Answer:
[tex] A = 70.6 [/tex] ≈ 71°
[tex] x = 36.5 [/tex]
Step-by-step explanation:
Step 1: Use the Law of sine to find A
[tex] \frac{sin(A)}{38} = \frac{sin(44)}{28} [/tex]
Cross multiply:
[tex] sin(A)*28 = sin(44)*38 [/tex]
[tex] sin(A)*28 = 0.695*38 [/tex]
Divide both sides by 28:
[tex] \frac{sin(A)*28}{28} = \frac{0.695*38}{28} [/tex]
[tex] sin(A) = 0.9432 [/tex]
[tex] A = sin^{-1}(0.9432) [/tex]
[tex] A = 70.6 [/tex]
A ≈ 71°
Step 2: find the measure of the angle opposite side x
Angle opposite side x = 180 - (71+44) (sum of triangle)
= 180 - 115 = 65°
Step 3: find x using the law of sines
[tex] \frac{x}{sin(65)} = \frac{28}{sin(44)} [/tex]
[tex] \frac{x}{0.906} = \frac{28}{0.695} [/tex]
Multiply both sides by 0.906
[tex] x*0.695= 28*0.906 [/tex]
Divide both sides by 0.695
[tex] \frac{x*0.695}{0.695} = \frac{28*0.906}{0.695} [/tex]
[tex] x = \frac{28*0.906}{0.695} [/tex]
[tex] x = 36.5 [/tex]
determining probability of events. please help!
Answer:
23/90
Step-by-step explanation:
55/90 + 12/90 = 67/9090 - 67 = 2323/9023/90 balls are green or white
i hope this helps!
-15≤-3c plz helpppppppppp
Answer:
5 ≥ c
Step-by-step explanation:
-15≤-3c
Divide each side by -3, remembering to flip the inequality
-15/-3 ≤ -3c/-3
5 ≥ c
Answer:
c ≤ 5
Step-by-step explanation:
Since you have to divide both sides of the equation by a negative number, you have to flip the equality sign.
-15 ≤ -3c
(-15)/(-3) ≤ (-3c)/-3
5 ≥ c
c ≤ 5
Give the null and alternative hypotheses in symbolic form that would be used in a hypothesis test of the following claim:
The mean time between "clicks" of the second hand on a particular clock is not 1 second.
a. H0: = 1 vs. H1: 1
b. H0: p = 1 vs. H1: p 1
c. H0: = 1 vs. H1:
d. none of these
Answer:
Step-by-step explanation:
The null hypothesis is usually the default statement. The alternative is the opposite of the null and usually tested against the null hypothesis
In this case study,
The null hypothesis in would be that the mean time between clicks of the second hand on a particular clock is 1 second. In symbolic form it would be u = 1
The alternative hypothesis would be that the mean time between clicks of the second hand on a particular clock is 1 not second. In symbolic form, it would be: u =/ 1
Find dw/ds using the appropriate Chain Rule for w=y^3-4x^2y where x=e^s and y=e^t, and evaluate the partial derivative at s=-3 and t=5 . Round your answer to two decimal places.
Answer:
-2.95
Step-by-step explanation:
Given the functions w=y^3-4x^2y where x=e^s and y=e^t, to get dw/ds, we will use the chain rule for composite functions as shown;
dw/ds = dw/dx*dx/ds + dw/dy*dy/ds
dw/dx = -8xy
dx/ds = e^s
dw/dy = 3y²-4x²
dy/ds = 0 (since there are no s variable in the function)
Substituting the differentials into the formula above;
dw/ds = -8xy(e^s) + 3y²-4x²(0)
dw/ds = -8xy(e^s)
Substituting s = -3 and t = 5 into the resulting function;
dw/ds = -8(e^s)(e^t)(e^s)
dw/ds = -8(e^2s)(e^t)
dw/ds = -8(e^-6)(e^5)
dw/ds = -8*0.00248*148.413
dw/ds = -2.945 ≈ --2.95 (to 2 dp)
Please help!! Which inequality is graphed on the coordinate plane?
Answer:
The correct answer that corresponds with that graph is B: y ≤-3x+2.
Step-by-step explanation:
1) First we need to figure out what kind of symbol the line is, greater or less than equations (< , >) then the line are dotted,and if its greater than or equal to or less than or equal to equations ( ≤, ≥) since the line are solid.
