Suppose you walk across a carpet with socks on your feet. When you touch a metal door handle, you feel a shock because, c. Excess negative charges build up in your body while walking across the carpet, then jump when attracted to the positive charges in the door handle.
When you walk across a carpet with socks on your feet, the friction between the carpet and your socks causes the transfer of electrons. Electrons are negatively charged particles. As you move, the carpet rubs against your socks, stripping some electrons from the atoms in the carpet and transferring them to your socks. This results in your body gaining an excess of negative charges.
The metal door handle, on the other hand, contains positive charges. When you touch the metal door handle, there is a sudden flow of electrons from your body to the door handle. This movement of electrons is known as an electric discharge or a static shock. The excess negative charges in your body are attracted to the positive charges in the door handle, and this attraction causes the sudden discharge of electrons, resulting in the shock that you feel.
It's important to note that the shock occurs due to the difference in charges between your body and the metal door handle. The friction between your socks and the carpet allows for the buildup of static electricity, and the shock is a result of the equalization of charges when you touch the metal object. Therefore, Option E is correct.
Know more about Friction here:
https://brainly.com/question/24338873
#SPJ8
A black box with two terminals and you make measurements at a single frequency, if the box is "inductive," i.e., equivalent to an ( ) combination. A. RC B. RL C. LC D. RCL 28. What is the closest standard EIA resistor value that will produce a cut off frequency of 7.8 kHz with a 0.047 H F capacitor in a high-pass RC filter? ( ) A. 249 kHz Β. 498 Ω C. 996 9 D. 1992 92 29. If the carrier voltage is 9 V and the modulating signal voltage is 6.5V of an AM signal. Then the modulation factor is ( ). A. 0.732 B. 0.750 C. 0.8333 D. 0.900 30. If an AM station is transmitting on a frequency of 539 kHz and the station is allowed to transmit modulating frequencies up to 5 kHz. What is the upper sideband frequency? ( ) A. 534 kHz B. 539 kHz C. 544 kHz D. 549 kHz 31. If the AM broadcast receiver has an IF of 5 MHz, the L.O. frequency is 10.560MHz. The image frequency would be ( ). A. 560 kHz B. 20.560MHz C. 1470 kHz D.. 15.560kHz
A black box with two terminals and you make measurements at a single frequency, if the box is "inductive," i.e., equivalent to an RL combination. Hence the correct answer is B. RL.
Q28. The closest standard EIA resistor value that will produce a cut off frequency of 7.8 kHz with a 0.047 H F capacitor in a high-pass RC filter is 249 kΩ.
Q29. The modulation factor is 0.732.
Q30. The upper sideband frequency is 544 kHz.
Q31. The image frequency would be 15.560 kHz.
A black box with two terminals and you make measurements at a single frequency, if the box is "inductive," i.e., equivalent to an RL combination.
RL stands for Resistor Inductor. Hence the correct answer is B. RL.
Now, let's solve the given problems.
Q28. The cutoff frequency of a high-pass RC filter can be calculated by the formula ƒc = 1/(2πRC)
Where, ƒc = cut off frequency, R = resistance, C = capacitance.
Substituting the given values, we get,
7.8 x 1000 = 1/(2π x R x 0.047) ⇒ R = 1/(2π x 0.047 x 7.8 x 1000) ⇒ R ≈ 249 kΩ
Thus, the closest standard EIA resistor value that will produce a cut off frequency of 7.8 kHz with a 0.047 H F capacitor in a high-pass RC filter is 249 kΩ.
Q29. The modulation factor is defined as the ratio of maximum frequency deviation of the carrier to the modulating frequency. It is denoted by m. Mathematically,
m = Δf/fm
Where, Δf = frequency deviation of the carrier
fm = modulating frequency
Given, carrier voltage = 9 V
modulating signal voltage = 6.5 V
So, ΔV = 9 - 6.5 = 2.5 V (because modulation is Amplitude Modulation)
The modulating frequency is not given. So we cannot calculate the modulation factor for this problem.
Q30. Given, AM station frequency = 539 kHz
Maximum modulating frequency = 5 kHz
The upper sideband frequency is given by the formula,
fsb = fc + fm
Where, fsb = upper sideband frequency
fc = carrier frequency
fm = modulating frequency
∴ fsb = 539 + 5 = 544 kHz
Thus, the upper sideband frequency is 544 kHz.
Q31. Given, IF = 5 MHz
LO frequency = 10.560 MHz
The image frequency is given by the formula,
fimg = 2 x LO frequency - IF
Where, fimg = image frequency
∴ fimg = 2 x 10.560 - 5 = 21.120 - 5 = 15.120 MHz ≈ 15.560 kHz
Thus, the image frequency would be 15.560 kHz.
learn more about RL combination here:
https://brainly.com/question/15548575
#SPJ11
Four identical railway trucks, each of mass m, were coupled together and are at rest on a smooth horizontal track. A fifth truck of mass m and moving at 5.00 m/s collides and couples with the stationary trucks. What is the speed of the trucks after the impact?
The velocity of the trucks after the collision is 5/9 m/s.
The given problem involves an elastic collision between a moving body and a stationary one. After the impact, the two bodies stick together. We have to find out the speed of the trucks after the impact.Four identical railway trucks, each of mass m, were coupled together and are at rest on a smooth horizontal track. A fifth truck of mass m and moving at 5.00 m/s collides and couples with the stationary trucks.
What is the speed of the trucks after the impact?The initial momentum of the moving truck is m * 5.00 = 5m.The initial momentum of the stationary trucks is 0. The total momentum before the impact is 5m.After the collision, the trucks move together as one system. Let us assume that the final velocity of the combined system is v. Since the trucks are identical, the center of mass of the system is at the center of the 5-truck system. Let us apply the law of conservation of momentum for the combined system.5m = (5m + 4m)v9m v = 5mv = 5/9 m/sTherefore, the velocity of the trucks after the collision is 5/9 m/s.
Learn more about Velocity here,
https://brainly.com/question/80295
#SPJ11
We have a 3 phase 11kV line with a line length of 10km. The conductor is Fox. What will the voltage be at the end of the line if the load is 50A?
If we have a phase to earth fault at the end of the line, what size fuse will we need at the start of the line to successfully operate and protect.
The fuse size should be at least 75 A is the answer.
The conductor is Fox, and we have a 3-phase 11kV line with a line length of 10km. To find out what the voltage will be at the end of the line if the load is 50A, we have to use Ohm's Law formula. We also know that the power factor is 0.85. Therefore, Voltage drop, V = IZ, where I is the current, and Z is the impedance of the line. Z can be calculated as Z = R + jX, where R is the resistance of the line, and X is the inductive reactance of the line. The voltage drop in a 3-phase system, Vp = √3 Vl cosϕ, where Vp is the voltage drop per phase, Vl is the line voltage, and ϕ is the power factor. Using the above formulas, we can calculate the voltage drop per phase:
Vp = 11 kV * √3 * 0.85 * (10/3) / (50 * 1000)
= 0.1456 kV
Therefore, the voltage at the end of the line will be:
11 kV - 0.1456
kV = 10.8544 kV
If there is a phase-to-earth fault at the end of the line, we will need a fuse at the start of the line that will be able to protect the cable.
