help
12 10. Determine whether the series (-1)-1 n2+1 converges absolutely, conditionally, or not at all. nal

Answers

Answer 1

The series (-1)^n/(n^2+1) converges absolutely but not conditionally.

To determine whether the series (-1)^n/(n^2+1) converges absolutely, conditionally, or not at all, we need to test for both absolute and conditional convergence.

First, let's test for absolute convergence by taking the absolute value of each term in the series:

|(-1)^n/(n^2+1)| = 1/(n^2+1)

Now, we can use the p-series test to determine whether the series of absolute values converges or diverges.

The p-series test states that if the series Σ(1/n^p) converges, then the series Σ(1/n^q) converges for any q>p.

In this case, p=2, so the series Σ(1/n^2) converges (by the p-series test). Therefore, by the comparison test, the series Σ(1/(n^2+1)) also converges absolutely.

Next, let's test for conditional convergence. We can do this by examining the alternating series test, which states that if a series Σ(-1)^n*b_n satisfies three conditions (1) the absolute value of b_n is decreasing, (2) lim(n→∞) b_n = 0, and (3) b_n ≥ 0 for all n, then the series converges conditionally.

In this case, the series (-1)^n/(n^2+1) does satisfy conditions (1) and (2), but not condition (3), since the terms alternate between positive and negative. Therefore, the series does not converge conditionally.

In summary, the series (-1)^n/(n^2+1) converges absolutely but not conditionally.

To learn more about convergent series visit : https://brainly.com/question/15415793

#SPJ11


Related Questions

What are the solutions of the equation 2.0² - 1000 a. 1,-10 b. 0,-10 c.0 / 10 d. 0,10

Answers

The solutions to the equation are x = -10√5 and x = 10√5 = 22.3607. Option d. 0,10 correctly represents the two solutions, where x = 0 and x = 10.

To find the solutions of the equation[tex]2x^2[/tex] – 1000 = 0, we can start by setting the equation equal to zero and then solving for x. The equation becomes:

[tex]2x^2[/tex] – 1000 = 0

Adding 1000 to both sides, we get:

[tex]2x^2[/tex] = 1000

Dividing both sides by 2, we have:

X^2 = 500

Taking the square root of both sides, we get:

X = ±√500

Simplifying the square root, we have:

X = ±√(100 * 5)

X = ±10√5

Therefore, the solutions to the equation are x = -10√5 and x = 10√5 == 22.3607.

Learn more about square root here:

https://brainly.com/question/29775049

#SPJ11

The area of mold A is given by the function A(d)=100 times e to the power of 0. 25d When will this mold cover 1000 square millimeters? Explain your reasoning

Answers

The mold will cover area of 1000 square millimeters after 11.09 units of time.

We are given that the area of mold A is given by the function A(d) = 100 times e to the power of 0.25d. Thus, we can obtain the value of d when the mold covers 1000 square millimeters by equating the function to 1000 and solving for d. 100 times e to the power of 0.25d = 1000

Let's divide each side by 100:

e to the power of 0.25d = 10

To isolate e to the power of 0.25d, we can take the natural logarithm of each side:

ln(e to the power of 0.25d) = ln(10)

By the logarithmic identity ln(e^x) = x, we can simplify the left side to:

0.25d = ln(10)

Finally, to solve for d, we can divide each side by 0.25:

d = (1/0.25) ln(10) ≈ 11.09

Thus, the mold will cover an area of 1000 square millimeters after approximately 11.09 units of time (which is not specified in the question). This reasoning assumes that the rate of growth of the mold is proportional to its current size, and that there are no limiting factors that would prevent the mold from growing indefinitely.

Learn more about Area:

https://brainly.com/question/25292087

#SPJ11

Suppose f: A -› Band g: B - C.
Fill in each blank below with a T if the proposition beside it is true, F if false.
If g of is injective, then f is injective.
If g of is surjective, then g is injective.

Answers

If g of is injective, then f is injective: False and If g of is surjective, then g is injective: False of the given propositions.

The statement "If g of is injective, then f is injective" is false.

There's a counterexample that can be provided to demonstrate this.

Suppose f: R -› R and g: R -› R such that f(x) = [tex]x^2[/tex] and g(x) = x.

Now let's consider the composition g o f which gives us (g o f)(x) = g(f(x)) = [tex]g(x^2) = x^2[/tex].

In this case, g o f is injective, but f isn't injective since, for example, f(2) = 4 = f(-2).

The statement "If g of is surjective, then g is injective" is also false.

Again, there's a counterexample that can be used to demonstrate this.

Let f: R -› R be defined by f(x) = [tex]x^2[/tex] and g: R -› R be defined by g(x) = [tex]x^3[/tex].

In this case, we can see that g is surjective since any y in R can be written as y = g(x) for some x in R (just take x = [tex]y^{(1/3)}[/tex]).

However, g isn't injective since, for example, g(2) = [tex]2^3[/tex] = 8 = g(-2).Hence, both statements are false.

To learn more about proposition click here https://brainly.com/question/30895311

#SPJ11

(q16) On a bridge under construction, a metal cable of length 10 m and mass 200 kg is hanging vertically from the bridge. What is the work done in pulling the whole cable to the bridge?

Answers

The work done in pulling the whole cable to the bridge is 2000J or 2kJ

What is the work done in pulling the whole cable to the bridge?

Work is defined as the force applied to an object multiplied by the distance the object moves. In this case, the force is the weight of the cable, which is equal to the mass of the cable times the acceleration due to gravity. The distance the object moves is the length of the cable.

Therefore, the work done in pulling the whole cable to the bridge is:

Work = Force * Distance

Work = Mass * Acceleration due to gravity * Distance

Work = 200  * 9.8 * 10

Work = 2000 J

Work = 2kJ

Learn more work done here;

https://brainly.com/question/25573309

#SPJ1

Find the volume of the solid when the region enclosed by y=x2, x = 1, x = 2, and y =0 is revolved about the y-axis. 15x 16 None of the Choices O 15 2 15 4 O 15%

Answers

To find the volume of the solid generated by revolving the region enclosed by [tex]y = x^2, x = 1, x = 2, and y = 0[/tex] about the y-axis, we can use the disk method.

