Answer:
Gina has 47 nickels
Step-by-step explanation:
Let's call the number of nickels that Gina has "n" and the number of dimes she has "d". We know that she has a total of 70 nickels and dimes, so:
n + d = 70 (equation 1)
We also know that the value of her nickels and dimes is $4.65, which is equal to 465 cents. Each nickel is worth 5 cents and each dime is worth 10 cents, so the value of n nickels is 5n cents and the value of d dimes is 10d cents. Therefore, we can write another equation based on the value of the coins:
5n + 10d = 465 (equation 2)
We can simplify equation 2 by dividing both sides by 5:
n + 2d = 93 (equation 3)
Now we have two equations with two variables. We can solve for one of the variables in terms of the other and substitute into the other equation to solve for the remaining variable. For example, we can solve equation 1 for d:
d = 70 - n
Substituting this expression for d into equation 3, we get:
n + 2(70 - n) = 93
Simplifying this equation, we get:
n + 140 - 2n = 93
-n + 140 = 93
-n = -47
n = 47
Therefore, Gina has 47 nickels and 23 dimes (since n + d = 70), and the total value of her coins is $4.65.
Answer:
47 nickels
Step-by-step explanation:
47 nickels
Find the measure of gpy
Based on the figure, the measure of the angle GPY is 118 degrees.
What are alternate angles?Alternate angles are a pair of angles that are formed by a transversal intersecting two parallel lines.
When a transversal intersects a parallel line, it creates four angles.
Alternate angles are the pairs of angles that are on opposite sides of the transversal and on opposite sides of the parallel lines.
How to determine the measure of GPYThe key property of alternate angles is that they are congruent, meaning they have the same measure.
Here angle GPY is alternate to angle RPK.
Thus;
8p + 94 = 5p + 103
8p - 5p = 103 - 94
3p = 9
Divide both sides by 3;
p = 3
The measure of angle GPY becomes ;
= 5(3) + 103= 15 + 103= 118 degrees.
Learn more about alternate angles here:
https://brainly.com/question/26167358
#SPJ1
Josh has a furniture store. It cost
Josh $400 to build a cabinet. He
wants to sell the cabinet for
$800. What is his gross profit
margin?
[?]%
Help me…
The gross profit margin of the cabinet is 50%.
What is his gross profit margin?Gross profit margin is the difference between the revenue and cost of an item divided by the revenue of the same item expressed as a percent.
Revenue refers to the amount a seller sells a particular units of product.
Cost refers to the amount spent by a producer to manufacture a particular unit of a product.
Revenue = $800
Cost = $400
Gross profit margin = (Revenue - Cost) / Revenue × 100
= ($800 - $400) / $800 × 100
= 400/800 × 100
= 50%
Ultimately, 50% is the gross profit margin of the item.
Read more on profit:
https://brainly.com/question/23706629
#SPJ1
A) The priestess at Horus’ temple has to go up a flight of 5 steps each day.The high priest has decreed that she will ascend the steps one or two at a time. She wants to know if she can do this a different way each day for a week.Is it possible?How many ways are there of ascending the steps?
B) The grand staircase has 13 steps. The priest wants to know if he can climb this a different way each day for a year using the same rules as the priestess.
Is it possible?
How many ways are there of ascending the grand staircase?
Explain why your answer is correct.
please answer this pleaase
There are a total of 32 possible sequences because there are two alternatives for each stage. Since there are more than seven distinct ways to mount the stairs, the priestess can do so every day for a week.
How many ways are there of ascending the steps?(a) Every day, the priestess at the temple of Horus must climb a flight of five stairs, which she can do by taking one or two steps at a time. The amount of ways she can up the stairs on any given day can be represented by a binary digit, where 1 denotes a two-step ascent and 0 denotes a one-step ascent. For each of the five steps, for instance, 00101 reflects the order of her one- and two-step climbs.
How many ways are there of ascending the grand staircase?(b) The same regulations apply. The entire number of potential sequences, using the same binary digit format, is 213 = 8,192. There are therefore more than 365 possible ways to mount the grand staircase, allowing the priest to do so every day for a whole year.
In conclusion, the number of alternative binary sequences, where each digit denotes a one- or two-step climb, may be used to determine the number of ways the priestess can ascend the five-step flight of stairs and the number of ways the priest can ascend the thirteen-step grand staircase.