To calculate the size of the fuse, we need to know the short-circuit current at the end of the line.
The formula for calculating the short-circuit current is Isc = Vp / (Zs + Zc), where Vp is the voltage drop per phase, Zs is the impedance of the source, and Zc is the impedance of the cable.
Assuming that the source impedance is negligible, we can calculate the cable impedance as Zc = R + jX = 0.455 + j0.659 Ω.
Then Isc = 10.8544 kV / (0.455 + j0.659) Ω = 17.8 A.
The fuse rating is typically chosen to be about 1.5 to 2 times the maximum load current.
Therefore, the fuse size should be at least 75 A.
know more about Ohm's Law formula.
https://brainly.com/question/30766716
#SPJ11
P.(s) may be converted to PH3(g) with H₂(g). The standard Gibbs energy of formation of PH3(g) is +13.4 kJ mol at 298 K. What is the corresponding reaction Gibbs energy when the partial pressures of the H2 and PH3 (treated as perfect gases) are 1.0 bar and 0.60 bar, respectively? What is the spontaneous direction of the reaction in this case?
The reaction Gibbs energy when the partial pressures of H2 and PH3 are 1.0 bar and 0.6 bar, respectively, is +12.1 kJ/mol. In this case, the reverse reaction is spontaneous.
The reaction Gibbs energy (ΔG_rxn) can be calculated using the equation:
ΔG_rxn = ΣnΔGf(products) - ΣnΔGf(reactants)
Given that the standard Gibbs energy of formation (ΔGf) of PH3(g) is +13.4 kJ/mol, we can substitute this value into the equation:
ΔG_rxn = (1 mol × 0 kJ/mol) - (1 mol × (+13.4 kJ/mol))
Simplifying the equation, we get:
ΔG_rxn = -13.4 kJ/mol
Since the reaction Gibbs energy is negative, the forward reaction is not spontaneous. However, the reverse reaction is spontaneous, indicated by the positive value of the reaction Gibbs energy. This means that the reaction will tend to proceed in the reverse direction, from PH3 to H2.
To know more about Gibbs energy click here:
https://brainly.com/question/13795204
#SPJ11
Four point charges are held fixed in space on the corners of a rectangle with a length of 20 [cm] (in the horizontal direction) and a width of 10 [cm] (in the vertical direction). Starting with the top left corner and going clockwise, the charges are 9,=+10[nC], 92=-10[nC], 93=-5[nC), and 94=+8[nC). a) Find the magnitude and direction of the electric force on charge 94 b) Find the magnitude and direction of the electric field at the midpoint between 93 and 94 c) Find the magnitude and direction of the electric field at the center of the rectangle.
The magnitude of the electric force on charge 94 is approximately 4.81125 N. The direction can be determined based on the resultant vector of the individual forces.
To solve this problem, let's calculate the electric force and electric field step by step:
a) Magnitude and direction of the electric force on charge 94:
The electric force between two charges can be calculated using Coulomb's Law:
Electric force (F) = (k * |q1 * q2|) / r^2
where k is the electrostatic constant (k ≈ 8.99 × 10^9 N m^2/C^2), q1 and q2 are the charges, and r is the distance between the charges.
We need to calculate the net force on charge 94 due to the other charges. Let's calculate the force individually for each pair of charges and then find the vector sum:
Force on charge 94 due to charge 91:
F_941 = (k * |q9 * q1|) / r_941^2
Force on charge 94 due to charge 92:
F_942 = (k * |q9 * q2|) / r_942^2
Force on charge 94 due to charge 93:
F_943 = (k * |q9 * q3|) / r_943^2
To find the net force, we need to consider the direction as well. Since the charges are held fixed, the net force should be in the direction of the resultant vector of the individual forces.
Net force on charge 94 = F_941 + F_942 + F_943
Calculate the distances between the charges:
r_941 = diagonal length of rectangle
r_942 = length of rectangle
r_943 = diagonal length of rectangle
Given:
Length of rectangle (L) = 20 cm = 0.2 m
Width of rectangle (W) = 10 cm = 0.1 m
Using the Pythagorean theorem:
Diagonal length of rectangle (d) = √(L^2 + W^2)
= √((0.2 m)^2 + (0.1 m)^2)
= √(0.04 m^2 + 0.01 m^2)
= √(0.05 m^2)
= 0.2236 m
Substituting the values, we can calculate the forces:
F_941 = (8.99 × 10^9 N m^2/C^2 * |8 × 10^(-9) C * 10 × 10^(-9) C|) / (0.2236 m)^2
≈ 1.815 N
F_942 = (8.99 × 10^9 N m^2/C^2 * |8 × 10^(-9) C * (-10) × 10^(-9) C|) / (0.2 m)^2
≈ 1.9975 N
F_943 = (8.99 × 10^9 N m^2/C^2 * |8 × 10^(-9) C * (-5) × 10^(-9) C|) / (0.2236 m)^2
≈ 0.99875 N
Now, calculate the net force:
Net force on charge 94 = F_941 + F_942 + F_943
= 1.815 N + 1.9975 N + 0.99875 N
≈ 4.81125 N
The magnitude of the electric force on charge 94 is approximately 4.81125 N. The direction can be determined based on the resultant vector of the individual forces.
Learn more about magnitude here:
https://brainly.com/question/30954042
#SPJ11
(a) Two point charges totaling 8.00μC exert a repulsive force of 0.300 N on one another when separated by 0.567 m. What is the charge ( in μC ) on each? smallest charge xμC μC (b) What is the charge (in μC ) on each if the force is attractive? smallest charge « μC largest charge μC
a)The charge on each particle in both cases is 4.00 μC and b) -1.86 x 10⁻⁶ C, respectively.
(a) Two point charges totaling 8.00μC exert a repulsive force of 0.300 N on one another when separated by 0.567 m. What is the charge (in μC) on each?The force between two point charges q1 and q2 that are separated by distance r is given by:F = (1/4πε) x (q1q2/r²)Here, ε = 8.85 x 10⁻¹² C²/Nm², q1 + q2 = 8.00 μC, F = 0.300 N, and r = 0.567 m.Therefore,F = (1/4πε) x [(q1 + q2)²/r²]0.300 = (1/4πε) x [(8.00 x 10⁻⁶)²/(0.567)²]q1 + q2 = 8.00 μCq1 = (q1 + q2)/2, q2 = (q1 + q2)/2Therefore,q1 = q2 = 4.00 μC.
(b) What is the charge (in μC) on each if the force is attractive?When the force is attractive, the charges are opposite in sign. Let q1 be positive and q2 be negative. The force of attraction is given by:F = (1/4πε) x (q1q2/r²)Therefore,F = (1/4πε) x [(q1 - q2)²/r²]0.300 = (1/4πε) x [(q1 - (-q1))²/(0.567)²]q1 = (0.300 x 4πε x (0.567)²)¹/² = 1.86 x 10⁻⁶ Cq2 = -q1 = -1.86 x 10⁻⁶ C. Thus, the charge on each particle in both cases is 4.00 μC and -1.86 x 10⁻⁶ C, respectively.
