gravel is being dumped from a conveyor belt at a rate of 20 cubic feet per minute. it forms a pile in the shape of a right circular cone whose base diameter and height are always equal. how fast is the height of the pile increasing when the pile is 23 feet high?recall that the volume of a right circular cone with height h and radius of the base r is given

Answers

Answer 1

The height of the pile is increasing at a rate of approximately 0.47 feet per minute when the pile is 23 feet high.Let's denote the height of the pile as h and the radius of the base as r.

Since the pile is in the shape of a right circular cone, the volume of the cone can be expressed as V = (1/3)πr²h.

We are given that the rate at which gravel is being dumped onto the pile is 20 cubic feet per minute. This means that the rate of change of volume with respect to time is dV/dt = 20 ft³/min.

To find the rate at which the height of the pile is increasing (dh/dt) when the pile is 23 feet high, we need to relate dh/dt to dV/dt. Using the formula for the volume of a cone, we can express V in terms of h: V = (1/3)π(h/2)²h = (1/12)πh³.

Differentiating both sides of this equation with respect to time, we get dV/dt = (1/4)πh²(dh/dt).

Substituting the known values, we have 20 = (1/4)π(23²)(dh/dt).

Solving for dh/dt, we find dh/dt ≈ 0.47 ft/min. Therefore, the height of the pile is increasing at a rate of approximately 0.47 feet per minute when the pile is 23 feet high.

Learn more about volume here: https://brainly.com/question/32048555

#SPJ11


Related Questions

show steps. will rate if done within the hour
Find the area bounded by the curve y = 7+ 2x + x² and x-axis from * = x = - 3 to x = -1. Area of the region = Submit Question

Answers

The area bounded by the curve y = 7 + 2x + x² and the x-axis from x = -3 to x = -1 is approximately 4.667 square units.

Understanding the Area of Region

To find the area bounded by the curve y = 7 + 2x + x² and the x-axis from x = -3 to x = -1, we need to evaluate the definite integral of the function y with respect to x over the given interval.

The integral to calculate the area is:

A = [tex]\int\limits^{-1}_{-3} {7 + 2x + x^2} \, dx[/tex]

We can find the integration of the function 7 + 2x + x² by applying the power rule of integration:

∫ (7 + 2x + x²) dx = 7x + x² + (1/3)x³ + C

Now, we can evaluate the definite integral by substituting the limits of integration:

A = [7x + x² + (1/3)x³] evaluated from x = -3 to x = -1

A = [(7(-1) + (-1)² + (1/3)(-1)³)] - [(7(-3) + (-3)² + (1/3)(-3)³)]

A = [-7 + 1 - (1/3)] - [-21 + 9 - (1/3)]

A = -7 + 1 - 1/3 + 21 - 9 + 1/3

Simplifying the expression, we have:

A = 5 - 1/3

The area bounded by the curve y = 7 + 2x + x² and the x-axis from x = -3 to x = -1 is approximately 4.667 square units.

Learn more about area of region here:

https://brainly.com/question/31983071

#SPJ4

Whats the value of f(-5) when f(x)=x^2+6x+15

Answers

The value of f(-5) when f(x) = x^2 + 6x + 15 is 5.

To find the value of f(-5) for the given function f(x) = x^2 + 6x + 15, we substitute -5 for x in the equation. Plugging in -5, we have:

                 f(-5) = (-5)^2 + 6(-5) + 15

Which simplifies to:

                        = 25 - 30 + 15

Resulting in a final value of 10:

                        = 10

Therefore, when we evaluate f(-5) for the given quadratic function, we find that the output is 10.

Hence, when the value of x is -5, the function f(x) evaluates to 10. This means that at x = -5, the corresponding value of f(-5) is 10, indicating a point on the graph of the quadratic function.

You can learn more about quadratic function at

https://brainly.com/question/1214333

#SPJ11

Consider the following theorem. Theorem If f is integrable on [a, b], then [f(x) dx = lim_ [f(x)Ax b a where Ax = and x; = a + iAx. n Use the given theorem to evaluate the definite integral. 1₂ (4x² + 4x) dx

Answers

The definite integral of 1₂ (4x² + 4x) dx is 5₁₁ (8x + 4) dx.

What is the result of integrating 4x² + 4x?

The given question asks for the evaluation of the definite integral of the function 4x² + 4x. To solve this, we can apply the fundamental theorem of calculus, which states that if a function f is integrable on an interval [a, b], then the definite integral of f(x) from a to b is equal to the antiderivative of f evaluated at the endpoints a and b. In this case, the antiderivative of 4x² + 4x is (8x + 4).

By applying the definite integral, we get the result 5₁₁ (8x + 4) dx. This notation represents the definite integral from 1 to 2 of the function (8x + 4) with respect to x. Evaluating this integral yields the value of the definite integral.

Learn more about definite integral

brainly.com/question/30760284

#SPJ11

in a generalised tinar model, the deviance is a function of the observed and fitted values.
T/F

Answers

True. In a generalized linear model, the deviance is indeed a function of the observed and fitted values.

In a generalized linear model (GLM), the deviance is a measure of the goodness of fit between the observed data and the model's predicted values. It quantifies the discrepancy between the observed and expected responses based on the model.

The deviance is calculated by comparing the observed values of the response variable with the predicted values obtained from the GLM. It takes into account the specific distributional assumptions of the response variable in the GLM framework. The deviance is typically defined as a function of the observed and fitted values using a specific formula depending on the chosen distributional family in the GLM.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

Ssketch the graph of each parabola by using only the vertex and the y-intercept. Check the graph using a graphing calculator. 3. y = x2 - 6x + 5 4. y = x² - 4x 3 5. y = -3x? + 10x -

Answers

We are given three quadratic functions and we can sketch their graphs using only the vertex and the y-intercept. The equations are: 3. y = x² - 6x + 5, 4. y = x² - 4x - 3, and 5. y = -3x² + 10x - 7.