Learn more about Permutation here:
brainly.com/question/30649574
#SPJ1
Sheffield Company of Emporia, Kansas spreads herbicides and applies liquid fertilizer to local farmers
In the journal entries, Debit: Accounts Receivable Credit: Cash 570
Debit: Sales revenue Credit: Cash 40
Bank Reconciliation StatementMay 31, 2022
Cash balance per bank statement 8,120
Add:
Deposit in transit 1,972.55
Bank error—Sheffield 390
2,362.55
10,482.55
Less: Outstanding checks 876.05
Adjusted cash balance per bank 9,606.50
Cash balance per books 8,110.50
Add: Electronic funds transfer received 2,200
10,310.50
Less:
NSF check 570
Error in deposit 40
Error in recording check (1181) 54
Check printing charge 40
704
Adjusted cash balance per book 9,606.50
Journal Entries:
Debit: Cash Credit: Accounts Receivable 2,200
Debit: Accounts Receivable Credit: Cash 570
Debit: Sales revenue Credit: Cash 40
Debit: Accounts payable Credit: Cash 54
Debit: Bank charges expense Credit: Cash 40
Note: Bank charges expense can also be titled as Miscellaneous expense.
Read more about bank reconciliation here:
https://brainly.com/question/15525383
#SPJ1
Rational exponents: Products and quotients Simplify the expression. (a^(-(1)/(2)))/(a^(-(1)/(8)))
The simplified expression is a^(-(3)/(8)).
To simplify the expression (a^(-(1)/(2)))/(a^(-(1)/(8))), we need to use the properties of exponents. Specifically, we will use the property that states that when dividing two expressions with the same base, we can subtract the exponents.
So, in this case, we have:
(a^(-(1)/(2)))/(a^(-(1)/(8))) = a^(-(1)/(2) - (-(1)/(8)))
Simplifying the exponent:
= a^(-(4)/(8) + (1)/(8))
= a^(-(3)/(8))
In conclusion, the simplified expression of (a^(-(1)/(2)))/(a^(-(1)/(8))) is a^(-(3)/(8)).
To know more about simplified expression click on below link:
https://brainly.com/question/18077355#
#SPJ11
Ten pounds of mixed birdseed sells for $6.70 per pound. The mixture is obtained from two kinds of birdseed, with one variety priced at $5.77 per pound and the other at $8.87 per pound. How many pounds of each variety of birdseed are used in the mixture?
The composition of the mixture is: 7.323 pounds of the variety priced at $5.77 per pound and 2.677 pounds of the variety priced at $8.87 per pound.
To solve this problem, we can use a system of equations. Let x be the number of pounds of the first variety of birdseed, and y be the number of pounds of the second variety of birdseed.
The first equation will represent the total weight of the mixture:
x + y = 10
The second equation will represent the total cost of the mixture:
5.77x + 8.87y = 6.70(10)
Now we can use the elimination method to solve for one of the variables. Multiply the first equation by -5.77 to eliminate the x variable:
-5.77x - 5.77y = -57.7
Add this equation to the second equation:
3.1y = 8.3
Solve for y:
y = 2.677
Now we can plug this value back into the first equation to solve for x:
x + 2.677 = 10
x = 7.323
So, there are 7.323 pounds of the first variety of birdseed and 2.677 pounds of the second variety of birdseed in the mixture.
Learn more about mixture composition here:
https://brainly.com/question/29770842
#SPJ11
CAN SOMEONE PLSSS HELP!! -If the scale factor of a dilation is 8: 7, what kind of image does it create?
For the scale factor of a dilation is 8: 7,
''This scale factor results in an enlarged image.''
What is mean by Ratio?A ratio indicates how many times one number contain in another number. The ratio of two number is written as x : y, which is equivalent to x/y.
Where, x and y are individual amount of two quantities.
And, Total quantity gives after combine as x + y.
Given that;
The scale factor of a dilation is 8: 7.
Now, We know that;
When the scale factor is between 0 and 1 the image is a reduction.
And, If the scale factor is greater than 1, the image is an enlargement.
Hence, For the scale factor of a dilation is 8: 7,
''This scale factor results in an enlarged image.''
Learn more about the ratio visit:
https://brainly.com/question/12024093
#SPJ1
Use Eurlid division lemma to show that any positive odd integer is of the form /(6 q+1./)/(6y+3/) or ,/)/(6y+5,?) where /(q/) is some integers
The three possible forms of any positive odd integer, as required.