The given region forms a bounded region in the xy-plane between the curves [tex]y = x^2, x = 1, x = 2, and y = 0.[/tex]

To calculate the volume, we integrate the area of infinitesimally thin disks along the y-axis from [tex]y = 0 to y = 1.[/tex]

The radius of each disk is given by the x-coordinate of the corresponding point on the curve [tex]y = x^2.[/tex]

Set up the integral for the volume using the disk method: [tex]V = ∫[0,1] π(x^2)^2 dy.[/tex]

Integrate with respect to[tex]y: V = π[x^4/5[/tex]] evaluated from[tex]y = 0 to y = 1.[/tex]

Substitute the limits and evaluate the integral: [tex]V = π[(2^4/5) - (1^4/5)].[/tex]

Simplify the expression:[tex]V = π[16/5 - 1/5].[/tex]

Finally, calculate the volume: [tex]V = (15/5)π = 3π.[/tex]

Therefore, the volume of the solid generated by revolving the given region about the y-axis is 3π.

learn more about:- volume of solid here

https://brainly.com/question/23705404

#SPJ11

use the definition to find the first five nonzero terms of the taylor series generated by the function f(x)=7tan−1x π24 about the point a=1.

Answers

The first five nonzero terms of the Taylor series for[tex]f(x) = \frac{7 \cdot \arctan(x)}{\frac{\pi}{24}}[/tex] about the point a = 1 are [tex]7 + \frac{84}{\pi}(x - 1) - \frac{84}{\pi}(x - 1)^2 + 0 + 0[/tex]

The first five nonzero terms of the Taylor series generated by the function [tex]f(x) = \frac{7 \cdot \arctan(x)}{\frac{\pi}{24}}[/tex] about the point a = 1 can be found using the definition of the Taylor series.

The general form of the Taylor series expansion is given by:

[tex]f(x) = f(a) + f'(a)(x - a) + (f''(a)(x - a)^2)/2! + (f'''(a)(x - a)^3)/3! + (f''''(a)(x - a)^4)/4! + ...[/tex]

To find the first five nonzero terms, we need to evaluate the function f(x) and its derivatives up to the fourth derivative at the point a = 1.

First, let's find the function and its derivatives:

[tex]f(x) = \frac{7 \cdot \arctan(x)}{\frac{\pi}{24}}[/tex]

[tex]f'(x) = \frac{7}{\frac{\pi}{24} \cdot (1 + x^2)}[/tex]

[tex]f''(x) = \frac{-7 \cdot (2x)}{\frac{\pi}{24} \cdot (1 + x^2)^2}[/tex]

[tex]f'''(x) = \frac{-7 \cdot (2 \cdot (1 + x^2) - 4x^2)}{\frac{\pi}{24} \cdot (1 + x^2)^3}[/tex]

[tex]f''''(x) = \frac{-7 \cdot (8x - 12x^3)}{\frac{\pi}{24} \cdot (1 + x^2)^4}[/tex]

Now, let's substitute the value of a = 1 into these expressions and simplify:

[tex]f(1) = \frac{7 \cdot \arctan(1)}{\frac{\pi}{24}} = 7[/tex]

[tex]f'(1) = \frac{7}{\frac{\pi}{24} \cdot (1 + 1^2)} = \frac{84}{\pi}[/tex]

[tex]f''(1) = \frac{-7 \cdot (2 \cdot 1)}{\frac{\pi}{24} \cdot (1 + 1^2)^2} = \frac{-84}{\pi}[/tex]

[tex]f'''(1) = \frac{-7 \cdot (2 \cdot (1 + 1^2) - 4 \cdot 1^2)}{\frac{\pi}{24} \cdot (1 + 1^2)^3} = 0[/tex]

[tex]f''''(1) = \frac{-7 \cdot (8 \cdot 1 - 12 \cdot 1^3)}{\frac{\pi}{24} \cdot (1 + 1^2)^4} = 0[/tex]

Now we can write the first five nonzero terms of the Taylor series:

[tex]f(x) = 7 + \frac{84}{\pi}(x - 1) - \frac{84}{\pi}(x - 1)^2 + \dots[/tex]

These terms provide an approximation of the function f(x) near the point a = 1, with increasing accuracy as more terms are added to the series.

Learn more about Taylor series here:

https://brainly.com/question/31140778

#SPJ11

why is it impossible to construct an equilateral traiangle with three verticies with integer coordinates?

Answers

It is impossible to construct an equilateral triangle with three vertices with integer coordinates.

Suppose ABC is an equilateral triangle with integer coordinates.

Then its area by the formula [tex]\frac{1}{2} (x_{1} (y_{2} -y_{3})+x_{2}(y_{3} -y_{1})+x_{3} (y_{1} -y_{2}))[/tex] is an integer.

Let a be the length of a side. Then [tex]a^{2}[/tex] is a positive integer. The area of the equilateral triangle is [tex]\sqrt{\frac{3}{4} } a^{2}[/tex] which is irrational.

Hence we get a contradiction.

Therefore an equilateral triangle cannot have all its vertices integer coordinates.

For more information on equilateral triangle

https://brainly.com/question/30285619

https://brainly.com/question/30095629

It is impossible to construct an equilateral triangle with three vertices with integer coordinates because the distance between any two points with integer coordinates is also an integer. In an equilateral triangle, all three sides must have equal length. However, if the distance between two points with integer coordinates is an integer, then the distance between the third point and either of the first two points will not be an integer in most cases. This means that it is not possible to find three points with integer coordinates that are equidistant from each other.

The distance between two points with integer coordinates can be calculated using the Pythagorean theorem. If we consider two points with coordinates (x1, y1) and (x2, y2), the distance between them is √((x2-x1)²+(y2-y1)²). If the distance between two points is an integer, it means that the difference between the x-coordinates and the y-coordinates is also an integer. In an equilateral triangle, the distance between any two points must be the same. However, it is impossible to find three points with integer coordinates that are equidistant from each other.

In conclusion, it is not possible to construct an equilateral triangle with three vertices with integer coordinates because the distance between any two points with integer coordinates is also an integer. In an equilateral triangle, all three sides must have equal length. However, if the distance between two points with integer coordinates is an integer, then the distance between the third point and either of the first two points will not be an integer in most cases. This means that it is not possible to find three points with integer coordinates that are equidistant from each other.

To know more about equilateral triangle visit:

https://brainly.com/question/17824549

#SPJ11

Researchers were interested in determining the association between temperature (in degrees Fahrenheit) and the percentage of elongation a sample of mozzarella cheese reaches before it rips. They take 7 samples and compute r = -0.1198.
Suppose they want to change the temperature data to degrees Celsius. How will this change affect the correlation coefficient?
a) The correlation will scale the opposite way as the data.
b) The correlation will scale the same way as the data.
c) It will have no effect, r = -0.1198.
d) There is not enough information to answer this question

Answers

The change from Fahrenheit to Celsius temperature data will have no effect on the correlation coefficient. The correlation coefficient, denoted as r, measures the strength and direction of the linear relationship between two variables. In this case, the correlation coefficient is calculated as r = -0.1198.(option c)

Changing the temperature data from degrees Fahrenheit to degrees Celsius involves a linear transformation of the data. Specifically, the formula for converting temperature from Fahrenheit to Celsius is C = (F - 32) * (5/9), where C is the temperature in Celsius and F is the temperature in Fahrenheit.

