Answer:
A
Step-by-step explanation:
[tex]g(x) = \frac{3}{{x}^{2} + 2x} \\ {x}^{2} + 2x - \frac{3}{g(x)} = 0 \\ x = \frac{1}{2} \Big( - 2 + \sqrt{12 + \frac{12}{g(x)} }\Big) \\ x = - 1 + \sqrt{1 \pm \frac{3}{g(x)} } [/tex]
Now replace $x$ by $g^{-1}(x)$ and $g(x)$ by $x$ and you have your answer.
An open box is made from a 10cm by 20cm Piece of Tin by cutting a square from each corner and folding the edges. The area of the resulting base is 96 cm2. What is the length of the sides of the squares?
Answer:
2 cm
Step-by-step explanation:
If x is the length of the sides of the squares, then the height of the box is also x. The length and width of the base are 10−2x and 20−2x. The area of the base is the length times the width.
96 = (10 − 2x) (20 − 2x)
96 = 200 − 20x − 40x + 4x²
0 = 4x² − 60x + 104
0 = x² − 15x + 26
0 = (x − 2) (x − 13)
x = 2 or 13
Since x < 5, x = 2.
So the length of the sides of the squares is 2 cm.
Suppose you take a 12-question true or false quiz by guessing each answer. Use the binomial table to find the probability of guessing 6 or more questions correctly.
Answer:
0.6127 = 61.27% probability of guessing 6 or more questions correctly.
Step-by-step explanation:
For each question, there are only two possible outcomes. Either you guess the correct answer, or you do not. The probability of guessing the correct answer of a question is independent of other questions. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
12 questions:
This means that [tex]n = 12[/tex]
True-false:
Two options, one of which is correct. So [tex]p = \frac{1}[2} = 0.5[/tex]
Find the probability of guessing 6 or more questions correctly.
[tex]P(X \geq 6) = P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 6) = C_{12,6}.(0.5)^{6}.(0.5)^{6} = 0.2256[/tex]
[tex]P(X = 7) = C_{12,7}.(0.5)^{7}.(0.5)^{5} = 0.1934[/tex]
[tex]P(X = 8) = C_{12,8}.(0.5)^{8}.(0.5)^{4} = 0.1208[/tex]
[tex]P(X = 9) = C_{12,9}.(0.5)^{9}.(0.5)^{3} = 0.0537[/tex]
[tex]P(X = 10) = C_{12,10}.(0.5)^{10}.(0.5)^{2} = 0.0161[/tex]
[tex]P(X = 11) = C_{12,11}.(0.5)^{11}.(0.5)^{1} = 0.0029[/tex]
[tex]P(X = 12) = C_{12,12}.(0.5)^{12}.(0.5)^{0} = 0.0002[/tex]
[tex]P(X \geq 6) = P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12) = 0.2256 + 0.1934 + 0.1208 + 0.0537 + 0.0161 + 0.0029 + 0.0002 = 0.6127[/tex]
0.6127 = 61.27% probability of guessing 6 or more questions correctly.
PLEASE PLEASE PLEASE HELP PLEAS :( THE SECOND ONE JEJEJEJDD PLEASEEEEEE
Answer:
P
Step-by-step explanation:
Count the line endings in each letter as you write it down.
Answer:
I agree with tonb .Ace,he's/she's right
PLEASE HELP URGENT THIS IS TRIGONOMETRY
Answer:
B. [tex] \frac{7x^2 + 11x}{x^2 + 6x + 5} [/tex]
Step-by-step explanation:
The sum is worked as shown below:
[tex] \frac{x}{x + 1} + \frac{6x}{x + 5} [/tex]
Use the common denominator to divide each denominator, then use the result to multiply the numerator, you'd have the following:
[tex] \frac{x(x + 5) + 6x(x + 1)}{(x + 1)(x + 5)} [/tex]
Use the distributive property of multiplication to solve
[tex] \frac{x(x) + x(5) + 6x(x) + 6x(1)}{(x(x + 5) + 1(x + 5)} [/tex]
[tex] \frac{x^2 + 5x + 6x^2 + 6x}{x^2 + 5x + x + 5} [/tex]
Pair like terms
[tex] \frac{x^2 + 6x^2 + 5x + 6x}{x^2 + 6x + 5} [/tex]
[tex] \frac{7x^2 + 11x}{x^2 + 6x + 5} [/tex]
The answer is B.
Suppose an object moves along the y-axis (marked in feet) so that its position at time x (in seconds) is given by the f(x) = 96x -16x^2, find the following.
A) The instantaneous velocity function v = f (x).
B) The velocity when x = 0 and x = 4 seconds.