Learn more about force here,
https://brainly.com/question/12785175
#SPJ11
An oscillating LC circuit consisting of a 1.3 nF capacitor and a 4.0 mH coil has a maximum voltage of 3.8 V. What are (a) the maximum charge on the capacitor, (b) the maximum current through the circuit, (c) the maximum energy stored in the magnetic field of the coil? (a) Number 4.9 Units nc (b) Number ___ Units A (c) Number ___ Units nJ
a) The maximum charge on the capacitor is approximately 4.94 nC.
b) The maximum current through the circuit is approximately 0.043 A.
c) The maximum energy stored in the magnetic field of the coil is approximately 3.49 μJ.
(a) To find the maximum charge on the capacitor, we can use the equation Q = CV, where Q is the charge, C is the capacitance, and V is the voltage.
C = 1.3 nF = 1.3 × 10^(-9) F
V = 3.8 V
Substituting these values into the equation, we have:
Q = (1.3 × 10^(-9) F) × (3.8 V) = 4.94 × 10^(-9) C
(b) The maximum current through the circuit can be found using the equation I = ωQ, where I is the current, ω is the angular frequency, and Q is the charge.
The angular frequency (ω) can be calculated using the formula ω = 1/sqrt(LC), where L is the inductance and C is the capacitance.
L = 4.0 mH = 4.0 × 10^(-3) H
C = 1.3 nF = 1.3 × 10^(-9) F
Substituting these values into the formula, we have:
ω = 1/sqrt((4.0 × 10^(-3) H) × (1.3 × 10^(-9) F)) ≈ 8.65 × 10^6 rad/s
Now, substituting the value of ω and Q into the equation for current, we get:
I = (8.65 × 10^6 rad/s) × (4.94 × 10^(-9) C) ≈ 4.27 × 10^(-2) A
(c) The maximum energy stored in the magnetic field of the coil can be calculated using the formula E = (1/2)LI^2, where E is the energy, L is the inductance, and I is the current.
L = 4.0 mH = 4.0 × 10^(-3) H
I = 0.043 A (from part b)
Substituting these values into the formula, we have:
E = (1/2) × (4.0 × 10^(-3) H) × (0.043 A)^2 ≈ 3.49 × 10^(-6) J
To know more about magnetic field
https://brainly.com/question/30331791
#SPJ11
The length of Harry's forearm (elbow to wrist) is 25 cm and the length of his upper arm (shoulder to elbow) is 20 cm. If Harry flexes his elbow such that the distance from his wrist to his shoulder is 40 cm, find the angle of flexion of Harry's elbow.
The angle of flexion of Harry's elbow is approximately 55.1 degrees. To find the angle of flexion of Harry's elbow, we can use the law of cosines. Let's denote the angle of flexion as θ.
According to the law of cosines, we have:
c² = a² + b² - 2ab * cos(θ),
where:
c is the distance from Harry's wrist to his shoulder (40 cm),
a is the length of Harry's forearm (25 cm), and
b is the length of Harry's upper arm (20 cm).
Substituting the given values into the equation, we get:
40² = 25² + 20² - 2 * 25 * 20 * cos(θ).
Simplifying the equation further:
1600 = 625 + 400 - 1000 * cos(θ).
Combining like terms:
575 = 1000 * cos(θ).
Now, divide both sides of the equation by 1000:
cos(θ) = 575 / 1000.
Taking the inverse cosine (arccos) of both sides to find θ:
θ = arccos(575 / 1000).
Using a calculator, we find that arccos(575 / 1000) is approximately 55.1 degrees.
Therefore, the angle of flexion of Harry's elbow is approximately 55.1 degrees.
To learn more about law of cosines visit:
brainly.com/question/30766161
#SPJ11
If a SHM pendulum has a total energy of 1 kJ and a block mass of 10 kg and and spring constant of 50 N/m, determine the position , velocity, and acceleration functions (sinusoida functions).
The position function of the SHM pendulum is x(t) = 20 sin (2.236t), the velocity function is v(t) = 20 × 2.236 cos (2.236t), and the acceleration function is a(t) = -100 sin (2.236t).
Simple harmonic motion (SHM) is a special type of periodic motion. A simple pendulum exhibits SHM under certain circumstances. In a SHM, the acceleration is proportional to the displacement and is always directed towards the equilibrium point. In this case, if an SHM pendulum has a total energy of 1 kJ and a block mass of 10 kg and spring constant of 50 N/m, determine the position, velocity, and acceleration functions (sinusoidal functions).We know that the total energy of SHM can be expressed as follows: E = (1/2) kA² + (1/2) mv²where k is the spring constant, A is the amplitude, m is the mass of the object attached to the spring, and v is the velocity of the object. We can find the amplitude A using the equation: A = √(2E/k)
Now, E = 1 kJ = 1000 Jk = 50 N/mA = √(2E/k) = √(2 × 1000/50) = 20 mWe can find the angular frequency of the SHM using the formula: ω = √(k/m)ω = √(50/10) = √5 = 2.236 rad/sThe position function of the SHM can be written as follows: x(t) = A sin (ωt + φ)where φ is the phase constant. Since the object is at its maximum displacement at t = 0, we can write φ = 0. Therefore, the position function becomes:x(t) = A sin (ωt) = 20 sin (2.236t)The velocity function can be obtained by differentiating the position function with respect to time: v(t) = dx/dt = Aω cos (ωt) = 20 × 2.236 cos (2.236t)
The acceleration function can be obtained by differentiating the velocity function with respect to time: a(t) = dv/dt = -Aω² sin (ωt) = -20 × 2.236² sin (2.236t) = -100 sin (2.236t)Therefore, the position function of the SHM pendulum is x(t) = 20 sin (2.236t), the velocity function is v(t) = 20 × 2.236 cos (2.236t), and the acceleration function is a(t) = -100 sin (2.236t).
Learn more about Velocity here,
https://brainly.com/question/80295
#SPJ11
What is the energy of a photon that has the same wavelength as a 100-eV electron?
1) 100 eV
2) 10,000 eV
3) 1000 eV
4) 200 eV
5) 50 eV
The energy of the photon with the same wavelength as a 100-eV electron is:E = (hc)/(λ) = (1240 eV nm)/(12.4 pm) = 100 eVThus, the energy of the photon is 100 eV
The correct answer is option 1) 100 eV.Explanation:A photon is a massless particle that is a quantum of light. Its energy and wavelength are related through the equation:λ = hc/Ewhereλ = wavelength of the photonh = Planck's constantc = speed of lightE = energy of the photonAn electron with an energy of 100 eV will have a wavelength ofλ = h/(mv)where m is the mass of the electron and v is its velocity.
Using the De Broglie equation, we know that the wavelength of the electron isλ = h/(mv)Given that the energy of the photon is equal to the energy of the electron, we can equate the two expressions above:λ = hc/EEquating both equations, we get:hc/E = h/(mv)E = (hc)/(λ)Therefore, the energy of the photon with the same wavelength as a 100-eV electron is:E = (hc)/(λ) = (1240 eV nm)/(12.4 pm) = 100 eVThus, the energy of the photon is 100 eV.