To sketch the graph of each parabola using only the vertex and the y-intercept, we start by identifying these key points. For the first equation, y = x² - 6x + 5, the vertex can be found using the formula x = -b/(2a), where a = 1 and b = -6. The vertex is at (3, 4), and the y-intercept is at (0, 5). For the second equation, y = x² - 4x - 3, the vertex is at (-b/(2a), f(-b/(2a))), which simplifies to (2, -7). The y-intercept is at (0, -3). For the third equation, y = -3x² + 10x - 7, the vertex can be found in a similar manner as the first equation. The vertex is at (5/6, 101/12), and the y-intercept is at (0, -7). By plotting these key points and drawing the parabolic curves passing through them, we can sketch the graphs of these quadratic functions. To verify the accuracy of the graphs, a graphing calculator can be used.

To know more about quadratic functions here: brainly.com/question/18958913

#SPJ11

Given f(x) = (a) Find the linearization of fat x = 8. Be sure to enter an equation in the form y = m+ (b) Using this, we find our approximation for (8.4) is (c) Find the absolute value of the error between $(8.4) and its estimated value L(8.4) Jerror= (d) Find the relative error for $(8.4) and its estimated value L(8.4). Express your answer as a percentage and round to three decimals. error Relative error $(8.4)

Answers

Given the function f(x), we are asked to find the linearization of f at x = 8, approximate the value of f(8.4) using this linearization, calculate the absolute error between the actual value and the estimated value, and find the relative error as a percentage.

To find the linearization of f at x = 8, we use the equation of a line in the form y = mx + b, where m is the slope and b is the y-intercept. The linearization at x = 8 is given by L(x) = f(8) + f'(8)(x - 8), where f'(8) represents the derivative of f at x = 8. To approximate the value of f(8.4) using this linearization, we substitute x = 8.4 into the linearization equation: L(8.4) = f(8) + f'(8)(8.4 - 8).

The absolute error between f(8.4) and its estimated value L(8.4) is calculated by taking the absolute difference: error = |f(8.4) - L(8.4)|. To find the relative error, we divide the absolute error by the actual value f(8.4) and express it as a percentage: relative error = (|f(8.4) - L(8.4)| / |f(8.4)|) * 100%.

Please note that the actual calculations require the specific function f(x) and its derivative at x = 8. These steps provide the general method for finding the linearization, estimating values, and calculating errors.

Learn more about relative error here:

https://brainly.com/question/30403282

#SPJ11

Evaluate the Hux Fascross the positively oriented outward) surface∫∫ S F.ds, where F =< 33 +1, y9+2, 23 +3 > and S is the boundary of 22 + y2 + z2 = 4, z 20.

Answers

The given problem involves evaluating the surface integral ∫∫S F·ds, where F = <3x + 1, y⁹ + 2, 2z + 3>, and S is the boundary of the surface defined by x² + y² + z² = 4, z ≥ 0.

To evaluate the surface integral, we can use the divergence theorem, which states that the surface integral of a vector field over a closed surface is equal to the triple integral of the divergence of the vector field over the region enclosed by the surface. However, in this case, S is not a closed surface since it is only the boundary of the given surface. Therefore, we need to use a different method.

One possible approach is to parameterize the surface S using spherical coordinates. We can rewrite the equation of the surface as r = 2, where r represents the radial distance from the origin. By parameterizing the surface, we can express the surface integral as an integral over the spherical coordinates (θ, φ). The outward-pointing unit normal vector can also be calculated using the parameterization.

After parameterizing the surface, we can calculate the dot product F·ds and perform the surface integral over the appropriate range of the spherical coordinates. By evaluating this integral, we can obtain the numerical result.

Learn more about integral here: https://brainly.com/question/31059545

#SPJ11

Verify the identity, sin-X) - cos(-X) (sin x + cos x) Use the properties of sine and cosine to rewrite the left-hand side with positive arguments. sin)-CCX) COS(X) (sin x+cos x)

Answers

By using the properties of sine and cosine, the given expression sin(-X) - cos(-X) (sin(X) + cos(X)) can be rewritten as -sin(X) - cos(X) (sin(X) + cos(X)) to have positive arguments.



To rewrite the left-hand side of the expression with positive arguments, we can apply the following properties of sine and cosine:

1. sin(-X) = -sin(X): This property states that the sine of a negative angle is equal to the negative of the sine of the positive angle.

2. cos(-X) = cos(X): This property states that the cosine of a negative angle is equal to the cosine of the positive angle.

Applying these properties to the given expression:

sin(-X) - cos(-X) (sin(X) + cos(X))

= -sin(X) - cos(X) (sin(X) + cos(X))

Therefore, we can rewrite the left-hand side as -sin(X) - cos(X) (sin(X) + cos(X)), which has positive arguments.

In summary, the original expression sin(-X) - cos(-X) (sin(X) + cos(X)) can be rewritten as -sin(X) - cos(X) (sin(X) + cos(X)) by utilizing the properties of sine and cosine to ensure positive arguments.

To learn more about  positive angle click here

brainly.com/question/28462810

#SPJ11



5 pts Question 4 For this problem, type your answers directly into the provided text box. You may use the equation editor if you wish, but it is not required. Consider the following series. √r Σ=1

Answers

The given expression, √r Σ=1, contains two elements: the square root symbol (√) and the summation symbol (Σ).

The square root symbol represents the non-negative value that, when multiplied by itself, equals the number inside the square root (r in this case). The summation symbol (Σ) is used to represent the sum of a sequence of numbers or functions.