Linear transformations of data do not affect the correlation coefficient. The correlation coefficient measures the strength and direction of a linear relationship between two variables, and this relationship remains unchanged under linear transformations of either variable. Therefore, converting the temperature data from degrees Fahrenheit to degrees Celsius will have no effect on the correlation coefficient, and it will remain at r = -0.1198.

Learn more about correlation coefficient here:

https://brainly.com/question/29704223

#SPJ11

Suppose the society's preferences (w) for quantity (g) and variety (n) can be
categorized by the following equation:
W = 4gn The economy has 200 units of input. Each unit of output can be produced at a constant MC of 2, and the fixed cost is 10. What is the optimum output-variety
combination?

Answers

The optimum output variety combination would be achieved by producing 100 units of output with a variety level of 50, which is 0.975.

Determining the optimal combination of yield and diversity requires maximizing social preferences, as expressed by the equation W = 4gn. where W is social preference, g is quantity, and n is diversity.

Assuming the economy has 200 input units, we can find the total cost (TC) by multiplying the input unit by 2, the definite marginal cost (MC).

TC = MC * input = 2 * 200 = 400.

Total cost (TC) is made up of fixed cost (FC) plus variable cost (VC).

TC = FC + VC.

Fixed costs are given as 10, so variable costs (VC) can be calculated as:

VC = TC - FC = 400 - 10 = 390.

Finding the optimal combination of yield and diversity requires maximizing the social preference function given available inputs and given cost constraints for output variety. The formula for the social preference function is W = 4gn.

We can rewrite this equation in terms of the input (g).

g = W/(4n).

Substituting variable cost (VC) and constant marginal cost (MC) into the equation, we get:

[tex]g=(VC/MC)/(4n)=390/(2*4n)=97.5/n.[/tex]

To maximize the social preference, we need to find the value of n that makes the set g as large as possible. Since the magnitude n cannot exceed 100 (because the quantity g cannot exceed 200), 100 is the maximum value of n that satisfies the equation. Substituting n = 100 into the equation g = 97.5 / n gives:

g = 97.5/100 = 0.975.


Learn more about output variety here:
https://brainly.com/question/29057786


#SPJ11

A balloon is rising vertically above a level, straight road at a constant rate of 0.1 m/s. Just when the balloon is 23 m above the ground, a bicycle moving at a constant rate of 7 m/s passes under it. How fast is the distance s(t) between the bicycle and balloon increasing 3 s later? s(t) is increasing by m/s. (Type an integer or decimal rounded to three decimal places as needed.) y(t) s(t) 0 {t)

Answers

The distance s(t) between the bicycle and balloon is -6.9.

A balloon is rising vertically above a level, straight road at a constant rate of 0.1 m/s.

Just when the balloon is 23 m above the ground, a bicycle moving at a constant rate of 7 m/s passes under it.

Distance between the balloon and bicycle is s(t). It is required to find how fast is the distance s(t) between the bicycle and balloon increasing 3 s later.

Let, Distance covered by the bicycle after 3 s = x

Distance covered by the balloon after 3 s = y

We have, y = vt where, v = 0.1 m/s (speed of the balloon)t = 3 s (time)So, y = 0.1 × 3 = 0.3 m

And, x = 7 × 3 = 21 m

Now, Distance between bicycle and balloon = s(t) = 23 - 0 = 23 m

After 3 s, Distance between bicycle and balloon = s(t + 3)

Let,

Speed of the balloon = v1 and Speed of the bicycle = v2So, v1 = 0.1 m/s and v2 = 7 m/s

We have,

s(t + 3) = √[(23 + 0.1t + 3 - 7t)² + (0.3 - 21)^2]  = √[(23 - 6.9t)² + 452.89]

Now, ds/dt = s'(t) = (1/2) * [ (23 - 6.9t)² + 452.89 ]^(-1/2) * [2( -6.9 ) ]

So, s'(t) = ( -6.9 * √[ (23 - 6.9t)² + 452.89 ] ) / [ √[ (23 - 6.9t)² + 452.89 ] ] = -6.9 m/s

Now, s'(t + 3) = -6.9 m/s

So, the distance s(t) between the bicycle and balloon is decreasing at a rate of 6.9 m/s after 3 seconds. Thus, the answer is -6.9.

To know more about distance, visit:

https://brainly.com/question/31713805#

#SPJ11

100% CHPLA 100% ON 100% Comed 04 0% UN ON < Question 3 of 11 > Given central angles a 0.6 radians and = 2 radians, find the lengths of arcs s, and s2. The radius of the circle is 4. (Use symbolic nota

Answers

All circles are similar, because we can map any circle onto another using just rigid transformations and dilations. Circles are not all congruent, because they can have different radius lengths.

A sector is the portion of the interior of a circle between two radii. Two sectors must have congruent central angles to be similar.

An arc is the portion of the circumference of a circle between two radii. Likewise, two arcs must have congruent central angles to be similar.

When we studied right triangles, we learned that for a given acute angle measure, the ratio

opposite leg length

hypotenuse length

hypotenuse length

opposite leg length

start fraction, start text, o, p, p, o, s, i, t, e, space, l, e, g, space, l, e, n, g, t, h, end text, divided by, start text, h, y, p, o, t, e, n, u, s, e, space, l, e, n, g, t, h, end text, end fraction was always the same, no matter how big the right triangle was. We call that ratio the sine of the angle.

Something very similar happens when we look at the ratio

arc length

radius length

radius length

arc length

start fraction, start text, a, r, c, space, l, e, n, g, t, h, end text, divided by, start text, r, a, d, i, u, s, space, l, e, n, g, t, h, end text, end fraction in a sector with a given angle. For each claim below, try explaining the reason to yourself before looking at the explanation.

The sectors in these two circles have the same central angle measure.

Learn more about  circles are similar here:

https://brainly.com/question/24106562

#SPJ11

Solve the initial value problem below using the method of Laplace transforms. Y" - 4y' + 40y = 90est, yo)-2, y(0)-16

Answers

The solution for the initial value problem below using the method of Laplace transforms is y(t) = (1/35)e^(2t) - (1/10)te^(2t) - (1/35)e^(9t).

