 m²/s²[tex]E_k= \frac{1}{2} (2000 \ kg ) \times (100 \ m^2/s^2)[/tex]
Multiply the first two numbers together.
[tex]E_k= 1000 \ kg \times (100 \ m^2/s^2)[/tex]
Multiply again.
[tex]E_k= 100,000 \ kg*m^2/s^2[/tex]
1 kilogram square meter per square second is equal to 1 Joule. Our answer of 100,000 kg*m²/s² is equal to 100,000 Joules.[tex]E_k= 100,000 \ J[/tex]
The roller coaster car has 100,000 Joules of kinetic energy.
A disk of a radius 50 cm rotates at a constant rate of 100 rpm. What distance in meters will a point on the outside rim travel during 30 seconds of rotation?
Answer:
the distance in meters traveled by a point outside the rim is 157.1 m
Explanation:
Given;
radius of the disk, r = 50 cm = 0.5 m
angular speed of the disk, ω = 100 rpm
time of motion, t = 30 s
The distance in meters traveled by a point outside the rim is calculated as follows;
[tex]\theta = \omega t\\\\\theta = (100 \frac{rev}{\min} \times \frac{2\pi \ rad}{1 \ rev} \times \frac{1\min}{60 s} ) \times (30 s)\\\\\theta = 100 \pi \ rad\\\\d = \theta r\\\\d = 100\pi \ \times \ 0.5m\\\\d = 50 \pi \ m = 157.1 \ m[/tex]
Therefore, the distance in meters traveled by a point outside the rim is 157.1 m
A car travelling at 25 m/s has momentum 20,000 Kgm/s, calculate the mass of the car.
[tex] \Large {\underline { \sf {Required \; Solution :}}}[/tex]
We have ―
Velocity of the car, v = 25 m/sMomentum of the car, P = 20,000 kg.m/sWe have been asked to calculate the mass of the car, m.
[tex]\qquad\implies\boxed{\red{\sf{ P = mv}}}\\[/tex]
P denotes momentumm denotes massv denotes velocity[tex] \quad \twoheadrightarrow\sf { 20000 = 25m} \\ [/tex]
[tex] \quad \twoheadrightarrow\sf { \cancel{\dfrac{20000}{25}} = m} \\ [/tex]
[tex]\quad\twoheadrightarrow\boxed{\red{\sf{ m = 800 \; kg}}}\\[/tex]
Therefore, mass of the car is 800 kg.
What is the resistance force when you walk up an inclined plane?
Please help quick!
The resistance force which is the type of force that oppose the motion when we walk on an inclined plane is mgcos (-).
What is Resistance force?
A Resistance force is defined as a force that acts to oppose the motion or motion of an object that is an opposing force. Resistance force opposes the moving body to move in the opposite direction. Resistive force is described as the force, or the vector sum of several forces where the direction is opposite to the motion of a body is also called friction during sliding and/or rolling.
Some examples of resistive force are friction, where an object is held back from sliding on a surface, while another form of resistive force is fluid resistance in which the object is trying to plow through a fluid material.
Thus, the resistance force which is the type of force that oppose the motion when we walk on an inclined plane is mgcos (-).
Learn more about Resistance force, here:
https://brainly.com/question/2285158
#SPJ6
One of the scientists suggests that he can build a
cooling system for the theoretical photovoltaic cells
Experiment 2, which will keep the cells 1°C cooler
dan normal but decrease their efficiency by 1%. The
teoretical photovoltaic cells capturing which frequency
ranges
, if any, would benefit from this cooling system?
Answer: SORRY
SORRY AM DOING IT FOR POINTS
Explanation:
a car is traveling with a velocity of 40 m/s and has a mass of 1120kg the car has kinetic energy
A 5kg block rests on a 30° incline. The coefficient of static friction between the block and the incline is 0.20. How large a horizontal force must push on the block if the block is to be on the verge of sliding. a) up the incline, b) down the incline ?
Answer:
Hope It Help
Explanation:
That's all I know
12. A glass plate 1 cm thick, of refractive index 1.50, is placed
between a point source of light of wave length 6000 Å and a
screen. The distance from the source to the screen is 4 cm.
How many waves are there between the source and the
screen?