To know more about summation visit:

https://brainly.com/question/29334900

#SPJ11

Find the volume of the solid obtained by rotating the region bounded by the curves y = x3, y = 8, and the y-axis about the x-axis. Evaluate the following integrals. Show enough work to justify your answers. State u-substitutions explicitly. 3.7 5x In(x3) dx

Answers

The problem involves finding the volume of the solid obtained by rotating the region bounded by the curves y = x^3, y = 8, and the y-axis about the x-axis. The specific integral to be evaluated is[tex]\int\limits3.7 5x ln(x^3)[/tex] dx. In order to solve it, we will need to perform a u-substitution and show the necessary steps.

To evaluate the integral ∫3.7 5x ln(x^3) dx, we can start by making a u-substitution. Let's set u = x^3, so du = 3x^2 dx. We can rewrite the integral as follows[tex]\int\limits 3.7 5x ln(x^3) dx = \int\limits3.7 (1/3) ln(u) du[/tex]

Next, we can pull the constant (1/3) outside of the integral: [tex](1/3) \int\limits3.7 ln(u) du[/tex]

Now, we can integrate the natural logarithm function. The integral of ln(u) is u ln(u) - u + C, where C is the constant of integration. Applying this to our integral, we have:

[tex](1/3) [u ln(u) - u] + C[/tex]

Substituting back u = x^3, we get: [tex](1/3) [x^3 ln(x^3) - x^3] + C[/tex]

This is the antiderivative of 5x ln(x^3) with respect to x. To find the volume of the solid, we need to evaluate this integral over the appropriate limits of integration and perform any necessary arithmetic calculations.

By evaluating the integral and performing the necessary calculations, we can determine the volume of the solid obtained by rotating the given region about the x-axis.

Learn more about substitution here;

https://brainly.com/question/32515222

#SPJ11

Consider the ordered bases B = {1, x, x2} and C = {1, (x − 1), (x −
1)2} for P2.
(a) Find the transition matrix from C to B.
b) Find the transition matrix from B to C.
(c) Write p(x) = a + bx + cx

Answers

(a) To find the transition matrix from C to B, we need to express the basis vectors of C in terms of the basis vectors of B.

Let's denote the transition matrix from C to B as [T]. We want to find [T] such that [C] = [T][B], where [C] and [B] are the matrices representing the basis vectors C and B, respectively.

The basis vectors of C can be written as:

C = {1, (x - 1), (x - 1)^2}

To express these vectors in terms of the basis vectors of B, we substitute (x - 1) with x in the second and third vectors since (x - 1) can be written as x - 1*1:

C = {1, x, x^2}

Therefore, the transition matrix from C to B is:

[T] = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]

(b) To find the transition matrix from B to C, we need to express the basis vectors of B in terms of the basis vectors of C.

Let's denote the transition matrix from B to C as [S]. We want to find [S] such that [B] = [S][C], where [B] and [C] are the matrices representing the basis vectors B and C, respectively.

The basis vectors of B can be written as:

B = {1, x, x^2}

To express these vectors in terms of the basis vectors of C, we substitute x with (x - 1) in the second and third vectors:

B = {1, (x - 1), (x - 1)^2}

Therefore, the transition matrix from B to C is:

[S] = [[1, 0, 0], [0, 1, -2], [0, 0, 1]]

(c) Given p(x) = a + bx + cx^2, we can express this polynomial in terms of the basis vectors of C by multiplying the coefficients with the corresponding basis vectors:

p(x) = a(1) + b(x - 1) + c(x - 1)^2

Expanding and simplifying the equation:

p(x) = a + bx - b + cx^2 - 2cx + c

Collecting like terms:

p(x) = (a - b + c) + bx - 2cx + cx^2

Therefore, p(x) can be written as p(x) = (a - b + c) + bx - 2cx + cx^2 in terms of the basis vectors of C.

To learn more about polynomial click here:

brainly.com/question/11536910

#SPJ11

Given (10) = 3 and/(10) - 7 find the value of (10) based on the function below. h(x) = 6) Answer Tables Keyboard Short (10) =

Answers

The value of (10) based on the function h(x) = 6) can be found by substituting x = 10 into the function. The answer is (10) = 6.

The given function is h(x) = 6. To find the value of (10) based on this function, we substitute x = 10 into the function and evaluate it. Therefore, (10) = h(10) = 6.

In this case, the function h(x) is a constant function, where the output value is always 6, regardless of the input value. So, when we substitute x = 10 into the function, the result is 6. Thus, we can conclude that (10) = 6 based on the given function h(x) = 6.

It's worth noting that the notation used here, (10), might suggest a function with a variable or a placeholder. However, since the given function is a constant function, the value of (10) remains the same regardless of the input value, and it is equal to 6.

Learn more about function here:

https://brainly.com/question/28278699

#SPJ11

Use the Limit Comparison Test to determine convergence or divergence Σ 312-n-1 #2 M8 nan +8n2-4 Select the expression below that could be used for be in the Limit Comparison Test and fill in the valu

Answers

The expression that can be used for the Limit Comparison Test is [tex]8n^2 - 4.[/tex]

By comparing the given series[tex]Σ(3^(12-n-1))/(2^(8n) + 8n^2 - 4)[/tex]with the expression [tex]8n^2 - 4,[/tex] we can establish convergence or divergence. First, we need to show that the expression is positive for all n. Since n is a positive integer, the term [tex]8n^2 - 4[/tex] will always be positive. Next, we take the limit of the ratio of the two series terms as n approaches infinity. By dividing the numerator and denominator of the expression by [tex]3^n[/tex] and [tex]2^8n[/tex] respectively, we can simplify the limit to a constant. If the limit is finite and nonzero, then both series converge or diverge together. If the limit is zero or infinity, the behavior of the series can be determined accordingly.