2) Now we need to figure out which side should be shaded, if the symbol is a less than or a less than or equal to then the shaded side should be on the left, if the symbol is a greater than or a greater than or equal then the shaded side should be on the right.
In this case we have a solid line and a shaded left side which mean the symbol that been used here is a less than or equal to symbol ( ≤ ).
So our answer is B: y ≤-3x+2.
Remember:
- greater or less than equations (< , >) = dotted line
- greater than or equal to or less than or equal to equations ( ≤, ≥) = solid line
- less than or a less than or equal to = shaded left side
- greater than or greater than or equal to = shaded right side
If the triangle on the grid below is translated by using the rule (x, y) right-arrow (x + 5, y minus 2), what will be the coordinates of B prime?
Answer:
Option (2)
Step-by-step explanation:
If a point having coordinates (x, y) is translated by 'h' units right and 'k' units down,
New coordinates of the point will be,
(x, y) → [(x + h), (y - k)]
Coordinates of the vertices of the given triangle ABC are,
A(-1, 0), B(-5, 0) and C(-1, 2)
If this triangle is shifted 5 units right and 2 units down then the coordinates of point B will be,
B(-5, 0) → B'[(-5 + 5), (0 -2)]
→ B'(0, -2)
Therefore, coordinates of vertex B' will be (0, -2).
Option (2) will be the answer.
Answer:
(0,-2) is Correct
Have a Blessed day!
A recent study found that toddlers who have a diet high in processed foods may have a slightly lower IQ later in life. The conclusion came from a long-term investigation of 14,000 people whose health was monitored at 3,4,7, and 8 years of age.
a) One analysis found that of the 4000 children for which there were complete data, there was a significant difference in IQ between those who had had "processed" (i.e., junk) food and those who followed health-conscious diets in early childhood. Is this an experiment? Why or why not?
b) Discuss at least two explanatory factors that could conceivably confound the relationship between diet and IQ.
Answer:
A) it is not an experiment it is an observational study/analysis
B) i)Foods high in fats and sugar affects IQ (ii)Foods that contain the required classes of food affects IQ positively
Step-by-step explanation:
A) An analysis carried out on 400 children using the data derived from the long term investigation can not be said to be an experiment but an observational analysis this is because the complete data has been provided already from the long term investigation already. hence it can only be observed
B ) i) foods high in fats and sugar affects The IQ of children later in life as seen from the results of the observational study that children whom had processed foods had a significant negative difference in IQ when compared with children who had health-conscious diets
ii) following health conscious diets early in childhood will have a positive effect on one's IQ later in life .
The equation of the line of best fit is y=15.621x+8.83 Based on the line of best fit, Approximately how many pages are predicted To be in a book with eight chapters
Answer:
[tex] y = 15.621x +8.83[/tex]
We assume that y represent the number of pages predicted and x the number of chapters.
And we want to find the predicted value for a book of x =8 chapters. S replacing we got:
[tex] y = 15.621*8 + 8.83= 133.798[/tex]
And we can conclude that approximately we would have between 133 and 134 pages for a book of 8 chapters
Step-by-step explanation:
For this case we have the following model given:
[tex] y = 15.621x +8.83[/tex]
We assume that y represent the number of pages predicted and x the number of chapters.
And we want to find the predicted value for a book of x =8 chapters. S replacing we got:
[tex] y = 15.621*8 + 8.83= 133.798[/tex]
And we can conclude that approximately we would have between 133 and 134 pages for a book of 8 chapters
Which Graph represents the solution to the compound inequality 4x +8< -16 or 4x + 8 > 4
Answer:
Step-by-step explanation:
We can solve each inequality apart and then see the possible solution sets.
Consider the inequality 4x+8 < -16. If we divide by 4 on both sides, we get
x+2 < -4. If we substract 2 on both sides we get x<-6. So the solution set for this inequality is the set of real numbers that are less than -6 (lie to the left of the point -6).
Consider 4x+8>4. If we divide by 4 on both sides we get x+2>1. If we substract 2 on both sides we get x>-1. So the solution set for this inequality is the set of real numbers that are bigger than -1 (lie to the right of the point -1).
So, for us to have 4x+8<-16 or 4x+8>4 we must have that either x <-6 or x>-1. So the solution set for the set of inequalities is the union of both sets, that is
[tex](\-infty, -6) \cup (-1,\infty)[/tex]
What is the solution of log3(3x+2)= log3 (4x-6)?