Learn more about Equation here,
https://brainly.com/question/29174899
#SPJ11
The gravitational acceleration at the mean surface of the earth is about 9.8067 m/s². The gravitational acceleration at points A and B is about 9.8013 m/s² and 9.7996 m/s², respectively. Determine the elevation of these points assuming that the radius of the Earth is 6378 km. Round-off final values to 3 decimal places.
The elevation of point A is 15.945 km and the elevation of point B is 14.715 km
The formula used in solving the problem is given below:
h = R[2ga/G - 1]
Where
h = elevation
R = radius of Earth
ga = gravitational acceleration at A or B in m/s2
G = gravitational constant
The values of ga are
ga = 9.8013 m/s² at point A
ga = 9.7996 m/s² at point B.
Substituting these values into the formula gives the elevation
hA = R[2(9.8013)/9.8067 - 1]
= R[1.0025 - 1]
= R(0.0025)
hB = R[2(9.7996)/9.8067 - 1]
= R[1.0023 - 1]
= R(0.0023)
Thus the elevation of point A is 6378 km x 0.0025 = 15.945 km.
The elevation of point B is 6378 km x 0.0023 = 14.715 km (rounded to 3 decimal places).
Therefore, the elevation of point A is 15.945 km and the elevation of point B is 14.715 km (rounded to 3 decimal places).
Learn more about the elevation:
brainly.com/question/30760036
#SPJ11
A tennis ball is thrown vertically upwards at 29 m/sec from a height of 80 m above the ground. Determine the time it takes (in sec) for the tennis ball to hit the ground. (Use g = 9.8 m/s^2)
A tennis ball is thrown vertically upwards at 29 m/sec from a height of 80 m above the ground time cannot be negative, we discard t = 0 and conclude that it takes approximately 5.92 seconds for the tennis ball to hit the ground.
To determine the time it takes for the tennis ball to hit the ground, we can use the kinematic equation for vertical motion:
h = ut + (1/2)gt²
Where:
h is the initial height (80 m)
u is the initial velocity (29 m/s)
g is the acceleration due to gravity (-9.8 m/s²)
t is the time
We want to find the time it takes for the ball to hit the ground, which means the final height will be 0.
0 = (29)t + (1/2)(-9.8)t²
This equation represents a quadratic equation in terms of t. We can solve it by rearranging and factoring:
(1/2)(-9.8)t² + 29t = 0
Simplifying further:
-4.9t² + 29t = 0
Now, we can factor out t:
t(-4.9t + 29) = 0
This equation will be true when either t = 0 or -4.9t + 29 = 0.
From -4.9t + 29 = 0, we can solve for t:
-4.9t = -29
t = -29 / -4.9
t ≈ 5.92 s
Since time cannot be negative, we discard t = 0 and conclude that it takes approximately 5.92 seconds for the tennis ball to hit the ground.
Learn more about velocity here:
https://brainly.com/question/28395671
#SPJ11
A wire in the shape of an " \( \mathrm{M} \) " lies in the plane of the paper as shown in the figure. It carries a current of \( 2.00 \mathrm{~A} \), flowing from points \( A \) to \( B \), to \( C \)
The magnetic field at point P, which is inside the wire's loop, will be directed into the page or downward.
The wire in the shape of an "M" lies in the plane of the paper as shown in the figure. It carries a current of 2.00 A, flowing from points A to B, to C.What will be the direction of the magnetic field at point P due to the current-carrying conductor in the figure?We can apply the right-hand thumb rule to find the direction of the magnetic field at point P due to the current-carrying conductor in the figure.
The right-hand thumb rule states that if the thumb of the right hand is pointed in the direction of the current, the fingers will wrap around the conductor in the direction of the magnetic field.So, the magnetic field lines will flow around the wire in a counter clockwise direction (from points B to C to A). As a result, the magnetic field at point P, which is inside the wire's loop, will be directed into the page or downward. Therefore, the answer is "into the page or downward."
Learn more about magnetic field here,
https://brainly.com/question/14411049
#SPJ11
air at 35°C and 60% relative humidity how much does it hold
Answer:
At 35°C and 60% relative humidity, air can hold a maximum of approximately 17.68 grams of water vapor per kilogram of air. This is referred to as the saturation vapor pressure (SVP) and is a function of the air temperature. When the air is already holding as much water vapor as it can, relative humidity is said to be 100%. Relative humidity is the amount of water vapor that is in the air as a percentage of the maximum amount that air can hold at a particular temperature. Therefore, at 60% relative humidity, the air is holding 60% of the maximum amount of water vapor it can hold at 35°C.
Explanation:
A grinding wheel is a uniform cylinder with a radius of 7.20 cm and a mass of 0.350 kg <3 of 3 Constants Calculate its moment of inertia about its center. Express your answer to three significant figures and include the appropriate units. Calculate the applied torque needed to accelerate it from rest to 1750 rpm in 6.80 s. Take into account a frictional torque that has been measured to slow down the wheel from 1500 rpm to rest in 62.0 s Express your answer to three significant figures and include the appropriate units.
Plugging in the given values, we have I = (1/2)(0.350 kg)(0.072 m)² = 0.055 kg·m². This is the moment of inertia of the grinding wheel about its center.
To calculate the applied torque (τ) needed to accelerate the wheel, we use the equation τ = Iα, where α is the angular acceleration. The initial angular velocity is 0 (since the wheel starts from rest), and the final angular velocity is (1750 rpm)(2π rad/min) = (1750)(2π/60) rad/s. The time taken (t) is 6.80 s. Using the formula α = (ω - ω₀)/t, where ω is the final angular velocity and ω₀ is the initial angular velocity, we can calculate the angular acceleration. Substituting the values into τ = Iα, we can find the applied torque.
The frictional torque (τ_friction) that slows down the wheel is also given by τ_friction = Iα, where α is the angular acceleration. The initial angular velocity is (1500 rpm)(2π/60) rad/s, the final angular velocity is 0 (since the wheel comes to rest), and the time taken is 62.0 s. Using the formula α = (ω - ω₀)/t, we can calculate the angular acceleration. Substituting the values into τ_friction = Iα, we can find the frictional torque.
The applied torque is the difference between the torque needed for acceleration and the frictional torque: τ_applied = τ - τ_friction.
By performing the calculations, taking into account the given values and equations, we can determine the applied torque needed to accelerate the wheel and the effect of the frictional torque.
Learn more about torque here:
https://brainly.com/question/30338175
#SPJ11
A 2400 cm³ container holds 0.15 mol of helium gas at 320°C. Part A How much work must be done to compress the gas to 1200 cm³ at constant pressure? Express your answer to two significant figures and include the appropriate units. W = __________ Value ___________ Units Part B How much work must be done to compress the gas to 1200³ cm at constant temperature? Express your answer to two significant figures and include the appropriate units. W = __________ Value ___________ Units
The work done to compress the gas to 1200 cm³ at constant pressure is 28.3 J, and the work done at constant temperature is -31.9 J.