Learn more about  convergence here

https://brainly.com/question/28209832

#SPJ11


please show wrk
li A Use the Fundamental Theorem of Calculus to evaluate (4x - 1) dx (4-1) B The picture below shows a graph of y=4x - 1 Explain / show how to compute (4x - 1) dx in terms of areas.
3 2 26 -0.75 -0.

Answers

Using the Fundamental Theorem of Calculus, the integral of (4x - 1) dx can be evaluated as (2x^2 - x) + C, where C is the constant of integration.

To compute the integral (4x - 1) dx in terms of areas, we can relate it to the graph of y = 4x - 1. The integral represents the area under the curve of the function over a given interval. In this case, we want to find the area between the curve and the x-axis.

The graph of y = 4x - 1 is a straight line with a slope of 4 and a y-intercept of -1. The integral of (4x - 1) dx corresponds to the sum of the areas of infinitesimally thin rectangles bounded by the x-axis and the curve.

Each rectangle has a width of dx (an infinitesimally small change in x) and a height of (4x - 1). Summing up the areas of all these rectangles from the lower limit to the upper limit of integration gives us the total area under the curve. Evaluating this integral using the antiderivative of (4x - 1), we obtain the expression (2x^2 - x) + C, where C is the constant of integration.

In conclusion, the integral (4x - 1) dx represents the area between the curve y = 4x - 1 and the x-axis, and using the Fundamental Theorem of Calculus, we can evaluate it as (2x^2 - x) + C, where C is the constant of integration.

Learn more about infinitesimally here: brainly.com/question/29737056

#SPJ11

Let sin(α) = (− 4/5) and let α be in quadrant III.
Find
sin(2α), cos(2α), and tan(2α),
2. Find the exact value of: a) sin−1 (− 1/ 2)
b) cos−1 (− √ 3/ 2)
c) tan"

Answers

a) sin^(-1)(-1/2) = -π/6 or -30 degrees.

b) cos^(-1)(-√3/2) = 5π/6 or 150 degrees.

c) tan^(-1)(-∞) = -π/2 or -90 degrees.

To find the values of sin(2α), cos(2α), and tan(2α), we can use the double angle formulas. Given that sin(α) = -4/5 and α is in quadrant III, we can determine the values as follows: sin(2α): sin(2α) = 2sin(α)cos(α)

Since sin(α) = -4/5, we need to find cos(α).

In quadrant III, sin(α) is negative, and we can use the Pythagorean identity to find cos(α):

cos(α) = -√(1 - sin^2(α)) = -√(1 - (16/25)) = -√(9/25) = -3/5

Now, we can substitute the values: sin(2α) = 2*(-4/5)*(-3/5) = 24/25

cos(2α):

cos(2α) = cos^2(α) - sin^2(α)

Using the values we obtained earlier:

cos(2α) = (-3/5)^2 - (-4/5)^2 = 9/25 - 16/25 = -7/25

tan(2α):

tan(2α) = sin(2α)/cos(2α)

Substituting the values we found:

tan(2α) = (24/25)/(-7/25) = -24/7

Now, let's find the exact values of the given inverse trigonometric functions:

a) sin^(-1)(-1/2):

sin^(-1)(-1/2) is the angle whose sine is -1/2. It corresponds to -π/6 or -30 degrees.

b) cos^(-1)(-√3/2):

cos^(-1)(-√3/2) is the angle whose cosine is -√3/2. It corresponds to 5π/6 or 150 degrees.

c) tan^(-1)(-∞):

Since tan^(-1)(-∞) represents the angle whose tangent is -∞, it corresponds to -π/2 or -90 degrees.

LEARN MORE ABOUT quadrant here: brainly.com/question/29296837

#SPJ11

Question 2 Find the particular solution of the following using the method of undetermined coefficients: des dt2 ds ds +8s = 4e2t where t= 0,5 = 0 and dt = 10 dt [15]

Answers

The particular solution of the given differential equation using the method of undetermined coefficients is s(t) = (2/9)e^(2t) - (5/9)e^(-4t).

To find the particular solution using the method of undetermined coefficients, we assume a solution of the form s(t) = A*e^(2t) + B*e^(-4t), where A and B are constants to be determined.

Taking the first and second derivatives of s(t), we have:

s'(t) = 2A*e^(2t) - 4B*e^(-4t)

s''(t) = 4A*e^(2t) + 16B*e^(-4t)

Substituting these derivatives back into the original differential equation, we get:

4A*e^(2t) + 16B*e^(-4t) + 8(A*e^(2t) + B*e^(-4t)) = 4e^(2t)

Simplifying the equation, we have:

(12A + 16B)*e^(2t) + (8A - 8B)*e^(-4t) = 4e^(2t)

For the equation to hold for all t, we equate the coefficients of the terms with the same exponential factors:

12A + 16B = 4

8A - 8B = 0

Solving these equations simultaneously, we find A = 2/9 and B = -5/9.

Substituting these values back into the assumed solution, we obtain the particular solution s(t) = (2/9)e^(2t) - (5/9)e^(-4t).

learn more about exponential factors here:

https://brainly.com/question/12482425

#SPJ11

"Thirty-five percent of adult Internet users have purchased products or services online. For a random sample of 280 adult Internet users, find the mean, variance, and standard deviation for the number who have purchased goods or
services online. Round your answers to at least one decimal place. Round your intermediate calculations to at least three decimal
places"

Answers

For a random sample of 280 adult Internet users, with a population proportion of 35% who have purchased products or services online, the mean, variance, and standard deviation for the number of users who have made online purchases can be calculated.

Given that 35% of adult Internet users have made online purchases, we can use this proportion to estimate the mean, variance, and standard deviation for the sample of 280 users.

The mean can be calculated by multiplying the sample size (280) by the population proportion (0.35). The variance can be found by multiplying the population proportion (0.35) by the complement of the proportion (1 - 0.35) and dividing by the sample size. Finally, the standard deviation can be obtained by taking the square root of the variance.