C) The time(s) when v = 0
Answer:
A) v = f(x) = 96 -32x
B)the velocity when x = 0
V = 96 ft/s
The velocity when x =4
V = -32 ft/s
C). Time when v= 0
3 seconds = x
Step-by-step explanation:
f(x) = 96x -16x^2
The above equation represents the position of the object at x time along the x axis.
The velocity will be determined by differentiating the equation with respect with x
f(x) = 96x -16x^2,
D f(x)/Dx= 96 -2(16x)
D f(x)/Dx= 96 -32x
v = f(x) = 96 -32x
The velocity when x = 0
v = f(x) = 96 -32x
V = f(0) = 96-32(0)
V = 96 ft/s
The velocity when x = 4
v = f(x) = 96 -32x
V = f(4) = 96-32(4)
V = 96 - 128
V = -32 ft/s
Time when v= 0
v = f(x) = 96 -32x
0= 96 -32x
-96= -32x
-96/-32=x
3 seconds = x
Your parents are giving you $210 a month for four years while you are in college. At an interest rate of .49 percent per month, what are these payments worth to you when you first start college?
Answer:
These payments will be worth $11,332.94.
Step-by-step explanation:
We can calculate this as an annuity but with monthly periods and monthly interest rates.
Then, we have:
C = cash flow per period = $210
n = number of payments = 48
i = interest rate = 0.49% = 0.0049
Then, we can calculate the future value of this stream of deposits as:
[tex]FV=C\left[\dfrac{(1+i)^n-1}{i}\right]\\\\\\FV=210\left[\dfrac{(1.0049)^{48}-1}{0.0049}\right]=210\left[\dfrac{1.2644-1}{0.0049}\right]=210\left[\dfrac{0.2644}{0.0049}\right]\\\\\\FV=210\cdot 53.966\\\\\\FV=11332.94[/tex]
What is the value of y iin this equation? 4(y-3) =48
Answer:
y = 15Step-by-step explanation:
Question:
4(y - 3) = 48
1. Distribute
4y - 12 = 48
2. Simplify Like terms
4y - 12 = 48
+ 12 + 12
4y = 60
3. Solve
4y = 60
/4 /4
y = 15
4. Check:
4(y - 3) = 48
4((15) - 3) = 48
4(12) = 48
48 = 48 Correct!
Hope this helped,
Kavitha
Answer:
[tex]y=15\\[/tex]
Step 1:
To find y, we first have to multiply [tex]4(y-3)[/tex]. When we do that (4 * y, 4 * - 3), we get [tex]4y-12[/tex].
Step 2:
Our equation looks like this now:
[tex]4y-12=48[/tex]
To solve this equation, we have to add 12 on both sides so we can cancel out the -12 on the left side of the equation.
[tex]4y-12(+12)=48(+12)[/tex]
[tex]4y=60[/tex]
Now, we can divide 4 on both sides to get y by itself.
[tex]4y/4\\60/4[/tex]
[tex]y=15[/tex]
Part A: Factor 3x2c2 + 5xc2 − 2c2. Show your work. (4 points) Part B: Factor x2 + 6x + 9. Show your work. (3 points) Part C: Factor x2 − 9. Show your work. (3 points) (10 points)
Answer:
[tex]\boxed{\mathrm{view \: explanation}}[/tex]
Step-by-step explanation:
A) 3x²c² + 5xc² - 2c²
Factor c² from all terms in the expression.
c²(3x² + 5x - 2)
Factor 3x² + 5x - 2
c²(3x-1)(x+2)
B) x² + 6x + 9
x² + 3x + 3x + 9
Factor common terms.
x(x+3)+3(x+3)
Take x+3 common.
(x+3)(x+3)
C) x² - 9
x² -3²
Apply formula : a² - b² = (a+b)(a-b)
(x+3)(x-3)
Answer:
A) [tex]c^2(3x-1)(x+2)[/tex]
B) [tex](x+3)(x+3)[/tex]
C) [tex](x+3)(x-3)[/tex]
Step-by-step explanation:
Part A:
[tex]3x^2c^2+5xc^2-2c^2[/tex]
Taking [tex]c^2[/tex] common
[tex]c^2(3x^2+5x-2)[/tex]
Using mid term break formula
[tex]c^2 (3x^2+6x-x-2)[/tex]
[tex]c^2[3x(x+2)-1(x+2)][/tex]
[tex]c^2(3x-1)(x+2)[/tex]
Part B:
[tex]x^2 + 6x + 9.[/tex]
[tex](x)^2+2(x)(3)+(3)^2[/tex]
[tex](x+3)^2[/tex]
[tex](x+3)(x+3)[/tex]
Part C:
[tex]x^2-9[/tex]
[tex](x)^2-(3)^2[/tex]
[tex](x+3)(x-3)[/tex]
Describe appropriate domain and range for the function (blood alcohol con tent, reflex time)for a single person
Answer:
If we have a function f(x) = y.
the set of possible values of x is called the domain
the set of possible values of y is called the range.