Answer:
x=8 i got it right on my homework on khan academy
Step-by-step explanation:
Answer: Using logarithms to solve you will get x = 8
Solve the equation for x 5x-(4x-1)=2 A 1/9 B -1 C -1/9 D 1
Answer:
D
Step-by-step explanation:
Simplify the expression:
– 10x + – 4 – 8 + 7x
Answer:
-3x-12
Step-by-step explanation:
-10x-4-8+7x
-3x-4-8
-3x-12
Answer:
-3x-12
Step-by-step explanation:
– 10x + – 4 – 8 + 7x
Combine like terms
-10x +7x -4-8
-3x -12
Find y................
Answer:
[tex] y = 3 [/tex]
Step-by-step explanation:
Given the above right angled triangle, we would use a trigonometric ratio formula to find y.
Given angle = 30°
Hypotenuse = 6
Opposite side = y
Solve for y using the trigonometric ratio formula as follows:
[tex] sin(X) = \frac{opposite}{hypotenuse} [/tex]
[tex] sin(30) = \frac{y}{6} [/tex]
Multiply both sides by 6
[tex] sin(30)*6 = \frac{y}{6}*6 [/tex]
[tex] 0.5*6 = y [/tex]
[tex] 3 = y [/tex]
[tex] y = 3 [/tex]
Snow avalanches can be a real problem for travelers in the western United States and Canada. A very common type of avalanche is called the slab avalanche. These have been studied extensively by David McClung, a professor of civil engineering at the University of British Columbia. Suppose slab avalanches studied in a region of Canada had an average thickness of μ = 66 cm. The ski patrol at Vail, Colorado, is studying slab avalanches in its region. A random sample of avalanches in spring gave the following thicknesses (in cm). 59 51 76 38 65 54 49 62 68 55 64 67 63 74 65 79 (i) Use a calculator with sample mean and standard deviation keys to find x and s. (Round your answers to two decimal places.) x = 61.81 Correct: Your answer is correct. cm s = 10.64 Correct: Your answer is correct. cm (ii) Assume the slab thickness has an approximately normal distribution. Use a 1% level of significance to test the claim that the mean slab thickness in the Vail region is different from that in the region of Canada. (a) What is the level of significance? 0.100 Incorrect: Your answer is incorrect. State the null and alternate hypotheses. H0: μ = 66; H1: μ 66 H0: μ ≠ 66; H1: μ = 66 H0: μ < 66; H1: μ = 66 Incorrect: Your answer is incorrect.
Answer:
We conclude that the mean slab thickness in the Vail region is the same as that in the region of Canada.
Step-by-step explanation:
We are given that slab avalanches studied in a region of Canada had an average thickness of μ = 66 cm.
A random sample of avalanches in spring gave the following thicknesses (in cm);
X: 59, 51, 76, 38, 65, 54, 49, 62, 68, 55, 64, 67, 63, 74, 65, 79.
Let [tex]\mu[/tex] = true mean slab thickness in the Vail region
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 66 cm {means that the mean slab thickness in the Vail region is the same as that in the region of Canada}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] [tex]\neq[/tex] 66 cm {means that the mean slab thickness in the Vail region is different from that in the region of Canada}
The test statistics that will be used here is One-sample t-test statistics because we don't know about population standard deviation;
T.S. = [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean thickness = [tex]\frac{\sum X}{n}[/tex] = 61.81 cm
s = sample standard deviation = [tex]\sqrt{\frac{\sum (X-\bar X)^{2} }{n-1} }[/tex] = 10.64
n = sample of avalanches = 16
So, the test statistics = [tex]\frac{61.81-66}{\frac{10.64}{\sqrt{16} } }[/tex] ~ [tex]t_1_5[/tex]
= -1.575
The value of t-test statistics is -1.575.
Now, at a 1% level of significance, the t table gives a critical value of -2.947 and 2.947 at 15 degrees of freedom for the two-tailed test.
Since the value of our test statistics lies within the range of critical values of t, so we have insufficient evidence to reject our null hypothesis as it will not fall in the rejection region.
Therefore, we conclude that the mean slab thickness in the Vail region is the same as that in the region of Canada.
How many different lists containing the numbers 1, 4, 5, 8, 17, 21, and nothing else are there in which each odd integer appears before any even integer?