It's important to note that these calculations assume that the sample is randomly selected and represents a simple random sample from the population of adult Internet users. Additionally, rounding the intermediate calculations to at least three decimal places ensures accuracy in the final results.

Learn more about variance here:

https://brainly.com/question/32159408

#SPJ11

9. A rectangle is to be inscribed in the ellipso a + 12 = 1. (See diagram below.) (3,4) 1+1 (a) (10 pts) Let a represent the x-coordinate of the top-right corner of the rectangle. De- termine a formul

Answers

The formula to determine the x-coordinate, represented by "a," of the top-right corner of the rectangle inscribed in the ellipse with equation (x^2)/9 + (y^2)/16 = 1 is given by a = 3 + (4/3)√(16 - (16/9)(x - 3)^2).

We start with the equation of the ellipse, (x^2)/9 + (y^2)/16 = 1. To inscribe a rectangle within the ellipse, we need to find the x-coordinate of the top-right corner of the rectangle, which we represent as "a." Since the rectangle is inscribed, its vertices will touch the ellipse, meaning the rectangle's top-right corner will lie on the ellipse curve.

We can solve the equation of the ellipse for y^2 to obtain y^2 = 16 - (16/9)(x - 3)^2. Now, considering the rectangle's properties, we know that the top-right corner has the coordinates (a, y), where y is obtained from the equation of the ellipse. Substituting y^2 into the ellipse equation, we have (x^2)/9 + (16 - (16/9)(x - 3)^2)/16 = 1.

Simplifying the equation, we can solve for x to find x = 3 + (4/3)√(16 - (16/9)(x - 3)^2). This equation represents the x-coordinate of the top-right corner of the rectangle as a function of x. Thus, the formula for "a" is given by a = 3 + (4/3)√(16 - (16/9)(x - 3)^2). By substituting different values of x, we can determine the corresponding values of a, providing the necessary formula.

Learn more about coordinate here:

https://brainly.com/question/22261383

#SPJ11

2 24 (a) Evaluate the integral: Ś dc x2 + 4 Your answer should be in the form kn, where k is an integer. What is the value of k? Hint: d arctan(2) dr (a) = = 1 22 +1 k - (b) Now, let's evaluate the s

Answers

The given integral is  $ \int \sqrt{x^2 + 4} dx$To solve this, make the substitution $ x = 2 \tan \theta $, then $ dx = 2 \sec^2 \theta d \theta $ and$ \sqrt{x^2 + 4} = 2 \sec \theta $So, $ \int \sqrt{x^2 + 4} dx = 2 \int \sec^2 \theta d \theta $Using the identity $ \sec^2 \theta = 1 + \tan^2 \theta $, we have: $ \int \sec^2 \theta d \theta = \int (1 + \tan^2 \theta) d \theta = \tan \theta + \frac{1}{3} \tan^3 \theta + C $where C is the constant of integration.

Now, we need to convert this expression back to $x$. We know that $ x = 2 \tan \theta $, so $\tan \theta = \frac{x}{2}$.Therefore, $ \tan \theta + \frac{1}{3} \tan^3 \theta + C = \frac{x}{2} + \frac{1}{3} \cdot \frac{x^3}{8} + C $Simplifying this expression, we get: $\frac{x}{2} + \frac{1}{24} x^3 + C$So, the value of k is 1, and the answer to the integral $ \int \sqrt{x^2 + 4} dx$ is $\frac{x}{2} + \frac{1}{24} x^3 + k$

Learn more about substitution here:

https://brainly.com/question/30288521

#SPJ11

26. find the given indefinite integral
56. Marginal cost; find the cost function for the given marginal
function

Answers

To find the cost function from the given marginal cost function, we need to integrate the marginal cost function.

The marginal cost function represents the rate at which the cost changes with respect to the quantity produced. To find the cost function, we integrate the marginal cost function.

Let's denote the marginal cost function as MC(x), where x represents the quantity produced. The cost function, denoted as C(x), can be found by integrating MC(x) with respect to x:

C(x) = ∫ MC(x) dx

By integrating the marginal cost function, we obtain the cost function that represents the total cost of producing x units.

It's important to note that the specific form of the marginal cost function is not provided in the question. In order to find the cost function, the marginal cost function needs to be given or specified. Once the marginal cost function is known, it can be integrated to obtain the corresponding cost function.

Learn more about marginal cost here:
https://brainly.com/question/30099644

#SPJ11

PLEASE HELP
4. By what would you multiply the top equation by to eliminate x?
x + 3y = 9
-4x + y = 3
4
-3
-4

Answers

By what would you multiply the top equation by to eliminate x: A. 4.

How to solve these system of linear equations?

In order to determine the solution to a system of two linear equations, we would have to evaluate and eliminate each of the variables one after the other, especially by selecting a pair of linear equations at each step and then applying the elimination method.

Given the following system of linear equations:

x + 3y = 9                .........equation 1.

-4x + y = 3               .........equation 2.

By multiplying the equation 1 by 4, we have:

4(x + 3y = 9) = 4x + 12y = 36

By adding the two equations together, we have:

4x + 12y = 36

-4x + y = 3

-------------------------

13y = 39

y = 39/13

y = 3

Read more on elimination method here: brainly.com/question/28405823

#SPJ1

Find the equation of the curve that passes through (-1,1) if its
slope is given by dy/dx=12x^2-10x for each x.
Homework: Homework 17 dy Find the equation of the curve that passes through (-1,1) if its slope is given by dx y=0 Help me solve this View an example Get more help. O Et ■ LI Type here to search = 1

Answers

y(x) = 4x^3 - 5x^2 + 10.This is the equation of the curve that passes through the point (-1, 1) with the given slope dy/dx = 12x^2 - 10x.