To solve the initial value problem using Laplace transforms, we follow these steps:

1. Take the Laplace transform of the given differential equation:

  Applying the Laplace transform to each term, we get:

  s²Y(s) - sy(0) - y'(0) - 4(sY(s) - y(0)) + 40Y(s) = 90/s - 2

  Simplifying, we have:

  (s² - 4s + 40)Y(s) - (s + 2) = 90/s - 2

2. Substitute the initial into the transformed equation: conditions

   Plugging in y(0) = -2 and y'(0) = -16, we have:

  (s² - 4s + 40)Y(s) - (s + 2) = 90/s - 2

 

3. Solve for Y(s):

  Rearranging the equation, we get:

  (s² - 4s + 40)Y(s) = (90/s - 2) + (s + 2)

  (s² - 4s + 40)Y(s) = (90 + s(s - 2) + 2s)/s

 

  Simplifying further:

  (s² - 4s + 40)Y(s) = (s² + s + 90)/s

  Dividing both sides by (s² - 4s + 40), we obtain:

  Y(s) = (s² + s + 90)/(s(s² - 4s + 40))

 

4. Perform partial fraction decomposition:

  Decompose the rational function on the right side into partial fractions,              and express Y(s) as a sum of fractions.

  Y(s) = [A/(s - 2)] + [B/(s - 2)^2] + [C/(s - 9)]

Multiplying both sides by the common denominator and simplifying, we get:

Y(s) = [A(s - 2)(s - 9) + B(s - 9) + C(s - 2)^2] / [(s - 2)^2(s - 9)]

Expanding the numerator, we have:

Y(s) = [(A(s^2 - 11s + 18) + B(s - 9) + C(s^2 - 4s + 4))] / [(s - 2)^2(s - 9)]

Equating the coefficients of like powers of s, we get the following equations:

Coefficient of (s^2): A + C = 0

Coefficient of s: -11A - B - 4C = -2

Coefficient of 1: 18A - 9B + 4C = 8

Solving these equations simultaneously, we find:

A = 1/35

B = -1/10

C = -1/35

Therefore, the partial fraction decomposition becomes:

Y(s) = [1/35 / (s - 2)] - [1/10 / (s - 2)^2] - [1/35 / (s - 9)]

5. Inverse Laplace transform:

Applying the inverse Laplace transform, we have:

y(t) = (1/35)e^(2t) - (1/10)te^(2t) - (1/35)e^(9t)

Therefore, the final solution to the given initial value problem is:

y(t) = (1/35)e^(2t) - (1/10)te^(2t) - (1/35)e^(9t)

This solution satisfies the initial conditions y(0) = -2 and y'(0) = -16.

To know more about Laplace transforms refer here:

https://brainly.com/question/30759963#

#SPJ11

Consider again the linear system Ax = b used in Question 1. For each of the methods men- tioned below perform three iterations using 4 decimal place arithmetic with rounding and the initial
approximation x°) = (0.5, 0, 0, 2)*.
By examining the diagonal dominance of the coefficient matrix, A, determine whether the
convergence of iterative methods to solve the system be guaranteed.

Answers

The convergence of iterative methods to solve the system cannot be guaranteed based on the diagonal dominance of the coefficient matrix, A.

Diagonal dominance is a property of the coefficient matrix in a linear system, where the magnitude of each diagonal element is greater than or equal to the sum of the magnitudes of the other elements in the same row. It is often used as a condition to guarantee convergence of iterative methods. However, in this case, we need to examine the diagonal dominance of the specific coefficient matrix, A, to determine convergence.

By calculating the row sums, we find that the magnitude of the diagonal elements in A is not greater than the sum of the magnitudes of the other elements in their respective rows. Therefore, A does not satisfy the condition of diagonal dominance. This means that the convergence of iterative methods, such as Jacobi or Gauss-Seidel, cannot be guaranteed for this system.

Without the guarantee of convergence, it becomes more challenging to predict the behavior and accuracy of iterative methods. The lack of diagonal dominance indicates that the matrix A may have significant off-diagonal influence, causing the iterative methods to diverge or converge slowly. In such cases, alternative techniques or preconditioning strategies may be required to ensure convergence or improve the efficiency of the iterative methods.

Learn more about convergence here:

https://brainly.com/question/28202684

#SPJ11

The following scenario describes the temperature u of a rod at position x and time t. Consider the equation ut = u xx​ ,00, with boundary conditions u(0,t)=0,u(1,t)=0. Suppose u(x,0)=2sin(4πx) What is the maximum temperature in the rod at any particular time. That is, M(t)= help (syntax) where M(t) is the maximum temperature at time t. Use your intuition.

Answers

The maximum temperature in the rod at any particular time is 2.

To find the maximum temperature in the rod at any particular time, we can analyze the initial temperature distribution and how it evolves over time.

The given equation ut = u_xx represents a heat conduction equation, where ut is the rate of change of temperature with respect to time t, and u_xx represents the second derivative of temperature with respect to position x.

The boundary conditions u(0,t) = 0 and u(1,t) = 0 indicate that the ends of the rod are kept at a constant temperature of zero. This means that heat is being dissipated at the boundaries, preventing any temperature buildup at the ends of the rod.

The initial temperature distribution u(x,0) = 2sin(4πx) describes a sine wave with an amplitude of 2 and a period of 1/2, oscillating between -2 and 2. This initial distribution represents the initial state of the rod at time t=0.

As time progresses, the heat conduction equation causes the temperature distribution to evolve. The maximum temperature at any particular time will occur at the peak of the temperature distribution.

Intuitively, since the initial distribution is a sine wave, we can expect the maximum temperature to occur at the peaks of this wave. The amplitude of the sine wave is 2, so the maximum temperature at any time t would be 2.

For more such question on temperature. visit :

https://brainly.com/question/24746268

#SPJ8

Change from cylindrical coordinates to rectangular coordinates 41 A 3 D II y=-3.x, x50, ZER y=-3.x, x20, ZER O None of the others = y=/3.x, x>0, ZER Oy=/3.x, x

Answers

The given ordinary differential equation (ODE) is a second-order linear nonhomogeneous ODE with constant coefficients. By applying the method of undetermined coefficients and solving the resulting homogeneous and particular solutions.

The ODE is of the form[tex]y″ + 2y′ + 17y[/tex] = [tex]60[/tex][tex]e^[/tex][tex]^[/tex][tex](-4x)sin(5x)[/tex]. To classify the ODE, we examine the coefficients of the highest derivatives. In this case, the coefficients are constant, indicating a linear ODE. The presence of the nonhomogeneous term [tex]60e^(-4x)sin(5x)[/tex] makes it nonhomogeneous.

Since the term involves a product of exponential and trigonometric functions, we guess a particular solution of the form [tex]yp =[/tex] [tex]Ae(-4x)sin(5x) + Be(-4x)cos(5x)[/tex], where A and B are constants to be determined.