Answer:
4! * 2! = 48
Step-by-step explanation:
In general you have 6 elements so there are 6! = 6*5*4*3*2*1 lists in total, now, you have to think about the second condition, an odd integer has to appear before any even integer. Therefore odd integers go first, and since there are 4 odd integers, there are 4! possible lists, and since there are two even integers there are 2! lists, so in total you have 4! * 2! lists
Sam weights 51kg. What is this weight to the nearest stone?. Use this conversion, 1kg= 2.2 pounds and 14 pounds= 1 stone
Sam's weight to the nearest stone is equal to 8.0 stone.
Given the following data:
Sam's weight = 51 kg.1 kg = 2.2 pounds.14 pounds = 1 stone.To determine Sam's weight to the nearest stone:
How to convert the units of measurement.In this exercise, you're required to determine Sam's weight to the nearest stone. Thus, we would convert his weight in kilograms to pounds and lastly to stone as follows:
Conversion:
1 kg = 2.2 pounds.
51 kg = [tex]51 \times 2.2[/tex] = 112.2 pounds.
Next, we would convert the value in pounds to stone:
14 pounds = 1 stone.
112.2 pounds = X stone.
Cross-multiplying, we have:
[tex]14X = 112.2\\\\X=\frac{112.2}{14}[/tex]
X = 8.01 ≈ 8.0 stone.
Read more on weight here: brainly.com/question/13833323
Which of the following algebraic expressions represents the statement given below?
A number is increased by five and squared.
A. x+5²
В.
x²+5
c. ° +5
D. (x+5)
Answer:
Let the number be x
The statement
A number is increased by five is written as
x + 5
Then it's squared
So we the final answer as
(x + 5)²Hope this helps
State the degrees of freedom error in each of the following tests. (a) A consultant measures job satisfaction in a sample of 14 supervisors, 14 managers, and 14 executives at a local firm. (b) A researcher tests how nervous public speakers get in front of a small, medium, or large audience. Ten participants are randomly assigned to each group. (c) A high school counselor has 8 students in each of five classes rate how much they like their teacher.
Answer:
.
Step-by-step explanation:
Linda, Reuben, and Manuel have a total of $70 in their wallets. Reuben has $10 more than Linda. Manuel has 2 times what Linda has. How much does each have? Amount in Linda's wallet: $ Amount in Reuben's wallet: $ Amount in Manuel's wallet:
Answer:
Linda has $15Reuben has $25Manuel has $30Step-by-step explanation:
Together, they have 4 times what Linda has, plus $10. So, Linda has 1/4 of $60 = $15.
Linda has $15
Reuben has $25 . . . . . . $10 more than Linda
Manuel has $30 . . . . . . twice what Linda has
John is a quarterback. This year, he completed 350passes, which is 70%of all the passes he's attempted this year.
How many passes has John attempted this year?
Answer:
500
Step-by-step explanation:
350/70%=500
Using the information regarding proportion of snoring events, choose the correct conclusion for this hypothesis test. H0:p=0.35 ; Ha:p>0.35 The p-value for this hypothesis test is 0.03. The level of significance is α=0.05
Select the correct answer below:
a. There is sufficient evidence to conclude that the proportion of snoring events compared to other events during a sleep study is more than 35%.
b. There is NOT sufficient evidence to conclude that the proportion of snoring events compared to other events during a sleep study is more than 35%.
c. There is sufficient evidence to conclude that the proportion of snoring events compared to other events during a sleep study is more than 5%.
d. There is NOT sufficient evidence to conclude that the proportion of snoring events compared to other events during a sleep study is more than 5%.
Answer:
Option A
Step-by-step explanation:
With the following data, H0:p=0.35 ; Ha:p>0.35 The p-value for this hypothesis test is 0.03. The level of significance is α=0.05.
Since the p value (0.03) is less than alpha (0.05), we will reject the null hypothesis and conclude that there is sufficient evidence to conclude that the proportion of snoring events compared to other events during a sleep study is more than 35%.
i
dont
get
this
help
rn
Answer:
6 first box. 12 second box. 21 third box. 10 fourth box. 4 fifth box.
Step-by-step explanation:
Look for common denominaters, that will show you what to multiply the equation by to get rid of fractions.
A lottery ticket has a grand prize of $31 million. The probability of winning the grand prize is .000000018. Determine the expected value of the lottery ticket.