To find the equation of the curve that passes through the point (-1, 1) with the given slope dy/dx = 12x^2 - 10x, we need to integrate the given expression to obtain the function y(x).We know that dy/dx = 12x^2 - 10x, so to find y(x), we integrate with respect to x:
∫(12x^2 - 10x) dx = 4x^3 - 5x^2 + C, where C is the integration constant.
Now, we use the given point (-1, 1) to determine the value of C. Substitute x = -1 and y = 1 into the equation:
1 = 4(-1)^3 - 5(-1)^2 + C
Solve for C:
1 = -4 - 5 + C
C = 10
So the equation of the curve is:
y(x) = 4x^3 - 5x^2 + 10
This is the equation of the curve that passes through the point (-1, 1) with the given slope dy/dx = 12x^2 - 10x.

Learn more about slope here:

https://brainly.com/question/29015091

#SPJ11

Find the derivative of the function. f(x) = Inc 4x3 In()

Answers

The derivative of the function f(x) = ln(4x^3) can be found using the chain rule, resulting in f'(x) = (12x^2)/x = 12x^2.

To find the derivative of the given function f(x) = ln(4x^3), we apply the chain rule. The chain rule states that if we have a composition of functions, such as f(g(x)), where f and g are differentiable functions, then the derivative of f(g(x)) with respect to x is given by f'(g(x)) * g'(x).

In this case, our outer function is ln(x), and our inner function is 4x^3. Applying the chain rule, we differentiate the outer function with respect to the inner function, which gives us 1/(4x^3). Then, we multiply this by the derivative of the inner function, which is 12x^2.

Combining these results, we have f'(x) = 1/(4x^3) * 12x^2. Simplifying further, we get f'(x) = (12x^2)/x, which can be simplified as f'(x) = 12x^2.

Therefore, the derivative of f(x) = ln(4x^3) is f'(x) = 12x^2.

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11

consider a data set corresponding to readings from a distance sensor: 9, 68, 25, 72, 46, 29, 24, 93, 84, 17 if normalization by decimal scaling is applied to the set, what would be the normalized value of the first reading, 9?

Answers

If decimal scaling normalization is applied to the given data set, the normalized value of the first reading, 9, would be 0.09.

To normalize the first reading, 9, we divide it by 100. Therefore, the normalized value of 9 would be 0.09.By applying the same normalization process to each value in the data set, we would obtain the normalized values for all readings. The purpose of normalization is to scale the data so that they fall within a specific range, often between 0 and 1, making it easier to compare and analyze different variables or data sets.

Learn more about normalization here:

https://brainly.com/question/15603885

#SPJ11









26) If T(t) is the unit tangent vector of a smooth curve, then the wrvuture is K- IdT/ dt]. Tlf Explain مبلم ot
16) The set of points { (+19, 2) | xty = 13 is a circle . TIF Explain. T

Answers

The curvature (K) of a smooth curve is defined as the magnitude of the derivative of the unit tangent vector with respect to arc length, not with respect to time, hence it is false, and yes, the set of points {(x, y, z) | x² + y² = 1} represents a circle in three-dimensional space.

a) False. The assertion is false. A smooth curve's curvature is defined as the magnitude of the derivative of the unit tangent vector with respect to arc length, which is expressed as K = ||dT/ds||, where ds is the differential arc length. It is not simply equivalent to the time derivative of the unit tangent vector (dt).

b) True. It is a circular cylinder with a radius of one unit whose x and y coordinates are on the unit circle centered at the origin (0, 0). The z-coordinate can take any value, allowing the circle to extend along the z-axis.

To know more about tangent to the curve, visit,

https://brainly.com/question/29991057

#SPJ4

a) If T(t) is the unit tangent vector of a smooth curve, then the curvature is K = [dT/dt]. T/F Explain.

b) The set of points {(x, y, z) | x² + y² = 1} is a circle . T/F Explain.

Simplify the following algebraic fraction. Write the answer with positive exponents. v-3-w -W V+W Select one: V+w O a. v3w "(v3-14 V+W Ob. VW O c. w4_13 vw (v+w) O d. 1 3** 4 O e. v4+w

Answers

The simplified form of the algebraic fraction  (v^-3 - w)/(w(v + w)) is (v^4 + w).

To simplify the fraction, we start by multiplying both the numerator and the denominator by v^3 to eliminate the negative exponent in the numerator: (v^-3 - w)(v^3)/(w(v + w))(v^3) This simplifies to:  1 - wv^3/(w(v + w))(v^3)

Next, we cancel out the common factors in the numerator and denominator: 1/(v + w)  Finally, we simplify further by multiplying the numerator and denominator by v^4: v^4/(v + w) Therefore, the simplified form of the algebraic fraction is v^4 + w.

Learn more about algebraic fraction here: brainly.com/question/11525185

#SPJ11

A gardner is mowing a 20 x 40 yard rectangular pasture using a diagonal pattern.

Answers

The complete question may be like:

A gardener is trimming a hedge in a rectangular garden using a diagonal pattern. The garden measures 15 feet by 30 feet. How many total linear feet will the gardener trim if they follow the diagonal pattern to trim all sides of the hedge?

The gardener will trim a total of 90 linear feet when using a diagonal pattern to trim all sides of the hedge in the rectangular garden.

To find the total linear feet the gardener will trim when using a diagonal pattern to trim all sides of the hedge in a rectangular garden, we need to determine the length of the diagonal.