Next, we find the derivatives of yp and substitute them into the original ODE to obtain a particular solution. By comparing the coefficients of each term on both sides, Solve for the constants A and B.

Now, we focus on the homogeneous part of the ODE, [tex]y″ + 2y′ + 17y[/tex] [tex]=0[/tex]. The characteristic equation is obtained by assuming a solution of the form [tex]yh = e(rt)[/tex], where r is a constant. By substituting yh into the homogeneous ODE, we get a quadratic equation for r.

Finally, the general solution to the ODE is the sum of the homogeneous and particular solutions.

Learn more about homogeneous here:
https://brainly.com/question/14926412

#SPJ11

Determine whether the series is absolutely convergent, conditionally convergent, or divergent. 22+1
100 n=1 3²n+1 η5η-1

Answers

The given series, 22 + 100/(3^(2n+1)) * (5^(-1)), is absolutely convergent.

To determine the convergence of the series, we need to examine the behavior of its terms as n approaches infinity. Let's break down the series into its two terms. The first term, 22, is a constant and does not depend on n. The second term involves a fraction with a power of 3 and 5. As n increases, the numerator, 100, remains constant. However, the denominator, ([tex]3^{2n+1}[/tex]) * ([tex]5^{-1}[/tex]), increases significantly.

Since the exponent of 3 in the denominator is an odd number, as n increases, the denominator will become larger and larger, causing the value of each term to approach zero. Additionally, the term ([tex]5^{-1}[/tex]) in the denominator is a constant. As a result, the second term of the series approaches zero as n goes to infinity.

Since both terms of the series tend to finite values as n approaches infinity, we can conclude that the series is absolutely convergent. This means that the sum of the series will converge to a finite value, and changing the order of the terms will not affect the sum.

Learn more about absolutely convergent here:

https://brainly.com/question/30480114

#SPJ11

Solve: y'"' + 4y'' – 1ly' – 30y = 0 ' y(0) = 1, y'(0) = – 16, y''(0) = 62 = y(t) =

Answers

To solve the given third-order linear homogeneous differential equation y''' + 4y'' - 11y' - 30y = 0 with initial conditions y(0) = 1, y'(0) = -16, and y''(0) = 62, we can find the roots of the characteristic equation and use them to determine the general solution. The specific values of the coefficients can then be obtained by substituting the initial conditions.

We start by finding the roots of the characteristic equation associated with the differential equation. The characteristic equation is obtained by substituting y(t) = e^(rt) into the differential equation, resulting in the equation r^3 + 4r^2 - 11r - 30 = 0.

By solving this cubic equation, we find that the roots are r = -3, r = -5, and r = 2.

The general solution of the differential equation is given by y(t) = C1 * e^(-3t) + C2 * e^(-5t) + C3 * e^(2t), where C1, C2, and C3 are arbitrary constants.

Next, we use the initial conditions to determine the specific values of the coefficients. Substituting y(0) = 1, y'(0) = -16, and y''(0) = 62 into the general solution, we get a system of equations:

C1 + C2 + C3 = 1,

-3C1 - 5C2 + 2C3 = -16,

9C1 + 25C2 + 4C3 = 62.

By solving this system of equations, we find C1 = 1, C2 = -2, and C3 = 2.

Therefore, the solution to the given differential equation with the initial conditions y(0) = 1, y'(0) = -16, and y''(0) = 62 is:

y(t) = e^(-3t) - 2e^(-5t) + 2e^(2t).

Learn more about coefficients here:

https://brainly.com/question/13431100

#SPJ11

draw a project triangle that shows the relationship among project cost, scope, and time.

Answers

The project triangle shows the interdependent relationship between project cost, scope, and time. While changes to any one factor may impact the other two, it's important for project managers to understand the trade-offs and make informed decisions to ensure project success.

The project triangle, also known as the triple constraint or the iron triangle, is a framework that shows the interdependent relationship between project cost, scope, and time.

This framework is often used by project managers to understand the trade-offs that must be made when one or more of these factors change during the project lifecycle.
To draw the project triangle, you can start by drawing three connected lines, each representing one of the three factors: project cost, scope, and time.

Next, draw arrows connecting the lines in a triangle shape, with each arrow pointing from one factor to another.

For example, the arrow from project cost to scope represents how changes in project cost can affect the project's scope, and the arrow from scope to time represents how changes in project scope can affect the project's timeline.
The key point to remember is that changes to any one factor will affect the other two factors as well.

For example, if the project scope is increased, this may increase project costs and extend the project timeline.

Alternatively, if the project timeline is shortened, this may require increased project costs and a reduction in the project scope.

Know more about triangle here:

https://brainly.com/question/17335144

#SPJ11

find the area of surface generated by revolving y=sqrt(4-x^2) over the interval -1 1

Answers

The area of the surface generated by revolving the curve y = √(4 - x^2) over the interval -1 to 1 is π units squared.

To find the area, we can use the formula for the surface area of revolution. Given a curve y = f(x) over an interval [a, b], the surface area generated by revolving the curve around the x-axis is given by the integral:

A = 2π ∫[a,b] f(x) √(1 + (f'(x))^2) dx

In this case, the curve is y = √(4 - x^2) and the interval is -1 to 1. To calculate the surface area, we need to find the derivative of the curve, which is f'(x) = -x/√(4 - x^2). Substituting these values into the formula, we have:

A = 2π ∫[-1,1] √(4 - x^2) √(1 + (-x/√(4 - x^2))^2) dx

Simplifying the expression inside the integral, we get:

A = 2π ∫[-1,1] √(4 - x^2) √(1 + x^2/(4 - x^2)) dx

Integrating this expression will give us the surface area of the revolution, which turns out to be π units squared.

Learn more about surface area of revolution

https://brainly.com/question/32268747

#SPJ11

A water balloon is launched in the air from a height of 12 feet and reaches a maximum height of 37 feet after 1.25 seconds. Write an equation to represent the height h of the water balloon at time T seconds. Them, find the height of the balloon at 2 seconds.

Answers

The height of the water balloon at 2 seconds is -36.3 feet.