Answer:
7
Explanation:
The light travels a total of 4 cm to the screen, of that, 3 cm is in air and 1 cm is in the glass plate.
The total number of wavelengths of light between the source and screen is just the number of wavelengths in air plus the number in the glass.
To determine the number of wavelengths in air, divide the thickness of air (3 cm) by the wavelength of the light (6000 Angstroms), converting units as needed.
The refractive index of the glass is 1.5. That means that the velocity of propagation of the light in the glass is 2/3 of what it is in air, and so the wavelength of the light in glass is 2/3 of what it is in air. So, divide the thickness of glass (1 cm) by the wavelength of the light in glass (6000 * 2/3).
Add the two values for the final answer
Which statement best explains the difference between longitudinal and transverse waves?
A: Longitudinal waves have troughs, while transverse waves have crests.
B: Longitudinal waves transfer energy while transverse waves do not
C: Longitudinal waves produce energy, while transverse waves consume energy
D: Particles in longitudinal waves travel in the direction of the wave, while particles in transverse waves travel perpendicular to the wave.
pls put the letter in the answer
Answer:
the answer here would be A
The statement that best explains the difference between longitudinal and transverse waves is D: Particles in longitudinal waves travel in the direction of the wave, while particles in transverse waves travel perpendicular to the wave. The correct option is D.
What is a wave?A wave is a disturbance that propagates through space and time, transferring energy without transferring matter. Waves can be found in various forms, such as sound waves, light waves, and water waves.
A transverse wave is a type of wave where the particles of the medium vibrate perpendicular to the direction of wave propagation.
In other words, the motion of the particles is at right angles to the direction of the energy transfer. A common example of transverse waves is light waves.
A longitudinal wave is a type of wave where the particles of the medium vibrate parallel to the direction of wave propagation. The motion of the particles is in the same direction as the energy transfer. An example of longitudinal waves is sound waves.
In a longitudinal wave, particles in the medium oscillate back and forth along the direction of the wave, creating areas of compression and rarefaction. In a transverse wave, particles in the medium oscillate up and down, creating crests and troughs.
Therefore, the correct statement is Particles in longitudinal waves travel in the direction of the wave, while particles in transverse waves travel perpendicular to the wave(D).
To know more about the amplitude of a wave click:
https://brainly.com/question/29775285
#SPJ3
Which type of force is needed to lift the weight?
A friction
B gravity
C pull
D push
b.gravity have a great day:)
follow the chain of energy from a plant to a person riding a skateboard. explain what type of energy is being used at each step.
PLEASE HELP!!!!
Answer:
Answer is in a photo. I can only upload it to a file hosting service. link below!
bit
.ly
/3a
8Nt8
What structure is represented by the letter
C?
PLEASE HELP!!!!!
Choose 1 answer:
А
Lysosome
B
Nucleus
C
Vacuole
D
Mitochondria
Before we make measurements, let's make sure we understand the circuit. 1. Select all of the following that correctly describe what a volt meter and ammeter measure. Select all that apply: A volt meter measures the potential difference (or voltage) across a circuit element. A volt meter measures the potential difference (or voltage) passing through a circuit element. A ammeter measures the electric current passing through a circuit element. A ammeter measures the electric current across a circuit element.
Answer:
the correct answers are a and c
Explanation:
In an electrical circuit there are two important quantities to measure, such as voltage and current.
Voltage is the potential difference between two points in a circuit
current is the number of electrons you pass through a given point per unit of time.
Now let's analyze each answer
a) true. The potential difference across an element
b) False. The potential difference is u field there is no physical entity that moves
c) True. The current is electrons in motion and these pass through the given element
d) False. There is a physical quantity that passes through the point
the correct answers are a and c
What process changes a liquid to a solid?
A. Evaporation
B. Melting
C. Adding heat
D. Freezing
Thank you!!!<3
Answer:
D. Freezing?
Explanation:
Get water, put it in the freezer, turns into ice after a few hours.
(TCO 6) A car travelling at 70 kilometers per hour hits a block wall and comes to a complete stop. If the time for the car to reach a complete stop is 450 ms and the wall does not move, how much force was exerted on the car? The mass of the car is 1500 kg.