In this case, we have:
Blood alcohol content vs Reflex time,
The possible values of alcohol in blood content depend on the particular person, but we can have a minimum of 0.0 (no alcohol in blood) and a maximum of .51 (for a 90 lb person) because at this range the person enters the risk of death.
So the domain is: D = [0.0, 0.51]
But, we actually can have higher values of alcohol in blood, so we actually can use a domain:
D = [0.0, 1.0]
For the range, we need to see at the possible values of the reflex time.
And we know that the human reflex time is in between 100ms and 500ms
So our range can be:
R = [100ms, 500ms]
There are three times as many fiction books as non-fiction books in a library. 120 fiction and 24 non-fiction books are loaned out. There are now twice as many non-fiction books as fiction books. How many books were in the library?
How do I work this out step by step?
Answer:
672
Step-by-step explanation:
If we call the number of non-fiction books as x, the number of fiction books would be 3x. Therefore: we can write the following equation:
3x - 120 = 2(x - 24) ← the 3x - 120 and x - 24 represents the new number of books
3x - 120 = 2x - 48
x - 120 = 48
x = 168 which means 3x = 3 * 168 = 504, therefore the total number of books is 168 + 504 = 672.
Given: circle k(O), O∈ AB ,CD ⊥ AB Prove: △ADC∼△ACB
HELP ASAP 20 POINTS AND BRAINLIEST!!!
Answer:
Step-by-step explanation:
Given : In a circle O,
AB is a diameter and CD⊥AB,
To Prove :
ΔADC ~ ΔACB
Solution :
In ΔADC and ΔACB,
m∠ADC = 90° [Given]
m∠ACB = 90° [Angle subtended by the diameter = 90°]
m∠ADC ≅ m∠ACB ≅ 90°
∠A ≅ ∠A [Reflexive property]
Therefore, ΔADC ~ ΔACB [By AA postulate of similarity]
Solve the formula V=LHW for L
Answer:
L = [tex]\frac{V}{HW}[/tex]
Step-by-step explanation:
Given
V = LHW ( isolate L by dividing both sides by HW )
[tex]\frac{V}{HW}[/tex] = L
Answer:
[tex]l = \frac{v}{w \times h} [/tex]
Step-by-step explanation:
[tex]v = l \times w \times h = \frac{v}{w \times h} = \frac{l \times h \times w}{w\times h} = l = \frac{v}{w \times h} [/tex]
Hope this helps ;) ❤❤❤
Please help Each statement describes a transformation of the graph of f(x) = x. Which statement correctly describes the graph of g(x) if g(x) = f(x) - 3
Answer:
C
Step-by-step explanation:
It is the graph of f(x) translated 3 units down. Think about in numerical terms,
if y = 5 y-1 = 5- 1 = 4, so that's what is happening with all numbers on the y axis. You have y = f(x) and you do y-3 = f(x)-3, so, all "y" points are translated 3 units down
If x + 4 = 12, what is the value of x?
Answer:
x = 8
Step-by-step explanation:
x + 4 = 12
x=12-4
x=8
Answer:
8
Step-by-step explanation:
x+4=12, so 12-4=x (if you use an the inverse operation of addition, subtraction.)
12-4=x, so all you have to do is subtract and, there you have it, 8. It makes sense, 8+4=12. :)
Hi can u help me plz
What is the distance betweem points W and X to the nearest hundredth?
Answer:
16.97 Units
Step-by-step explanation:
From the graph
Point W is located at (-6,4)
Point X is located at (6,-8)
To determine the distance between points W and X, we use the distance formula.
[tex]\text{Distance Formula}=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex](x_1,y_1)=(-6,4)\\(x_2,y_2)=(6,-8)[/tex]
So,
[tex]WX=\sqrt{(6-(-6))^2+(-8-4)^2} \\=\sqrt{(6+6)^2+(-12)^2}\\=\sqrt{(12)^2+(-12)^2}\\=\sqrt{288}\\=16.97$ units (correct to the nearest hundredth)[/tex]
Help ASAP!!!!