To find an equation representing the height of the water balloon at time T seconds, we can use the equation of motion for an object in free fall:

h = h₀ + v₀t + (1/2)gt²

Where:

h is the height of the object at time T

h₀ is the initial height (12 feet in this case)

v₀ is the initial velocity (which we need to determine)

t is the time elapsed (T seconds in this case)

g is the acceleration due to gravity (approximately 32.2 ft/s²)

Since the water balloon reaches a maximum height of 37 feet after 1.25 seconds, we can use this information to find the initial velocity. At the maximum height, the vertical velocity becomes zero (the balloon momentarily stops before falling back down). So, we can set v = 0 and t = 1.25 seconds in the equation to find v₀:

0 = v₀ + gt

0 = v₀ + (32.2 ft/s²)(1.25 s)

0 = v₀ + 40.25 ft/s

Solving for v₀:

v₀ = -40.25 ft/s

Now we have the initial velocity. We can substitute the values into the equation:

h = 12 + (-40.25)T + (1/2)(32.2)(T²)

To find the height of the balloon at 2 seconds (T = 2), we can plug in T = 2 into the equation:

h = 12 + (-40.25)(2) + (1/2)(32.2)(2²)

h = 12 - 80.5 + (1/2)(32.2)(4)

h = 12 - 80.5 + 16.1

h = -52.4 + 16.1

h = -36.3

Therefore, the height of the water balloon at 2 seconds is -36.3 feet.

for such more question on height

https://brainly.com/question/23377525

#SPJ8

The equations
y
=
x
+
1
and
y
=
x

2
are graphed on the coordinate grid.

A nonlinear function starting from the line (2, 0) and another line intercepts the x and y-axis (minus 1, 0), and (0, 1)

How many real solutions does the equation
x

2
=
x
+
1
have?

A.
0
B.
1
C.
2
D.
cannot be determined from the graph

Answers

Based on the graph and the algebraic analysis, we can confidently conclude that the equation x - 2 = x + 1 has no real solutions.

The equation x - 2 = x + 1 can be simplified as -2 = 1, which leads to a contradiction.

Therefore, there are no real solutions for this equation.

When we subtract x from both sides, we are left with -2 = 1, which is not a true statement.

This means that there is no value of x that satisfies the equation, and thus no real solutions exist.

The correct answer is A. 0.

The graph of the equations y = x + 1 and y = x - 2 provides additional visual confirmation of this.

The line y = x + 1 has a positive slope and intersects the y-axis at (0, 1). The line y = x - 2 also has a positive slope and intersects the x-axis at (2, 0).

However, these two lines never intersect, indicating that there is no common point (x, y) that satisfies both equations simultaneously.

For similar question on equation.

https://brainly.com/question/26310043

#SPJ8

Which graphic presentation of data displays its categories as rectangles of equal width with their height proportional to the frequency or percentage of the category. a. time series chart. b. proportion. c. cumulative frequency distribution. d. bar graph

Answers

Bar graphs can be used to display both discrete and continuous data, making them a versatile tool for visualizing a wide range of information.

The graphic presentation of data that displays its categories as rectangles of equal width with their height proportional to the frequency or percentage of the category is called a bar graph.

In a bar graph, the bars represent the categories being compared and are arranged along the horizontal axis, with the height of each bar representing the frequency or percentage of the category being displayed.

Bar graphs are a useful tool for presenting numerical data in a visually appealing way, making it easy for viewers to compare different categories and draw conclusions from the data.

To learn more about : Bar graphs

https://brainly.com/question/30243333

#SPJ8

Use the root test to determine whether the series 7n3-n-4 3n2 +n +9 converges or diverges. . which is choose the series Since lim T-100 choose by the root test.

Answers

The series ∑ (7n³ - n - 4) / (3n² + n + 9) does not converge or diverge based on the root test.

To apply the root test, we consider the limit as n approaches infinity of the absolute value of the nth term raised to the power of 1/n.

Let's denote the nth term of the series as a_n:

a_n = (7n³- n - 4) / (3n² + n + 9)

Taking the absolute value and raising it to the power of 1/n, we have:

|a_n|^(1/n) = |(7n³ - n - 4) / (3n² + n + 9)|^(1/n)

Taking the limit as n approaches infinity, we have:

lim (n→∞) |a_n|^(1/n) = lim (n→∞) |(7n³ - n - 4) / (3n² + n + 9)|^(1/n)

Applying the limit, we find that the value is equal to 1.

Since the limit is equal to 1, the root test is inconclusive. The test neither confirms convergence nor divergence of the series. Therefore, we cannot determine the convergence or divergence of the series using the root test alone.

To know more about converge, refer here:

https://brainly.com/question/16401483#

#SPJ11

The form of the partial fraction decomposition of a rational function is given below.
x2−x+2(x+2)(x2+4)=Ax+2+Bx+Cx2+4x2−x+2(x+2)(x2+4)=Ax+2+Bx+Cx2+4
A=A= B=B= C=C=
Now evaluate the indefinite integral.
∫x2−x+2(x+2)(x2+4)dx

Answers

The values of A, B, and C are A = 1/4, B = -1/4, and C = 1/2. The indefinite integral evaluates to (1/4) ln|x+2| - (1/4) ln|x² + 4| + (1/2) arctan(x/2) + C.

To find the values of A, B, and C in the partial fraction decomposition, we need to equate the numerator of the rational function to the sum of the numerators of the partial fractions. From the equation:

x² - x + 2 = (Ax + 2)(x² + 4) + Bx(x² + 4) + C(x² - x + 2)

Expanding and equating coefficients, we get:

1. Coefficient of x²: 1 = A + B + C

2. Coefficient of x: -1 = 2A - B - C

3. Coefficient of constant term: 2 = 8A

Solving these equations, we find A = 1/4, B = -1/4, and C = 1/2.

Now, we can evaluate the indefinite integral:

∫ (x² - x + 2) / ((x+2)(x² + 4)) dx

Using the partial fraction decomposition, this becomes:

∫ (1/4)/(x+2) dx - ∫ (1/4x)/(x² + 4) dx + ∫ (1/2)/(x² + 4) dx

Integrating each term separately, we get:

(1/4) ln|x+2| - (1/4) ln|x² + 4| + (1/2) arctan(x/2) + C

where C is the constant of integration.

Therefore, the value of the indefinite integral is:

(1/4) ln|x+2| - (1/4) ln|x² + 4| + (1/2) arctan(x/2) + C

Learn more about integral:

https://brainly.com/question/30094386

#SPJ11

Question: Dai + 1000 Dt2 00+ Use Laplace Transforms To Solve The Differential Equations: 250000i = 0, Given I(0) = 0 And I'(0) = 100

Answers

We are given a differential equation involving the Laplace transform of the current, and we need to solve for the current using Laplace transforms. The initial conditions are also provided.

To solve the differential equation using Laplace transforms, we first take the Laplace transform of both sides of the equation. Applying the Laplace transform to the given equation, we get: sI(s) + 1000s^2I(s) - 250000I(0) = 0. Substituting the initial condition I(0) = 0, we have: sI(s) + 1000s^2I(s) = 0. Next, we solve for I(s) by factoring out I(s) and simplifying the equation: I(s)(s + 1000s^2) = 0. From this equation, we can see that either I(s) = 0 or s + 1000s^2 = 0. The first case represents the trivial solution where the current is zero. To find the non-trivial solution, we solve the quadratic equation s + 1000s^2 = 0 and find the values of s.