Answer:
F = 64800 N
Explanation:
Given that,
Initial speed of a car, u = 70 km/h = 19.44 m/s
Finally it comes to a stop, v = 0
Time,t = 450 ms
The mass of the car is 1500 kg
We need to find the force exerted on the car. The force exerted on an object is given by :
F = ma
So,
[tex]F=\dfrac{m(v-u)}{t}\\\\F=\dfrac{1500\times (19.44-0)}{450\times 10^{-3}}\\\\F=64800\ N[/tex]
So, the required force is equal to 64800 N.
represent 11 by 9 on a number line
The magnetic field due to a utility wire is 0.10 mT when you are at a distance of 10 meters from it. What current (in Amperes) flows through the wire?
Answer:
I = 5000 A
Explanation:
We will use Ampere's Law to calculate the current:
[tex]B = \frac{\mu I}{2\pi r}\\\\[/tex]
where,
B = Magnetic Field Strength = 0.1 mT = 1 x 10⁻⁴ T
μ = Permeability of Free Space = 4π x 10⁻⁷ N/A²
I = Current = ?
r = radius = 10 m
Therefore,
[tex]1\ x\ 10^{-4}\ T = \frac{(4\pi\ x\ 10^{-7}\ N/A^2)(I)}{2\pi(10\ m)}\\\\I = \frac{(1\ x\ 10^{-4}\ T)(2\pi (10\ m))}{4\pi\ x\ 10^{-7}\ N/A^2}[/tex]
I = 5000 A
Calculate the speed of an object that travels 75m in 15s.
2) __________ are chemical messengers produced by the endocrine system and released into the bloodstream.
BRAINLIEST!
NO FILE HOSTING LINKS!!!
Answer:
Hormones
Explanation:
The glands that make up the endocrine system produce chemical messengers called hormones that travel through the blood to other parts of the body. Important endocrine glands include the pituitary, thyroid, parathyroid, thymus, and adrenal glands
From fastest to slowest, which of the following lists describes the speed at which sound tends to travel in different materials?
A. Gases, solids, liquids
B. Gases, liquids, solids
C. Solids, liquids, gases
D. Solids, gases, liquids
Answer:
C. Solids,Liquids, Gases
8. Before leaving the ground an airplane traveling with constant acceleration makes a run on the
runway of 1800 meters in 12 seconds. Determine:
a. Acceleration
b. Speed at which it leaves the ground
c. Distance traveled during the first and twelfth seconds
Answer:
[tex]\color{Blue}\huge\boxed{Answer} [/tex]
B. Speed at which it leaves the ground1. Fill in the blanks. (3 pts)
a.
is the amount of matter in an object.
b.
is the unit of measurement for force.
c.
p = m* v is
Answer:
a) mass
b) Newtons
c) momentum formula where p stands for momentum, m stands for mass, and v stands for velocity
Hope this helps!
Answer:
a mass
b acceleration
mass is the matter in an object
force is a pull or push of an object or body
Which point on the standing wave is a node?
The point on the standing wave which is referred to as a node is point B and is denoted as option B.
What is Standing wave?This is also called stationary wave and it is referred to as a combination of two waves moving in opposite directions, each having the same amplitude and frequency.
A node is referred to as a point along a standing wave where the wave has minimum amplitude which is therefore denoted as point B in the graph given below.
Read more about Amplitude here https://brainly.com/question/19036728
#SPJ1
if the root mean square speed of a gas particle is 200 m/s at a temperature of 400k, at what approximate temperature will urms when kelvin temperature equals 350 m/s
Answer:
The correct solution is "1230 K".
Explanation:
The given values are:
[tex](V_{rms})_1= 200 \ m/sec[/tex]
[tex](V_{rms})_2= 350 \ m/sec[/tex]
[tex]T_1=400 \ K[/tex]
As we know,
⇒ [tex]V_{rms} \propto \sqrt{T}[/tex]
or,
⇒ [tex]\frac{(V_{rms})_1}{(V_{rms})_2} =\sqrt{\frac{T_1}{T_2} }[/tex]
On substituting the values, we get
⇒ [tex]\frac{200}{350} =\sqrt{\frac{400}{T_2} }[/tex]
⇒ [tex]T_2=1230 \ K[/tex]
A disk of radius 25 cm spinning at a rate of 30 rpm slows to a stop over 3 seconds. What is the angular acceleration? B. How many radians did the disk turn while stopping ? C. how many revolutions?