Container volume, V1 = 2400 cm³
Amount of gas, n = 0.15 mol
Temperature, T = 320°C
Final volume, V2 = 1200 cm³
Part A: We can calculate the work done using the formula,
W = -P∆V
where,
∆V = V2 - V1
P is constant and can be calculated using the ideal gas law equation PV = nRT.
So, P = (nRT) / V1
Substitute the given values to calculate P.
P = (0.15 mol * 8.31 J/mol*K * 593 K) / 2400 cm³ = 0.0236 atm
Now, calculate the work done.
W = - (0.0236 atm) * (1200 cm³ - 2400 cm³) = 28.3 J
Part B: When the temperature is constant, use the following formula to calculate work done.
W = nRT ln(V2/V1)
where,
R is the universal gas constant
R = 8.31 J/mol*K
Substitute the given values to calculate work done.
W = (0.15 mol * 8.31 J/mol*K * 593 K) ln(1200 cm³ / 2400 cm³)
W = -31.9 J (to two significant figures)
Therefore, the work done to compress the gas to 1200 cm³ at constant pressure is 28.3 J, and the work done at constant temperature is -31.9 J.
Learn more about work: https://brainly.com/question/28199463
#SPJ11
please lable parts and answers. thank you
1 -2 0 3 In the figure shown E = 75 V/m, and the numbers on the x-axis are in meters. a. If the voltage at x = 0 is 100 V, what is the voltage at x = 2? [ Select b. If a proton is released from rest a
The numbers on the x-axis are in meters. (a) Therefore, V(2) = 100 + 75(2) = 250 V .(b) The speed of the proton when it reaches x = 0 is,v = √(2.3 x 10^8 m2/s2) = 1.5 x 10^4 m/s
a. If the voltage at x = 0 is 100 V, what is the voltage at x = 2? [ Select ]b. If a proton is released from rest at x = 2, [ Select ]a. To find the voltage at x = 2, we use the following equation, V(x) = V0 + E(x)
where, V(x) = voltage at position xV0 = voltage at x = 0E = electric field intensity
We know that E = 75 V/m, V0 = 100 V and x = 2 m.
Therefore, V(2) = 100 + 75(2) = 250 V
b. The proton is moving in an electric field and undergoes a force given by, F = qE
where, q = charge on the proton, E = electric field strength
In this case, the force is constant and we can apply kinematic equations to find the speed of the proton when it reaches x = 0.
The kinematic equation is,v2 = u2 + 2aswhere,u = initial velocity = 0a = acceleration = qE/m
where m is the mass of the proton.
We know that q = 1.6 x 10^-19 C, E = 75 V/m and m = 1.67 x 10^-27 kg. Therefore,a = (1.6 x 10^-19 C)(75 V/m)/(1.67 x 10^-27 kg) = 5.7 x 10^7 m/s2s = displacement = 2 mPutting the values in the equation for v2,v2 = (0)2 + 2(5.7 x 10^7 m/s2)(2 m) = 2.3 x 10^8 m2/s2
The speed of the proton when it reaches x = 0 is,v = √(2.3 x 10^8 m2/s2) = 1.5 x 10^4 m/s
Learn more about voltage here:
https://brainly.com/question/12804325
#SPJ11
An electron moving to the left at an initial speed of 2.4 x 106 m/s enters a uniform 0.0019T magnetic field. Ignore the effects of gravity for this problem. a) If the magnetic field points out of the page, what is the magnitude and direction of the magnetic force acting on the electron? b) The electron will begin moving in a circular path when it enters the field. What is the radius of the circle? c) The electron is moving to the left at an initial speed of 2.4 x 10 m/s when it enters the uniform 0.0019 T magnetic field, but for part (c) there is also a uniform 3500 V/m electric field pointing straight down (towards the bottom of the page). When the electron first enters the region with the electric and magnetic fields, what is the net force on the electron?
An electron moving to the left at an initial speed of 2.4 x 106 m/s enters a uniform 0.0019T magnetic field. a) If the magnetic field points out of the page,(a)The negative sign indicates that the force is in the opposite direction to the velocity, which in this case is to the right.(b) The radius of the circular path is approximately 0.075 m.(c)the net force on the electron when it first enters the region with both electric and magnetic fields is approximately -7.4 x 10^(-14) N, directed to the right.
a) The magnitude of the magnetic force on a charged particle moving in a magnetic field can be calculated using the formula:
F = q × v B × sin(θ),
where F is the magnitude of the force, q is the charge of the particle, v is the velocity of the particle, B is the magnitude of the magnetic field, and θ is the angle between the velocity vector and the magnetic field vector.
In this case, the electron has a negative charge (q = -1.6 x 10^(-19) C), a velocity of 2.4 x 10^6 m/s, and enters a magnetic field of magnitude 0.0019 T. Since the magnetic field points out of the page, and the electron is moving to the left, the angle between the velocity and the magnetic field is 90 degrees.
Substituting the values into the formula, we have:
F = (-1.6 x 10^(-19) C) × (2.4 x 10^6 m/s) × (0.0019 T) × sin(90°)
Since sin(90°) = 1, the magnitude of the force is:
F = (-1.6 x 10^(-19) C) × (2.4 x 10^6 m/s) × (0.0019 T) * 1
Calculating this, we find:
F ≈ -7.3 x 10^(-14) N
The negative sign indicates that the force is in the opposite direction to the velocity, which in this case is to the right.
b) The magnetic force provides the centripetal force to keep the electron moving in a circular path. The centripetal force is given by the formula:
F = (mv^2) / r,
where F is the magnitude of the force, m is the mass of the particle, v is the velocity of the particle, and r is the radius of the circular path.
Since the electron is moving in a circular path, the magnetic force is equal to the centripetal force:
qvB = (mv^2) / r
Simplifying, we have:
r = (mv) / (qB)
Substituting the known values:
r = [(9.11 x 10^(-31) kg) × (2.4 x 10^6 m/s)] / [(1.6 x 10^(-19) C) * (0.0019 T)]
Calculating this, we find:
r ≈ 0.075 m
Therefore, the radius of the circular path is approximately 0.075 m.
c) To find the net force on the electron when it enters the region with both electric and magnetic fields, we need to consider the forces due to both fields separately.
The force due to the magnetic field was calculated in part (a) to be approximately -7.3 x 10^(-14) N.
The force due to the electric field can be calculated using the formula:
F = q ×E,
where F is the magnitude of the force, q is the charge of the particle, and E is the magnitude of the electric field.
In this case, the electron has a charge of -1.6 x 10^(-19) C and the electric field has a magnitude of 3500 V/m. Since the electric field points straight down, and the electron is moving to the left, the force due to the electric field is to the right.
Substituting the values into the formula, we have:
F = (-1.6 x 10^(-19) C) × (3500 V/m)
Calculating this, we find:
F ≈ -5.6 x 10^(-16) N
The negative sign indicates that the force is in the opposite direction to the electric field, which in this case is to the right.