Using the Pythagorean theorem, we can calculate the length of the diagonal:

Diagonal = √(Length^2 + Width^2)

Diagonal = √(15^2 + 30^2)

Diagonal = √(225 + 900)

Diagonal = √1125

Diagonal ≈ 33.54 feet

Since the diagonal pattern follows the perimeter of the rectangular garden, the gardener will trim along the four sides, which add up to twice the sum of the length and width of the garden:

Total Linear Feet = 2 * (Length + Width)

Total Linear Feet = 2 * (15 + 30)

Total Linear Feet = 2 * 45

Total Linear Feet = 90 feet

Therefore, the gardener will trim a total of 90 linear feet when using a diagonal pattern to trim all sides of the hedge in the rectangular garden.

For more such question on diagonal

https://brainly.com/question/23008020

#SPJ8

Evaluate the integrals given. Upload the quiz file and submit it. 1. S cos3 3.x sin 3x dx 2. S csc4 5x cot* 5x dx 3. S cos xdx from a = 0 tob= 4, S sec3 7x tan 7x dx

Answers

1. The integral [tex]$\int \cos^3(3x) \sin(3x) dx$[/tex] evaluates to [tex]-\frac{1}{12} \cos^4(3x) + C$.[/tex]

2. The integral [tex]$\int \csc^4(5x) \cot(5x) dx$[/tex] evaluates to [tex]-\frac{1}{15} \sin^3(5x) + C$.[/tex]

3. The definite integral [tex]$\int_{a}^{b} \cos(x) dx$[/tex] evaluates to [tex]\sin(b) - \sin(a)$.[/tex]

4. The integral[tex]$\int \sec^3(7x) \tan(7x) dx$[/tex] evaluates to [tex]-\frac{1}{7} \sec(7x) + C$.[/tex]

What are definite integrals?

Definite integrals are a type of integral that represent the accumulated area between a function and the x-axis over a specific interval. They are used to find the total value or quantity of a quantity that is changing continuously.

1. To evaluate the integral [tex]\int \cos^3(3x) \sin(3x) dx$,[/tex] we use the substitution method. Let [tex]$u = \cos(3x)$[/tex], then [tex]du = -3\sin(3x) dx$.[/tex] Rearranging, we have [tex]dx = -\frac{du}{3\sin(3x)}$.[/tex]

The integral becomes:

[tex]\[\int \cos^3(3x) \sin(3x) dx = \int u^3 \left(-\frac{du}{3\sin(3x)}\right) = -\frac{1}{3} \int u^3 du = -\frac{1}{3} \cdot \frac{u^4}{4} + C = -\frac{u^4}{12} + C,\][/tex]

where [tex]$C$[/tex] is the constant of integration.

Finally, substitute back [tex]$u = \cos(3x)$[/tex]  to get the final result:

[tex]\[\int \cos^3(3x) \sin(3x) dx = -\frac{1}{12} \cos^4(3x) + C.\][/tex]

2. To evaluate the integral [tex]$\int \csc^4(5x) \cot(5x) dx$[/tex], we can use the substitution method. Let [tex]$u = \sin(5x)$[/tex], then[tex]$du = 5\cos(5x) dx$.[/tex] Rearranging, we have [tex]dx = \frac{du}{5\cos(5x)}$.[/tex]

The integral becomes:

[tex]\[\int \csc^4(5x) \cot(5x) dx = \int \frac{1}{u^4} \left(\frac{du}{5\cos(5x)}\right) = \frac{1}{5} \int \frac{du}{u^4} = \frac{1}{5} \cdot \left(-\frac{1}{3u^3}\right) + C = -\frac{1}{15u^3} + C,\][/tex]

where Cis the constant of integration.

Finally, substitute back [tex]$u = \sin(5x)$[/tex] to get the final result:

[tex]\[\int \csc^4(5x) \cot(5x) dx = -\frac{1}{15} \sin^3(5x) + C.\][/tex]

3. To evaluate the integral [tex]$\int_{a}^{b} \cos(x) dx$[/tex], we can simply integrate the function [tex]$\cos(x)$.[/tex] The antiderivative of[tex]$\cos(x)$ is $\sin(x)$.[/tex]

The integral becomes:

[tex]\[\int_{a}^{b} \cos(x) dx = \sin(x) \Bigg|_{a}^{b} = \sin(b) - \sin(a).\][/tex]

4. To evaluate the integral [tex]\int \sec^3(7x) \tan(7x) dx$[/tex], we can use the substitution method. Let [tex]$u = \sec(7x)$[/tex], 's then [tex]du = 7\sec(7x)\tan(7x) dx$.[/tex]Rearrange, we have[tex]$dx = \frac{du}{7\sec(7x)\tan(7x)} = \frac{du}{7u}$.[/tex]

The integral becomes:

[tex]\[\int \sec^3(7x) \tan(7x) dx = \int \frac{1}{u^3} \left\[\int \frac{1}{u^3} \left(\frac{du}{7u}\right) = \frac{1}{7} \int \frac{1}{u^2} du = \frac{1}{7} \cdot \left(-\frac{1}{u}\right) + C = -\frac{1}{7u} + C,\][/tex]

where C is the constant of integration.

Finally, substitute back[tex]$u = \sec(7x)$[/tex]to get the final result:

[tex]\[\int \sec^3(7x) \tan(7x) dx = -\frac{1}{7} \sec(7x) + C.\][/tex]

Learn more about definite integrals:

https://brainly.com/question/8693189

#SPJ4

Write the given quotient in the form a + b i.
2-3i/5+4i

Answers

We are given a quotient in the form (2 - 3i)/(5 + 4i) and need to express it in the form a + bi.

To express the given quotient in the form a + bi, where a and b are real numbers, we can multiply the numerator and denominator by the conjugate of the denominator. The conjugate of 5 + 4i is 5 - 4i.

By multiplying the numerator and denominator by the conjugate, we get:

((2 - 3i)/(5 + 4i)) * ((5 - 4i)/(5 - 4i))

Expanding this expression, we have:

(10 - 8i - 15i + 12i^2)/(25 - 20i + 20i - 16i^2)

Simplifying further, we have:

(10 - 23i - 12)/(25 + 16)

Combining like terms, we get:

(-2 - 23i)/41

Therefore, the given quotient (2 - 3i)/(5 + 4i) can be expressed in the form a + bi as (-2/41) - (23/41)i.