Answer:
$0.558
Step-by-step explanation:
The expected value is the sum of the value of each outcome times the chance that it happens. In this case, there are two outcomes:
Win $31 millionWin $0Then our expected value can be calculated as:
[tex]EV=(31,000,000)(0.000000018)+(0)(1-0.000000018)=0.558[/tex]
There is a stack of 10 cards, each given a different number from 1 to 10. Suppose we select a card randomly from the stack, replace it, and then randomly select another card. What is the probability that the first card is an odd number and the second card is greater than 7
====================================================
Explanation:
Here's our sample space
{1,2,3,4,5,6,7,8,9,10}
This is the set of all possible outcomes.
We see that {1,3,5,7,9} are odd. We have 5 odd numbers out of 10 total. The probability of getting an odd number is therefore 5/10 = 1/2. Let A = 1/2 as we'll use it later.
After we select the first card and put it back (or replace it with a copy), the stack of cards is the same as before we made that first selection. So the sample space hasn't changed. The set of values greater than 7 is {8,9,10}. We have 3 items in here out of 10 total. The probability of getting a value larger than 7 is 3/10. Let B = 3/10.
Multiply the values of A and B to get the answer
A*B = (1/2)*(3/10) = 3/20
This represents the probability of getting an odd number on the first selection, and a second card that is larger than 7. This only applies if a replacement is made on the first card. Otherwise, 3/10 would be different.
Eighty percent of the light aircraft that disappear while in flight in a certain country are subsequently discovered. Of the aircraft that are discovered, 63% have an emergency locator, whereas 89% of the aircraft not discovered do not have such a locator. Suppose a light aircraft has disappeared. (Round your answers to three decimal places.) (a) If it has an emergency locator, what is the probability that it will not be discovered? (b) If it does not have an emergency locator, what is the probability that it will be discovered?
Answer:
a) P(B'|A) = 0.042
b) P(B|A') = 0.625
Step-by-step explanation:
Given that:
80% of the light aircraft that disappear while in flight in a certain country are subsequently discovered
Of the aircraft that are discovered, 63% have an emergency locator,
whereas 89% of the aircraft not discovered do not have such a locator.
From the given information; it is suitable we define the events in order to calculate the probabilities.
So, Let :
A = Locator
B = Discovered
A' = No Locator
B' = No Discovered
So; P(B) = 0.8
P(B') = 1 - P(B)
P(B') = 1- 0.8
P(B') = 0.2
P(A|B) = 0.63
P(A'|B) = 1 - P(A|B)
P(A'|B) = 1- 0.63
P(A'|B) = 0.37
P(A'|B') = 0.89
P(A|B') = 1 - P(A'|B')
P(A|B') = 1 - 0.89
P(A|B') = 0.11
Also;
P(B ∩ A) = P(A|B) P(B)
P(B ∩ A) = 0.63 × 0.8
P(B ∩ A) = 0.504
P(B ∩ A') = P(A'|B) P(B)
P(B ∩ A') = 0.37 × 0.8
P(B ∩ A') = 0.296
P(B' ∩ A) = P(A|B') P(B')
P(B' ∩ A) = 0.11 × 0.2
P(B' ∩ A) = 0.022
P(B' ∩ A') = P(A'|B') P(B')
P(B' ∩ A') = 0.89 × 0.2
P(B' ∩ A') = 0.178
Similarly:
P(A) = P(B ∩ A ) + P(B' ∩ A)
P(A) = 0.504 + 0.022
P(A) = 0.526
P(A') = 1 - P(A)
P(A') = 1 - 0.526
P(A') = 0.474
The probability that it will not be discovered given that it has an emergency locator is,
P(B'|A) = P(B' ∩ A)/P(A)
P(B'|A) = 0.022/0.526
P(B'|A) = 0.042
(b) If it does not have an emergency locator, what is the probability that it will be discovered?
The probability that it will be discovered given that it does not have an emergency locator is:
P(B|A') = P(B ∩ A')/P(A')
P(B|A') = 0.296/0.474
P(B|A') = 0.625
Which results only in a horizontal compression of Y = by a factor of 6?
Answer:
Y = 6*y
Step-by-step explanation:
We have Y = b * y by a factor of 6.
That is, b = 6.
now, to find what results only in a horizontal compression of y = b * y by a factor of 6.
By transformation rule, the function would be a horizontal compression f (a * x) if a> 1.