1. Solve for x. Round to the nearest hundredth if necessary.
Answer:
The answer is option B
34.28Step-by-step explanation:
To solve for x we use tan
tan ∅ = opposite / adjacent
From the question
The adjacent is x
The opposite is 19
So we have
tan 29 = 19/ x
x = 19/ tan 29
x = 34.276
x = 34.28 to the nearest hundredthHope this helps
Answer:
x ≈ 34.28
Step-by-step explanation:
Using the tangent ratio in the right triangle
tan29° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{19}{x}[/tex] ( multiply both sides by x )
x × tan29° = 19 ( divide both sides by tan29° )
x = [tex]\frac{19}{tan29}[/tex] ≈ 34.28 ( to the nearest hundredth )
Helpppp..................
Answer:
0.11
Step-by-step explanation:
Hello,
[tex]P(A|B)=\dfrac{P(A\cap B)}{P(B)} \ \ \text{ so ...}\\\\P(A\cap B)=P(A|B)\cdot {P(B)= 0.55 * 0.2 = 0.11\\[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Suppose Miss Roxanne Davenport is 25 years old right now and puts away $1,800 per quarter in an account that returns 6% interest. a.) How much will be in the account when she turns 65? b.)What is her total contribution to the account?
Answer:
a. Total amount after 65 years = $1179415.39
b. The total contribution to the account = $288000
Step-by-step explanation:
Given annuity amount = $1800
Total number of years for contribution = 65 – 25 = 40 years
Interest rate = 6%
a. Total amount after 65 years = Annuity[((1+r)^n -1) / r]
Total amount after 65 years = 1800×((1+.06/4)^(4 × 40) - 1)/(.06/4)
Total amount after 65 years = $1179415.39
b. The total contribution to the account =1800 × 4 Quarter × 40 Years
The total contribution to the account = $288000
which of these shows the result of using the first equation to substitute for y in the second equation, then combining like terms. y=2x 2x+3y=16 a. 4x=16 b. 5y=16 c. 8x=16 d. 5x=16
Answer:
C. [tex]\Rightarrow \bold{8x = 16}[/tex]
Step-by-step explanation:
Given the two equations:
[tex]y=2x ........ (1)\\ 2x+3y=16.......(2)[/tex]
To find:
The correct option when value of y is substituted to 2nd equation using the 1st equation.
Solution:
First of all, let us learn about the substitution method.
Substitution method is the method to provide solutions to two variables when we have two equations and two variables.
In substitution method, we find the value of one variable in terms of the other variable and put this value in the other equation.
Now, the other equation becomes only single variable and then we solve for the variable's value.
Here, we have two equations and value of one varible is:
[tex]y=2x[/tex]
Let us put value of y in 2nd equation:
[tex]2x+3y=16\\\Rightarrow 2x + 3(2x) = 16\\\Rightarrow 2x + 6x = 16\\\Rightarrow \bold{8x=16}[/tex]
So, the correct answer is option C. [tex]\Rightarrow \bold{8x = 16}[/tex]
Answer: 8x=16
Step-by-step explanation:a pex
A dollar bill is 0.0043 inches thick. How many yards high
is a
pile of a million $1 bills
Hey there! I'm happy to help!
First, let's multiply this thickness by one million to see how many inches this pile is.
0.0043*×1,000,000=4,300 inches
We know that there are 12 inches in a foot and 3 feet in a yard, so there must be 36 inches in a yard.
So, we divide our 4,300 inches by 36 to find how many yards high this pile is.
4300÷36=119 4/9
Therefore, a pile of a million $1 bills is 119 4/9 yards high.
Have a wonderful day! :D
You bet $50 on 00 in a game of roulette. If the wheel spins 00, you have a net win of $1,750, otherwise you lose the $50. A standard roulette wheel has 38 slots numbered 00, 0, 1, 2, ... , 36. What is the expected profit for one spin of the roulette wheel with this bet?
Answer:
-$2.63
Step-by-step explanation:
Calculation for the expected profit for one spin of the roulette wheel with this bet
Based on the information given you bet $50 on 00 while the standard roulette has 38 possible outcomes which means that the probability or likelihood of getting 00 will be 1/38.
Therefore when we get an 00, we would get the amount of $1,750 with a probability of 1/38 and in a situation where were we get something other than 00 this means we would lose $50 with a probability of 37/38.
Now let find the Expected profit using this formula
Expected profit = sum(probability*value) -sum(probability*value)
Let plug in the formula
Expected profit =($1,750 * 1/38) - ($50 * 37/38)
Expected profit=($1,750*0.026315)-($50×0.973684)
Expected profit= 46.05 - 48.68
Expected profit = - $2.63
Therefore the expected profit for one spin of the roulette wheel with this bet will be -$2.63
Find the multiplicative inverse of -9/2
Answer:
-2/9
Step-by-step explanation:
When you multiply a number by its multiplicative inverse, you should get 1. So, the multiplicative inverse (or reciprocal) of -9/2 is 1/(-9/2) which is -2/9. You can get the answer by simply flipping the numerator and denominator.