To know more about Laplace transforms here: brainly.com/question/30759963

#SPJ11

Please show all work and no use of a calculator
please, thank you.
1. Consider the parallelogram with vertices A = (1,1,2), B = (0,2,3), C = (2,c, 1), and D=(-1,c+3,4), where c is a real-valued constant. (a) (5 points) Use the cross product to find the area of parall

Answers

Using the cross product the area of a parallelogram is √(2(c² + 4c + 8)).

To find the area of the parallelogram with vertices A = (1, 1, 2), B = (0, 2, 3), C = (2, c, 1), and D = (-1, c + 3, 4), we can use the cross product.

Let's find the vectors corresponding to the sides of the parallelogram:

Vector AB = B - A = (0, 2, 3) - (1, 1, 2) = (-1, 1, 1)

Vector AD = D - A = (-1, c + 3, 4) - (1, 1, 2) = (-2, c + 2, 2)

Now, calculate the cross-product of these vectors:

Cross product: AB x AD = (AB)y * (AD)z - (AB)z * (AD)y, (AB)z * (AD)x - (AB)x * (AD)z, (AB)x * (AD)y - (AB)y * (AD)x

= (-1)(c + 2) - (1)(2), (1)(2) - (-1)(2), (-1)(c + 2) - (1)(-2)

= -c - 2 - 2, 2 - 2, -c - 2 + 2

= -c - 4, 0, -c

The magnitude of the cross-product gives us the area of the parallelogram:

Area = |AB x AD| = √((-c - 4)² + 0² + (-c)²)

= √(c² + 8c + 16 + c²)

= √(2c² + 8c + 16)

= √(2(c² + 4c + 8))

Therefore, the area of the parallelogram is √(2(c² + 4c + 8)).

To know more about parallelogram, refer here :

https://brainly.com/question/28854514#

#SPJ11

Sarah bought 6 apples for $4.69. The apples were selling for $4.79 per kilogram. Which is the best approximation for the average mass of each of these apples? (Also, a multi choice question)
A. 20g B. 160g C. 180g D. 200g

Answers

To find the best approximation for the average mass of each apple, we can divide the total cost of the apples by the cost per kilogram.

To calculate the average mass of each apple, we need to divide the total cost of the apples by the cost per kilogram. Since we know that Sarah bought 6 apples for $4.69 and the apples were selling for $4.79 per kilogram, we can set up the following equation:

Total cost of apples = Average mass per apple * Cost per kilogram

Let's solve for the average mass per apple:

Average mass per apple = Total cost of apples / Cost per kilogram

Substituting the given values, we have:

Average mass per apple = $4.69 / $4.79

Calculating this, we find:

Average mass per apple ≈ 0.978

To convert this to grams, we multiply by 1000:

Average mass per apple ≈ 978g

From the given options, the best approximation for the average mass of each apple is 180g, as it is closest to the calculated value of 978g.

Learn more about equation here:

https://brainly.com/question/29657983

#SPJ11








(1 point) Find the degree 3 Taylor polynomial T3() of function f(x) = (-7x + 270)5/4 at a = 2 T3(x)

Answers

The degree 3 Taylor polynomial T3(x) for the function f(x) = [tex](-7x + 270)^{(5/4)[/tex] at a = 2 is:

T3(x) = 32 - 7(x - 2) - (49/512[tex])(x - 2)^2[/tex] + (-147/4194304)[tex](x - 2)^3[/tex]

To find the degree 3 Taylor polynomial, we need to calculate the polynomial approximation of the function up to the third degree centered at the point a = 2. We can find the Taylor polynomial by evaluating the function and its derivatives at a = 2.

First, let's find the derivatives of the function f(x) = [tex](-7x + 270)^{(5/4)[/tex]:

f'(x) = [tex](-7/4)(-7x + 270)^{(1/4)[/tex]

f''(x) = [tex](-7/4)(1/4)(-7x + 270)^{(-3/4)}(-7)[/tex]

f'''(x) = [tex](-7/4)(1/4)(-3/4)(-7x + 270)^{(-7/4)}(-7)[/tex]

Now, let's evaluate these derivatives at a = 2:

f(2) = [tex](-7(2) + 270)^{(5/4)[/tex]

     = [tex](256)^{(5/4)[/tex]

     = 32

f'(2) = [tex](-7/4)(-7(2) + 270)^{(1/4)[/tex]

      = [tex](-7/4)(256)^{(1/4)[/tex]

      = [tex](-7/4)(4)[/tex]

      = -7

f''(2) = [tex](-7/4)(1/4)(-7(2) + 270)^{(-3/4)}(-7)[/tex]

       = [tex](-7/4)(1/4)(256)^{(-3/4)}(-7)[/tex]

       = (7/16)(1/256)(-7)

       = -49/512

f'''(2) = [tex](-7/4)(1/4)(-3/4)(-7(2) + 270)^{(-7/4)}(-7)[/tex]

       = [tex](-7/4)(1/4)(-3/4)(256)^{(-7/4)}(-7)[/tex]

       = (21/256)(1/16384)(-7)

       = -147/4194304

Now, let's write the degree 3 Taylor polynomial T3(x) using the above derivatives:

T3(x) = f(2) + f'(2)(x - 2) + f''(2)[tex](x - 2)^2[/tex]/2! + f'''(2)[tex](x - 2)^3[/tex]/3!

Substituting the values we calculated:

T3(x) = 32 - 7(x - 2) - (49/512)[tex](x - 2)^2[/tex] + (-147/4194304)[tex](x - 2)^3[/tex]

So, the degree 3 Taylor polynomial T3(x) for the function f(x) = [tex](-7x + 270)^{(5/4)[/tex] at a = 2 is:

T3(x) = 32 - 7(x - 2) - (49/512)[tex](x - 2)^2[/tex] + (-147/4194304)[tex](x - 2)^3[/tex]

Learn more about Taylor Polynomial at

brainly.com/question/30481013

#SPJ4

5. Oil is shipped to a remote island in cylindrical containers made of steel. The height of each container equals the diameter. Once the containers are emptied on the island, the steel is sold. Shipping costs are $10/m3 of oil, and the steel is sold for $7/m². a) Determine the radius of the container that maximizes the profit per container. Ignore any costs (other than shipping) or profits associated with the oil in the barrel. b) Determine the maximum profit per container.

Answers

(a) Since r must be positive, the container radius that maximizes profit per container is 0.2333 metres.

(b) The highest profit per container is estimated to be $0.65.