To find the net force, we sum up the forces due to the magnetic field and the electric field:
Net force = Magnetic force + Electric force
= (-7.3 x 10^(-14) N) + (-5.6 x 10^(-16) N)
Calculating this, we find:
Net force ≈ -7.4 x 10^(-14) N
Therefore, the net force on the electron when it first enters the region with both electric and magnetic fields is approximately -7.4 x 10^(-14) N, directed to the right.
To learn more about centripetal force visit: https://brainly.com/question/898360
#SPJ11
Can the sun explain global warming? ( 2 points) Suppose that the Earth has warmed up by 1 K in the last hundred years. i) How much would the solar constant have to increase to explain this? ii) Compare this to the observed fluctuation of the solar constant over the past 400 years (shown in class) For part (i), begin with the standard 'blackbody' calculation from class, that is: set α=0.30, and assume that the Earth acts as a blackbody in the infrared.
No, the sun cannot explain global warming. Global warming is a phenomenon in which the temperature of the Earth's surface and atmosphere is rising continuously due to human activities such as deforestation, burning of fossil fuels, and industrialization.
This increase in temperature cannot be explained only by an increase in solar radiation.There are several factors which contribute to global warming, including greenhouse gases such as carbon dioxide, methane, and water vapor. These gases trap heat in the Earth's atmosphere, which causes the planet's temperature to rise. The sun's radiation does contribute to global warming, but it is not the main cause.
i) To calculate the increase in solar radiation that would cause the Earth to warm up by 1 K, we can use the following formula:ΔS = ΔT / αWhere ΔS is the increase in solar constant, ΔT is the increase in temperature, and α is the Earth's albedo (reflectivity).α = 0.30 is the standard value used for the Earth's albedo.ΔS = ΔT / αΔS = 1 K / 0.30ΔS = 3.33 W/m2So, to explain the increase in temperature of 1 K over the last hundred years, the solar constant would need to increase by 3.33 W/m2.
ii) The observed fluctuation of the solar constant over the past 400 years has been around 0.1% to 0.2%. This is much smaller than the 3.33 W/m2 required to explain the increase in temperature of 1 K over the last hundred years. Therefore, it is unlikely that the sun is the main cause of global warming.
The sun cannot explain global warming. While the sun's radiation does contribute to global warming, it is not the main cause. The main cause of global warming is human activities, particularly the burning of fossil fuels, which release large amounts of greenhouse gases into the atmosphere.
To know more about global warming :
brainly.com/question/29625243
#SPJ11
Calculate the change in air pressure you will experience if you climb a 1400 m mountain, assuming that the temperature and air density do not change over this distance and that they were 22.0 ∘C and 1.20 kg/m3 respectively, at the bottom of the mountain.
If you took a 0.500 L breath at the foot of the mountain and managed to hold it until you reached the top, what would be the volume of this breath when you exhaled it there?
When you exhale the breath at the top of the mountain, its volume would be approximately 0.000197 m³.
To calculate the change in air pressure, we can use the hydrostatic pressure formula:
ΔP = ρ * g * Δh
where:
ΔP is the change in pressure,
ρ is the density of air,
g is the acceleration due to gravity, and
Δh is the change in height.
Given:
ρ = 1.20 kg/m³ (density of air at the bottom of the mountain)
Δh = 1400 m (change in height)
We need to determine the change in pressure, ΔP.
Let's calculate it:
ΔP = 1.20 kg/m³ * 9.8 m/s² * 1400 m
ΔP ≈ 16,632 Pa
Therefore, the change in air pressure when climbing the 1400 m mountain is approximately 16,632 Pa.
Now, let's calculate the volume of the breath when exhaled at the top of the mountain. To do this, we need to consider the ideal gas law:
PV = nRT
where:
P is the pressure,
V is the volume,
n is the number of moles of gas,
R is the ideal gas constant, and
T is the temperature in Kelvin.
Given:
V = 0.500 L = 0.500 * 0.001 m³ (converting liters to cubic meters)
P = 16,632 Pa (pressure at the top of the mountain, as calculated earlier)
T = 22.0 °C = 22.0 + 273.15 K (converting Celsius to Kelvin)
Now, let's rearrange the ideal gas law to solve for V:
V = (nRT) / P
To find the new volume, we need to assume that the number of moles of gas remains constant during the ascent.
[tex]V_{new}[/tex] = (V * [tex]P_{new}[/tex] * T) / (P * [tex]T_{new}[/tex])
where:
[tex]P_{new}[/tex] = P + ΔP (total pressure at the top of the mountain)
[tex]T_{new}[/tex] = T (assuming the temperature does not change)
Now, let's calculate the new volume:
[tex]V_{new}[/tex] = (0.500 * 0.001 m³ * (16,632 Pa + 0)) / (16,632 Pa * (22.0 + 273.15) K)
[tex]V_{new}[/tex] ≈ 0.000197 m³
Therefore, when you exhale the breath at the top of the mountain, its volume would be approximately 0.000197 m³.
To learn more about ideal gas law visit:
brainly.com/question/30458409
#SPJ11
A body of mass 5kg is connected by a light inelastic string which is passed over a fixed frictionless pulley to a moveable frictionless pulley of mass 1kg over which is wrapped another light inelastic string which connects masses 3kg and 2kg. Find 1) the acceleration of the masses.
2) the tensions in the strings in terms of g, the acceleration dey to gravity
(a) The acceleration of the masses is determined as 1.1 m/s² in the direction of the 5 kg mass.
(b) The tension in the string in terms of gravity is T = g.
What is the acceleration of the masses?(a) The acceleration of the masses is calculated by applying Newton's second law of motion.
F(net) = ma
where;
m is the massesa is the acceleration of the masses(5 kg x 9.8 m/s² ) - (1 kg + 3 kg )9.8 m/s² = ma
9.8 N = (5kg + 1 kg + 3 kg )a
9.8 = 9a
a = 9.8 / 9
a = 1.1 m/s² in the direction of the 5 kg mass.
(b) The tension in the string in terms of gravity is calculated as follows;
T = ( 5kg)g - (1 kg + 3 kg ) g
T = 5g - 4g
T = g
Learn more about tension in string here: https://brainly.com/question/24994188
#SPJ1
The New Horizons space probe flew by Pluto in 2015. It measured only a thin atmospheric boundary extending 4 km above the surface. It also found that the atmosphere consists predominately of nitrogen (N₂) gas. The work to elevate a single N₂ molecule to this distance is 5.7536 x 10⁻²³ J. New Horizons also determined that the atmospheric pressure on Pluto is 1.3 Pa at a distance of 3 km from the surface. What is the atmospheric density at this elevation? mN2 = 2.32 x 10⁻²⁶kg a. 6.99 x 10⁻⁴ kg/m³ b. 442 x 10⁻² kg/m³ c. 442 x 10⁻⁵ kg/m³ d. 6.99 x 10⁻¹ kg/m³
Answer: The correct option is a. 6.99 x 10⁻⁴ kg/m³.
Work to elevate a single N₂ molecule to this distance = 5.7536 x 10⁻²³ Jm
N2 = 2.32 x 10⁻²⁶kg
Pluto Atmospheric Pressure = 1.3 Pa
Distance from the surface = 3 km
We are given the work done to lift a single N2 molecule, which is 5.7536 x 10⁻²³ J.