To learn more about real numbers: -brainly.com/question/9876116#SPJ11


please answer all questions, thankyou.
? cos(1+y) does not exist. 1. Show that the limit lim (r.y)+(0,0) 22+ya 22 2. Find the limit or show it does not exist: lim(x,y)–(0,0) 72 + y4 12 3. Find the limit or show it does not exist: lim(x,y

Answers

The limit of (cos(1+y)) as (x,y) approaches (0,0) does not exist.

The limit of (7x^2 + y^4)/(x^2 + 12) as (x,y) approaches (0,0) does not exist.

The limit of (x^2 + y^2)/(x - y) as (x,y) approaches (0,0) does not exist.

To show that the limit of (cos(1+y)) as (x,y) approaches (0,0) does not exist, we can consider approaching along different paths. For example, if we approach along the path y = 0, the limit becomes cos(1+0) = cos(1), which is a specific value. However, if we approach along the path y = -1, the limit becomes cos(1+(-1)) = cos(0) = 1, which is a different value. Since the limit depends on the path taken, the limit does not exist.

To find the limit of (7x^2 + y^4)/(x^2 + 12) as (x,y) approaches (0,0), we can try approaching along different paths. For example, approaching along the x-axis (y = 0), the limit becomes (7x^2 + 0)/(x^2 + 12) = 7x^2/(x^2 + 12). Taking the limit as x approaches 0, we get 0/12 = 0. However, if we approach along the path y = x, the limit becomes (7x^2 + x^4)/(x^2 + 12). Taking the limit as x approaches 0, we get 0/12 = 0. Since the limit depends on the path taken and gives a consistent value of 0, we conclude that the limit exists and is equal to 0.

To find the limit of (x^2 + y^2)/(x - y) as (x,y) approaches (0,0), we can again approach along different paths. For example, approaching along the x-axis (y = 0), the limit becomes (x^2 + 0)/(x - 0) = x^2/x = x. Taking the limit as x approaches 0, we get 0. However, if we approach along the path y = x, the limit becomes (x^2 + x^2)/(x - x) = 2x^2/0, which is undefined. Since the limit depends on the path taken and gives inconsistent results, we conclude that the limit does not exist.

Learn more about limit  here:

https://brainly.com/question/12207558

#SPJ11

Other Questions
the criterion a company utilizes for deciding about the elimination of a product from the marketplace is a. cost versus benefit analysis b. income taxes level c. speculation d. sales taxes level Question 5 (5 points)A Vex motor has a has a voltage of 9 volts running through it, and acurrent of 15 mA. What is the power?(Precision of 0.000) i am thinking of a number my number is a multiple of 6 what three numbers must my number be a multiple of Find the extremum of f(x,y) subject to the given constraint, and state whether it is a maximum or a minimum. f(x,y)= 3x + 4y? - 4xy; x+y=11 ++ There is a value of located at (x, y) = (Simplify your answer) Given s 2x2-x+3 -/P(x) dx +5 2x2 2x +10x Determine P(x) - . X+3 +1 X + 1 A 1 B.3 f CO D. 2 Convert the polar coordinate (5,116)(5,116) to Cartesiancoordinates.Enter exact values.Convert the polar coordinate 5, (5, 1967) to Cartesian coordinates. Enter exact values. X = y = = Find the general solution to the differential equation modeling how a person learns: dy 100-y. dt Then find the particular solutions with the following initial conditions: y(0) = 5:y=1 y(0) = 135: y= literature review with citations A sample of sand is sieved and 10% of the sample has grain sizes that are finer than 0.0002 m. If the Hazen coefficient is 118, what is the hydraulic conductivity in m/d from the Hazen method? what chapter was the time lenina and henry were in the helicopter scene and she looks down to take a photo let g be a directed graph with source s and sink t. suppose f is a set of arcs after whose deletion there is no flow of positive value from s to t. prove that f contains a cut. How are moles and particles related. How could you find the number of particles in 4 moles of substance A car travels a distance of 120 km in 4 hours. What is its average speed in kilometers per hour? Suppose that lim p(x) = 2, lim f(x)=0, and lim s(x) = -9. Find the limits in parts (a) through (C) below. X-+-4 x-+-4 X-+-4 + a. lim (p(x) +r(x) + s(x)) = X-4 (Simplify your answer.) T or F sports participants assume a primary assumption of fault because injuries are inherent risks of playing the game. Surveys indicate that most people diagnosed with a life-threatening illnessA. would rather suspect it without being told directly.B. would rather not know.C. want to be told.D. do not want their families to be told. Legacy Toyota, a Toyota dealer, on West Tennessee St. in Tallahassee is a best example of ________ franchising. O Service firm-retailer systems O Manufacturer-wholesaler systems O Wholesaler-retailer systems O Manufacturer-retailer systems Which of the following will cause an increase in the quantity supplied of ice cream at local grocery stores? The cost of cream, an input to the production of ice cream, rises. Prairie Farms, a major producer of ice cream, invents a new cost-saving process for freezing ice cream. The price of ice cream falls. The price of frozen custard, a substitute for ice cream in the minds of many consumers, falls. The price of ice cream rises. How does Celebrity Cruises collect data about the customer experience? Part 2A. with a personal interview on the last day of the cruise.B. with a postcard sent to the customer's home.C. with a personal interview as the customer is leaving the ship.D. with an email survey within a few hours after returning to port.E. with a phone interview after the customer has returned home. The minimum amount that you must keep in an account every day is an important criterion when comparing the features and requirements of different checking accounts offered by a bank.a. true b. false