Therefore, knowing the above, the answer would be:
Y = 6 * y
Translate and solve: 3x less than two times the sum of 2X and one is equal to the sum of 2 and 5
Answer:
The answer is x = 5Step-by-step explanation:
The statement
3x less than two times the sum of 2X and one is written as
2( 2x + 1) - 3x
the sum of 2 and 5 is written as
2 + 5
Equate the two statements
We have
2( 2x + 1) - 3x = 2+5
Expand
4x + 2 - 3x = 7
Simplify
4x - 3x = 7 - 2
We have the final answer as
x = 5Hope this helps you
The cycle times for a truck hauling concrete to a highway construction site are uniformly distributed over the interval 50 to 70 minutes.
Required:
What is the probability that the cycle time exceeds 65 minutes if it is known that the cycle time exceeds 55 minutes?
Answer:
The probability that the cycle time exceeds 65 minutes if it is known that the cycle time exceeds 55 minutes, should be 1 / 3.
Step-by-step explanation:
It is known that the cycle times for a truck hauling concrete is uniformly distributed over a time interval of ( 50, 70 ). If c = cycle time, according to the question the probability that the cycle exceeds 65 minutes, respectively exceed 55 minutes should be the following - ' [tex]Probability( c > 65 | c > 55 )[/tex]. '
_____
[tex]f( c ) = \left \{ {{1 / 20,} \atop {0}} \right. \\50< c<70 - ( elsewhere )[/tex]
We know that the formula for Probability( A | B ) is P( A ∩ B ) / P( B ),
[tex]P( c > 65 | c > 55 ) =[/tex] [tex]P( c > 55[/tex] ∩ [tex]c > 65 )[/tex] / [tex]P( c > 55 )[/tex],
And now we come to the formula [tex]P( a < c < b )[/tex] = [tex]\int\limits^{70}_{65} {f(x)} \, dc[/tex]. Substitute known values to derive two solutions, forming a fraction that represents the probability we desire.
[tex]P( 65<c<70) = \int\limits^{70}_{65} {f(y)} \, dy\\ = \int\limits^{70}_{65} {(1/20)} \, dy\\ \\= 0.25[/tex]
-------------------------------------
[tex]P( 55<c<70) = \int\limits^{70}_{55} {f(y)} \, dy\\ = \int\limits^{70}_{65} {(1/20)} \, dy\\ \\= 0.75[/tex]
Take 0.25 over 0.75, 0.25 / 0.75, simplified to the fraction 1 / 3, which is our solution.
_____
Probability: 1 / 3
A runner can run 3 miles in 18 minutes. At this rate, how many miles can he run in 54
minutes?
6
9
12
I
18
Answer:
9 miles
Step-by-step explanation:
54 divided by 18
=
3.
3 x 3 (miles per 18 min)
=
9 miles
Answer:
9 miles in 54 minutes
Step-by-step explanation:
Create proportions
Do it miles:minutes
In this case it would be
3:18
Then divide both sides of the proportion by three to get
1 : 6
or the statement "It takes the runner 6 minutes to run a mile."
Now create another proportion
x: 54
If he can run a mile in 6 minutes,
he can run x miles in 54 minutes.
In this case divide 54 and 6 to get 9 miles in 54 minutes.
Hope this helps!
If the code for CAB is DEK, what is the code for BED?
Answer:
CIM
Step-by-step explanation:
C is the 3rd letter of the alphabet, A is the 1st, and B is the 2nd.
CAB = 3,1,2
Repeating for DEK:
DEK = 4,5,11
Comparing:
4−3 = 1
5−1 = 4
11−2 = 9
BED = 2,5,4, so adding the corresponding numbers:
2+1 = 3
5+4 = 9
4+9 = 13
So the code is CIM.
The code for BED is CIM. A further explanation is below.
As we know that,
"C" is the third letter of the alphabet"A" is the first letter of the alphabet."B" is the Second letter of the alphabet.then,
→ CIB = 3, 1, 2
Same as above,
→ DEK = 4, 5, 11
By comparing the values, we get
[tex]4-3 =1[/tex][tex]5-1 =4[/tex][tex]11-2 =9[/tex]Same as above,
→ BED = 2, 5, 4
then,
[tex]2+1=3[/tex][tex]5+4 =9[/tex][tex]4+9 =13[/tex]Thus the above approach is appropriate.
Learn more:
https://brainly.com/question/18804431