To determine the radius of the container that maximizes the profit per container,

First determine the volume of oil that can be shipped in each container. Since the height of each container is equal to the diameter,

We know that the height is twice the radius.

So, the volume of the cylinder is given by,

⇒ V = πr²(2r)

       = 2πr³

Now determine the cost of shipping the oil, which is =  $10/m³.

Since the volume of oil shipped is 2πr³,

The cost of shipping the oil is,

⇒ C = 10(2πr³)

       = 20πr³

Now determine the revenue from selling the steel,

Since the steel is sold for $7/m²,

The revenue from selling the steel is,

⇒ R = 7(πr²)

       = 7πr²

So, the profit per container is,

⇒ P = R - C

       = 7πr² - 20πr³

To maximize the profit per container,

we can take the derivative of P with respect to r and set it equal to zero,

⇒ dP/dr = 14πr - 60πr²

             = 0

Solving for r, we get,

⇒ r = 0 or r = 14/60

                   = 0.2333

Since r must be positive, the radius of the container that maximizes the profit per container is  0.2333 meters.

Now for part b) to determine the maximum profit per container. Substituting r = 0.2333 into our expression for P, we get,

⇒ P = 7π(0.2333)² - 20π(0.2333)³

      = $0.6512

So, the maximum profit per container is approximately $0.65.

To learn more about volume of container visit:

https://brainly.com/question/23423861

#SPJ4

Solve the equation tan(t) = - 1 for 0 < t < 27. Give exact answers separated by commas."

Answers

The equation tan(t) = -1 is solved for values of t between 0 and 27. The exact solutions are provided, separated by commas.

To solve the equation tan(t) = -1, we need to find the values of t between 0 and 27 where the tangent function equals -1.

The tangent function is negative in the second and fourth quadrants of the unit circle. In the second quadrant, the tangent function is positive, so we can disregard it. However, in the fourth quadrant, the tangent function is negative, which aligns with our given equation.

The tangent function has a period of π, so we can find the solutions by looking at the values of t in the fourth quadrant that satisfy the equation. The exact values of t can be found by using the inverse tangent function, also known as arctan or tan^(-1).

Using arctan(-1), we can determine that the principal solution in the fourth quadrant is t = 3π/4. Adding the period π repeatedly, we get t = 7π/4, 11π/4, 15π/4, and 19π/4, which all fall within the given range of 0 to 27.

Therefore, the exact solutions to the equation tan(t) = -1 for 0 < t < 27 are t = 3π/4, 7π/4, 11π/4, 15π/4, and 19π/4, separated by commas.

Learn more about quadrant here:

https://brainly.com/question/26426112

#SPJ11

Other Questions
the tree is more consistent with which of the following hypotheses: the distinguishing characteristic in win-lose problem solving is in a wireless lan implenting wpa enterprise mode, where is the users identification verified after being filtered out of the blood in the kidneys, how is water resorbed back into the blood? in a regression equation, changing the units of measurement of only the independent variable does not affect the _____. a. slope b. intercept c. error term d. dependent variable S transfers $1,000,000 to T in an irrevocable trust, to pay the income to A, age 32, for ten years, remainder to B. Sreservesthe power to substitute or add income beneficiaries. Which of the following statements are correct? Explain answerA. The transfer of the income interest to A was complete for gift tax purposes.B. B's interest was vested in and was a completed gift.C. B's interest would qualify for the annual exclusion.D. Only B. and C. are correct write a program that correct an extra character in a string. assembly languge for the period 1861 to 1914, analyze how various russians perceived the condition of the russian peasantry and explain how they proposed to change that condition. what skin conditions should be monitored for in a client with risk for impaired skin integrity? select all that apply. True or False: A Gantt chart graphically depicts project tasks and their interrelationships. what are the major differences between somatic (body) cells and sex (germ) cells in eukaryotes. A playground ride consists of a disk of mass M = 50 kg and radius R = 2.4 m mounted on a low-friction axle. A child of mass m = 16 kg runs at speed v = 2.8 m/s on a line tangential to the disk and jumps onto the outer edge of the disk. ANGULAR MOMENTUM (a) Consider the system consisting of the child and the disk, but not including the axle. Which of the following statements are true, from just before to just after the collision? The axle exerts a force on the system but nearly zero torque. The torque exerted by the axle is nearly zero even though the force is large, because || is nearly zero. The angular momentum of the system about the axle changes. The momentum of the system doesn't change. The momentum of the system changes. The angular momentum of the system about the axle hardly changes. The torque exerted by the axle is zero because the force exerted by the axle is very small. (b) Relative to the axle, what was the magnitude of the angular momentum of the child before the collision? |C| = kgm2/s (c) Relative to the axle, what was the angular momentum of the system of child plus disk just after the collision? |C| = kgm2/s (d) If the disk was initially at rest, now how fast is it rotating? That is, what is its angular speed? (The moment of inertia of a uniform disk is MR2.) = radians/s (e) How long does it take for the disk to go around once? Time to go around once = s ENERGY (f) If you were to do a lot of algebra to calculate the kinetic energies before and after the collision, you would find that the total kinetic energy just after the collision is less than the total kinetic energy just before the collision. Where has most of this energy gone? Increased translational kinetic energy of the disk. Increased thermal energy of the disk and child. Increased chemical energy in the child. (4x-12) + ( 1/2x y -10) for x=4 and y=6 which major administration would the following staff departments fall under: telecommunications, corporate insurance, accounts payable, facilities and airport planning, investigation and security, employee suggestion program, management appraisal and development, publicity, industrial engineering, and fleet planning? .Unaware that a lawyer was in the county courthouse library late on a Friday afternoon, when it was unusual for anyone to be using the library, a clerk locked the library door and left. The lawyer found herself locked in when she tried to leave the library at 7 p.m. It was midnight before the lawyer's family could find out where she was and get her out. The lawyer was very annoyed by her detention but was not otherwise harmed by it. Does the lawyer have a viable claim for false imprisonment against the clerk? Name the following hydrocarbons: T/F Vivekananda thought science and religion could be reconciled. Find the absolute maximum and miGive answers as integers or fractions, not decimals.imum values of f(x) = x^3e^x on (-1, 1]. (1 point) Biologists have noticed that the chirping of crickets of a certain species is related to temperature, and the relationship appears to be very nearly linear. A cricket produces 117 chirps per minute at 70 degrees Fahrenheit and 178 chirps per minute at 80 degrees Fahrenheit.(a) Find a linear equation that models the temperature TT as a function of the number of chirps per minute N.(b) If the crickets are chirping at 159 chirps per minute, estimate the temperature: A sociologist who studies American crime rates is practicingGroup of answer choicesmicro sociologymacro sociologythe sociological imaginationglobal sociology