- Find the circumference of the circle with the given radius or diameter. Use 3.14.
diameter = 10 cm
A. 15.7 cm
B. 314 cm
C. 78.5 cm
D. 31.4 cm
Answer:
C = 31.4 cm
Step-by-step explanation:
C = pi * d where d is the diameter
C = 3.14 * 10
C = 31.4 cm
Circumference = pi x diameter
= 3.14 x 10
= 31.4 cm
The answer is D. 31.4 cm.
2{ 2[24 + 4(23 - 14) - 25]}
Answer:
140
Step-by-step explanation:
2{ 2[24 + 4(9)-25]}
2{ 2[24 + 36-25]}
2{ 2[35]}
2(70)
140
Please answer this correctly without making mistakes
Answer:
B)Gift shop
pls mark me as BRAINLIEST
hope the answer helped you
given that H0: μ=40 against H1: μ < 40 if mice have an average life of 38 months with a standard deviation of 5.8 months. If the distribution of life spans is approximately normal, how large a sample is required in order that the probability of committing a type II error be 0.1 when the true mean is 35.9 months? Assume that level of significance 0.05.
Answer: sample required n = 18
Step-by-step explanation:
Given that the value under under null hypothesis is 40 while the value under the alternative is less than 40, specifically 35.9
∴ H₀ : u = 40
H₁ : u = 35.9
therefore β = ( 35.9 - 40 ) = -4.1
The level of significance ∝ = 0.05
Probability of committing type 11 error P = 0.1
standard deviation α = 5.8
Therefore our z-vales (z table)
Z₀.₅ = 1.645
Z₀.₁ = 1.282
NOW let n be sample size
n = {( Z₀.₅ + Z₀.₁ )² × α²} / β²
n = {( 1.645 + 1.282 )² × 5.8²} / (- 4.1)²
n = 17.14485
Since we are talking about sample size; it has to be a whole number
therefore
sample required n = 18
In 2012, entering freshmen at the UA have an average ACT score of 25.4 with a standard deviation of 2.1. 1. What is the probability a student has an ACT score more than 24.1
Answer:
P [ Z > 24,1 ] = 72,24 %
Step-by-step explanation:
P [ Z > 24,1 ] = 1 - P [ Z < 24,1 ]
P [ Z < 24,1 ] = ( Z - μ₀ ) / σ
P [ Z < 24,1 ] = ( 24,1 - 25,4) / 2,1
P [ Z < 24,1 ] = - 1,3/ 2,1
P [ Z < 24,1 ] = - 0,6190 ≈ - 0,62
We look in z-table and find for z(score) -0,6190
P [ Z < 24,1 ] = 0,27763
Then
P [ Z > 24,1 ] = 1 - 0,27763
P [ Z > 24,1 ] = 0,72237 ⇒ or P [ Z > 24,1 ] = 72,24 %
21. In the figure given below, AC is parallel to DE. Find the valuesof xy and z and hence find the 2DBE.
21-70X
509
Answer:
X= 50°
Y= 70°
Z= 30°
BDE= 30°
2BDE= 60°
Step-by-step explanation:
(2x -70 )+z+(2x+20)=180...(sum of angle on a straight line)
2x -70 = BDE... alternate angles
Y + (2x-70)+(50+x-20) = 180...(sum of angles in a triangle)
X-20 = z ... alternate and opposite angles
(2x -70 )+z+(2x-+20)=180
2x-70 + x-20 +2x +20= 180
5x -70= 180
5x = 250
X= 50°
X-20 = z
50-20= z
30° = z
2x -70 = BDE
2(50) -70 = BDE
100-70 = BDE
30°= BDE
Y + (2x-70)+(50+x-20)
Y + 100-70 +50 +50 -20 = 180
Y + 200-90=180
Y= 70°
2BDE = 2*30
2BDE= 60°
Find the surface area of this shape (here is the grid too)
Answer:
12
Step-by-step explanation:
The second diagram is most helpful for finding the surface area.
Find the area of the middle square: 2 * 2 = 4Find the area of the triangle using A = 1/2*B*H, so A = 1/2 * 2 * 2 = 2Since there are 4 triangles, the surface area of all the triangles is 2 * 4 = 8Add the surface area of the triangles with the surface area of the square to get the total surface area: 8 + 4 = 12If you want further tutoring help in geometry or other subjects for FREE, check out growthinyouth.org.