Now, we need to know the total energy used to lift one kilogram of N2 molecules to this height.
Since the mass of one N2 molecule is 2.32 x 10⁻²⁶kg, the number of molecules in one kilogram would be:
1 kg = 1,000 g = 1000/14moles = 71.43 moles.
In one mole, there are 6.022 x 10²³ molecules.
Therefore, in 71.43 moles, the number of N₂ molecules would be:71.43 moles x 6.022 x 10²³ molecules per mole
= 4.29 x 10²⁶ molecules of N₂.
Total work = work to lift one molecule x number of molecules in one kilogram= 5.7536 x 10⁻²³ J/molecule x 4.29 x 10²⁶ molecules/kg= 2.466 x 10³ J/kg.
The atmospheric pressure at a distance of 3 km from the surface of Pluto is 1.3 Pa.
Using the ideal gas law, PV = nRT,
where P is pressure, V is volume, n is the number of moles, R is the gas constant and T is temperature.
The mass of one N₂ molecule, m. N₂ is given as 2.32 x 10⁻²⁶ kg.
Since the mass of a single molecule is very small, we can assume that the volume occupied by one molecule is negligible, and therefore the volume occupied by all the molecules can be approximated as the total volume. The number of moles of N₂ gas in 1 kg would be:1 kg = 1000 g / (28 g/mol) = 35.71 moles.
Therefore, the number of molecules would be: 35.71 moles x 6.022 x 10²³ molecules/mole
= 2.15 x 10²⁶ molecules of N₂. The volume occupied by all the N2 molecules in 1 kg would be:,
V = nRT/P
= (35.71 x 8.314 x 55)/(1.3)
= 1.53 x 10³ m³.
The density of N₂ gas in 1 kg would be:
p = m/V = 1/1.53 x 10³
= 6.54 x 10⁻⁴ kg/m³.
Therefore, the atmospheric density at this elevation is 6.54 x 10⁻⁴ kg/m³.
Answer: The correct option is a. 6.99 x 10⁻⁴ kg/m³.
Learn more about ideal gas law: https://brainly.com/question/27870704
#SPJ11
A 10.4-V battery, a 4.98-12 resistor, and a 9.8-H inductor are connected in series. After the current in the circuit has reached its maximum value, calculate the following. (a) the power being supplied by the battery W (b) the power being delivered to the resistor w (c) the power being delivered to the inductor W (d) the energy stored in the magnetic field of the inductor
(a)The power supplied by battery W is 21.6956 W. (b) The power delivered to the resistor w is 21.6956 W. (c) The power being delivered to the inductor W is 21.6956 W. (d) The energy stored in the magnetic field of the inductor is 21.6524 J
(a) To calculate the power supplied by the battery, we can use the formula:
P = VI, where P is the power, V is the voltage, and I is the current.
Since the battery voltage is given as 10.4 V, there is a need to determine the current flowing through the circuit. In a series circuit, the current is the same across all components. Therefore, calculate the current by using Ohm's Law:
V = IR, where R is the resistance.
Plugging in the given values,
I = V/R = 10.4 V / 4.98 Ω = 2.089 A.
Calculate the power supplied by the battery:
P = VI = 10.4 V * 2.089 A
= 21.6956 W.
(b) The power delivered to the resistor can be calculated using the formula P = VI, where V is the voltage across the resistor and I is the current flowing through it. Since the resistor and battery are in series, the voltage across the resistor is equal to the battery voltage. Therefore, the power delivered to the resistor is the same as the power supplied by the battery: P = 21.6956 W.
(c) The power delivered to the inductor can be found using the formula: P = IV, where V is the voltage across the inductor and I is the current flowing through it. In a series circuit, the voltage across the inductor is the same as the battery voltage. Therefore, the power delivered to the inductor is also 21.6956 W.
(d) The energy stored in the magnetic field of the inductor can be calculated using the formula:
[tex]E = 1/2 LI^2[/tex], where L is the inductance and I is the current flowing through the inductor.
Plugging in the given values,
[tex]E = 1/2 * 9.8 H * (2.089 A)^2[/tex]
= 21.6524 J.
Learn more about series circuits here:
https://brainly.com/question/26589211
#SPJ11
Get the equation for energy. Explain the physical meaning of
energy in cfd.
The equation for energy in the context of fluid dynamics, specifically in Computational Fluid Dynamics (CFD), is typically represented by the conservation of energy equation, also known as the energy equation or the first law of thermodynamics. The equation can be expressed as:
ρ * (du/dt + u * ∇u) = -∇p + ∇⋅(μ * (∇u + (∇u)^T)) + ρ * g + Q
where:
ρ is the density of the fluid
u is the velocity vector
t is time
∇u represents the gradient of velocity
p is the pressure
μ is the dynamic viscosity
g is the gravitational acceleration vector
Q represents any external heat source/sink
The physical meaning of energy in CFD is the total energy of the fluid system, which includes kinetic energy (associated with the motion of the fluid), potential energy (associated with the elevation of the fluid due to gravity), and internal energy (associated with the fluid's temperature and pressure). The energy equation describes how this total energy is conserved and transformed within the fluid system.
In CFD simulations, the energy equation plays a crucial role in modeling the energy transfer, heat transfer, and flow characteristics within the fluid. It helps in understanding how energy is distributed, dissipated, and exchanged within the fluid domain. By solving the energy equation numerically, CFD simulations can predict temperature profiles, flow patterns, heat transfer rates, and other important parameters that are essential for various engineering applications, such as designing efficient cooling systems, optimizing combustion processes, and analyzing thermal behavior in fluid flows.
To know more about Fluid Dynamics,
https://brainly.com/question/30578986
#SPJ11
If the wavelength of a light source in air is 536nm, what would it's wavelength (in nm) be in Cubic Zirconia (n=2.174)?
The wavelength of a light source in cubic zirconia (n=2.174) would be 246.5nm or rounded to 246.5nm
Cubic zirconia is a material with a refractive index (n) of 2.174. The refractive index determines how much light is bent as it passes through a medium. When light travels from one medium to another, such as from air to cubic zirconia, its wavelength changes.
To calculate the new wavelength in cubic zirconia, we can use the formula: λ1/λ2 = n2/n1, where λ1 is the wavelength in air (536nm), λ2 is the wavelength in cubic zirconia (unknown), n1 is the refractive index of air (1), and n2 is the refractive index of cubic zirconia (2.174).
Rearranging the formula to solve for λ2, we get: λ2 = (λ1 * n2) / n1 = (536nm * 2.174) / 1 = 1165.864nm.
Therefore, the wavelength of the light source in cubic zirconia would be approximately 1165.864nm or rounded to 246.5nm.
Learn more about wavelength here:
https://brainly.com/question/7143261
#SPJ11
A straight wire carrying a current of 10.0 A is in proximity to another wire carrying a current of 3.0 A. The current is flowing in the same direction (ie Up for each). If the conductors are 2m apart what is the force between them (provide a direction)? What is the strength of the magnetic field at the midpoint between the two conductors.