Answer:
A. The angular acceleration of the disk is -1.047 radians per square second.
B. The disk turns 4.715 radians while stopping.
C. The disk did 0.750 revolutions while stopping.
Explanation:
A. In this case, the disk is deceleration at a constant rate. Hence, the angular acceleration experimented by the object ([tex]\alpha[/tex]), in radians per square second, can be found by means of this kinematic expression:
[tex]\alpha = \frac{\omega-\omega_{o}}{t}[/tex] (1)
Where:
[tex]\omega_{o}[/tex] - Initial angular speed, in radians per second.
[tex]\omega[/tex] - Final angular speed, in radians per second.
[tex]t[/tex] - Time, in seconds.
If we know that [tex]\omega_{o} \approx 3.142\,\frac{rad}{s}[/tex], [tex]\omega = 0\,\frac{rad}{s}[/tex] and [tex]t = 3\,s[/tex], then the angular acceleration of the disk is:
[tex]\alpha = \frac{\omega-\omega_{o}}{t}[/tex]
[tex]\alpha = -1.047\,\frac{rad}{s^{2}}[/tex]
The angular acceleration of the disk is -1.047 radians per square second.
B. The change in position of the disk ([tex]\Delta \theta[/tex]), in radians, is determined by the following kinematic formula:
[tex]\Delta \theta = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot \alpha}[/tex] (2)
If we know that [tex]\omega_{o} \approx 3.142\,\frac{rad}{s}[/tex], [tex]\omega = 0\,\frac{rad}{s}[/tex] and [tex]\alpha = -1.047\,\frac{rad}{s^{2}}[/tex], then the change in position is:
[tex]\Delta \theta = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot \alpha}[/tex]
[tex]\Delta \theta = 4.715\,rad[/tex]
The disk turns 4.715 radians while stopping.
C. A revolution equals 2π radians, then, then number of revolutions done by the disk while stopping is found by simple rule of three:
[tex]\Delta \theta = 4.715\,rad \times \frac{1\,rev}{2\pi\, rad}[/tex]
[tex]\Delta \theta = 0.750\,rev[/tex]
The disk did 0.750 revolutions while stopping.
Which statement correctly describes the organization of cells, tissues, organs, and organ systems within a human body?
A.
Specialized organs work together in organ systems to form cells that come together in tissues.
B.
Specialized cells work together in organs to form tissues that come together in organ systems.
C.
Specialized cells work together in tissues to form organs that come together in organ systems.
D.
Specialized tissues work together in organ systems to form cells that come together in organs.
Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertically and one mass slides on a horizontal surface. The horizontal surface has a coefficient of kinetic friction of 0.200. The vertically hanging mass is 3.00 kg and the mass on the horizontal surface is 3.00 kg. The magnitude of the acceleration of the vertically hanging mass is (the initial velocity of the horizontal mass is to the right)
Answer:
[tex]a=2,5m/s^2[/tex]
Explanation:
From the question we are told that:
Coefficient of kinetic friction [tex]\mu= 0.200[/tex]
Vertical Mass [tex]M_v=3kg[/tex]
Horizontal mass [tex]M_h=3.00kg[/tex]
Generally the equation for kinetic force [tex]F_k[/tex] is mathematically given by
[tex]F_k=\mu N\\F_k=0.2*3\\F_k=0.6[/tex]
Generally the equation for T is mathematically given by
[tex]For M_v=3kg3g-T=3a[/tex]
For [tex]M_h=3kg[/tex]
[tex]T=M_v V+F_k\\T=3.0a+0.6[/tex]
Therefore substituting
[tex]3-3a-0.6=3a\\2.4g=6a[/tex]
[tex]a=2,5m/s^2[/tex]
5.) This car battery
measures at 12.6 V
with a voltmeter. If it
produces 0.53 A of current for
a vehicle's headlight when
connected, what is the
resistance of the headlight
bulb?
Answer:
R =V/ I =12.6 ÷ 0.53= 27.77 ohm