The force between the two wires carrying currents is attractive, and its magnitude can be calculated using Ampere's law. The magnetic field at the midpoint between the wires can be determined using the Biot-Savart law.
The force between the two wires can be calculated using Ampere's law, which states that the force per unit length between two parallel conductors is proportional to the product of their currents and inversely proportional to the distance between them. In this case, the currents are in the same direction, resulting in an attractive force between the wires. Using the formula for the force per unit length, we can calculate the force between the wires.
To determine the magnetic field at the midpoint between the two wires, we can apply the Biot-Savart law, which describes the magnetic field produced by a current-carrying wire. By considering the magnetic field contributions from both wires at the midpoint, we can determine the resultant magnetic field strength. The Biot-Savart law allows us to calculate the magnetic field at any point in space due to the current in a wire.
Learn more about Biot-Savart law here:
https://brainly.com/question/30764718
#SPJ11
In an isentropic compression, P₁= 100 psia. P₂= 200 psla, V₁ = 10 m³, and k=1.4. Find V₂ OA 4.500 in ³ OB.3.509 in ³ OC.5.000 in ³ OD.6.095 in ³
The correct option is OA 4.500 in ³.
In an isentropic compression, P₁= 100 psia, P₂= 200 psia, V₁ = 10 m³, and k = 1.4. We have to find V₂.The formula for isentropic compression of an ideal gas is given as:P₁V₁ᵏ=P₂V₂ᵏwhereP₁ is the initial pressureV₁ is the initial volumeP₂ is the final pressureV₂ is the final volumek is the specific heat ratio of the gasSubstituting the given values in the formula:100 × 10ᵏ = 200 × V₂ᵏOn dividing both sides by 200, we get:50 × 10ᵏ = V₂ᵏTaking the kth root on both sides:V₂ = (50 × 10ᵏ)^(1/k)Substituting k = 1.4V₂ = (50 × 10¹⁴/10¹⁰)^(1/1.4)V₂ = (50 × 10^4)^(5/7)V₂ = 4500 cubic inchesHence, the correct option is OA 4.500 in ³.
Learn more about Substituting here,
https://brainly.com/question/30339603
#SPJ11
A spherical drop of water carrying a charge of 41pC has a potential of 570 V at its surface (with V=0 at infinity). (a) What is the radius of the drop? (b) If two such drops of the same charge and radius combine to form a single spherical drop, what is the potential at the surface of the new drop? (a) Number Units (b) Number Units
A spherical drop of water carrying a charge of 41pC has a potential of 570 V at its surface (with V=0 at infinity) (a) The radius of the drop is approximately 5.88 micrometers (μm).
(b) The potential at the surface of the new drop formed by combining two drops of the same charge and radius is approximately 1140 V.
(a) To find the radius of the drop, we can use the formula for the potential of a charged sphere, which is given by V = (k * Q) / r, where V is the potential, k is the electrostatic constant, Q is the charge, and r is the radius of the sphere. Rearranging the formula to solve for the radius, we have r = (k * Q) / V. Plugging in the given values of Q = 41 pC (pico coulombs) and V = 570 V, and using the value of k = 8.99 × 10^9 Nm^2/C^2, we can calculate the radius to be approximately 5.88 μm.
(b) When two drops combine to form a single spherical drop, the total charge remains the same. Therefore, the potential at the surface of the new drop can be calculated using the same formula as before, but with the combined charge. Since each drop has the same charge and radius, the combined charge will be 2 times the original charge. Plugging in Q = 82 pC (2 * 41 pC) and using the given value of V = 570 V, we can calculate the potential at the surface of the new drop to be approximately 1140 V.
To know more about spherical drops click here:
https://brainly.com/question/13466465
#SPJ11
Which has the greater density—1 kg of sand or 10 kg of sand?.
Explain
The density of 1 kg of sand and 10 kg of sand is the same because the ratio of mass to volume remains constant.
Density is defined as mass per unit volume. In this case, we are comparing the densities of 1 kg of sand and 10 kg of sand.
Assuming the sand is uniform, the density remains constant regardless of the amount of sand. This means that both 1 kg of sand and 10 kg of sand have the same density.
To understand why the density remains the same, let's consider the definition of density:
Density = Mass / Volume
In this scenario, we are comparing the densities of two different amounts of sand: 1 kg and 10 kg. The mass increases by a factor of 10, but the volume also increases by the same factor. Assuming the sand particles remain the same and there is no compaction or voids, the volume scales linearly with mass.
Therefore, the density of 1 kg of sand and 10 kg of sand is the same because the ratio of mass to volume remains constant.
In conclusion, both 1 kg of sand and 10 kg of sand have the same density since the increase in mass is accompanied by an equal increase in volume.
To learn more about density visit: https://brainly.com/question/1354972
#SPJ11
A gas is contained in a cylinder with a pressure of 140 a kPa and an initial volume of 0.72 m³
Part A How much work is done by the gas as it expands at constant pressure to twice its initial volume? Express your answer using two significant figures. W = ______________ J Part B How much work is done by the gas as it is compressed to one-third its initial volume? Express your answer using two significant figures.
A gas is contained in a cylinder with a pressure of 140 a kPa and an initial volume of 0.72 m³.(a) The work done by the gas as it expands at constant pressure to twice its initial volume is approximately 100,800 Joules.(b)The work done by the gas as it is compressed to one-third its initial volume is approximately -67,200 Joules. Note that the negative sign indicates work done on the gas during compression.
Part A: To calculate the work done by the gas as it expands at constant pressure, we can use the formula:
Work (W) = Pressure (P) × Change in Volume (ΔV)
Given:
Pressure (P) = 140 kPa = 140,000 Pa
Initial Volume (V1) = 0.72 m³
Final Volume (V2) = 2 × Initial Volume = 2 × 0.72 m³ = 1.44 m³
Change in Volume (ΔV) = V2 - V1 = 1.44 m³ - 0.72 m³ = 0.72 m³
Substituting these values into the formula:
W = P ×ΔV = 140,000 Pa × 0.72 m³
Calculating the value:
W ≈ 100,800 J
Therefore, the work done by the gas as it expands at constant pressure to twice its initial volume is approximately 100,800 Joules.
Part B: To calculate the work done by the gas as it is compressed to one-third its initial volume, we can follow the same process.
Given:
Pressure (P) = 140 kPa = 140,000 Pa
Initial Volume (V1) = 0.72 m³
Final Volume (V2) = (1/3) × Initial Volume = (1/3) × 0.72 m³ = 0.24 m³
Change in Volume (ΔV) = V2 - V1 = 0.24 m³ - 0.72 m³ = -0.48 m³ (negative because it's a compression)
Substituting these values into the formula:
W = P ×ΔV = 140,000 Pa × (-0.48 m³)
Calculating the value:
W ≈ -67,200 J
Therefore, the work done by the gas as it is compressed to one-third its initial volume is approximately -67,200 Joules. Note that the negative sign indicates work done on the gas during compression.
To learn more about Pressure (P) visit: https://brainly.com/question/28012687
#SPJ11