According to the Euclid Division Lemma, for any two positive integers a and b, there exist unique integers q and r such that a = bq + r where 0 ≤ r < b.
We can use this lemma to show that any positive odd integer is of the form 6q + 1, 6q + 3, or 6q + 5 where q is some integer.
Let a be any positive odd integer and let b = 6. By the Euclid Division Lemma, we can write a = 6q + r where 0 ≤ r < 6. Since a is odd, r cannot be an even number. Therefore, r can only take on the values of 1, 3, or 5.
Thus, we can write a as:
a = 6q + 1
a = 6q + 3
a = 6q + 5
These are the three possible forms of any positive odd integer, as required.
Learn more about positive integers
brainly.com/question/18380011
#SPJ11
Determine the volume of the parallelepiped with one vertex at the origin and the three vertices adjacent to it at \( (3,1,-1),(6,7,1) \), and \( (-6,8,9) \). \[ \text { Volume }=0 \]
The volume of the parallelepiped is 15.
To determine the volume of the parallelepiped with one vertex at the origin and the three vertices adjacent to it at (3,1,-1), (6,7,1), and (-6,8,9), we need to find the scalar triple product of the three vectors formed by these vertices. The scalar triple product is given by the determinant of the matrix formed by the three vectors:
\[ \begin{vmatrix} 3 & 1 & -1 \\ 6 & 7 & 1 \\ -6 & 8 & 9 \end{vmatrix} \]
Expanding the determinant, we get:
\[ \begin{aligned} \text { Volume } &=3\left( \begin{vmatrix} 7 & 1 \\ 8 & 9 \end{vmatrix} \right)-1\left( \begin{vmatrix} 6 & 1 \\ -6 & 9 \end{vmatrix} \right)-1\left( \begin{vmatrix} 6 & 7 \\ -6 & 8 \end{vmatrix} \right) \\ &=3(63-8)-1(54+6)-1(48+42) \\ &=165-60-90 \\ &=15 \end{aligned} \]
Therefore, the volume of the parallelepiped is 15.
Learn about Volume of the parallelepiped
brainly.com/question/29140066
#SPJ11
Watch help video Use synthetic division to find the result when 2x^(4)-7x^(3)+5x^(2)-5x+5 is divided by x-1. If there is a remainder, express the result in the form q(x)+(r(x))/(b(x)).
The result when 2x^(4)-7x^(3)+5x^(2)-5x+5 is divided by x-1 using synthetic division is q(x) = 2x3 - 5x2 + 3x - 2 + (r(x))/(b(x))
To find the result when 2x^(4)-7x^(3)+5x^(2)-5x+5 is divided by x-1 using synthetic division, start by expressing the polynomial as follows:
2x4 - 7x3 + 5x2 - 5x + 5
Then, write the polynomial in the form:
[x4 , x3, x2, x, 1]
Now, draw a box to write the coefficients of the polynomial:
[ 2 | -7 | 5 | -5 | 5]
Underneath the coefficients, write the divisor (x-1):
[ 2 | -7 | 5 | -5 | 5]
[ 1 | -1 ]
Multiply the first coefficient by the divisor and write the result on the bottom of the box:
[ 2 | -7 | 5 | -5 | 5]
[ 1 | -1 ]
2
Subtract this result from the second coefficient and write the result:
[ 2 | -7 | 5 | -5 | 5]
[ 1 | -1 ]
2
5
Repeat the process for the remaining coefficients and write the final result:
[ 2 | -7 | 5 | -5 | 5]
[ 1 | -1 ]
2
5
3
-2
The result when 2x^(4)-7x^(3)+5x^(2)-5x+5 is divided by x-1 using synthetic division is q(x) = 2x3 - 5x2 + 3x - 2 + (r(x))/(b(x))
To learn more about synthetic division here:
https://brainly.com/question/29638766#
#SPJ11
Describe how you know whether an equation will be true for all values of x or true for no values of x.
Simplify both sides of the equation using algebraic methods and see if they are equal or not equal.
What is Linear Equation?
A linear equation is a mathematical equation that represents a straight line on a graph. It is an equation in which the highest power of the variable is one. A general linear equation can be represented as y = mx + b, where y is the dependent variable, x is the independent variable, m is the slope of the line, and b is the y-intercept.
Linear equations can be solved algebraically using techniques like substitution or elimination, and they can be used to model real-world situations involving linear relationships.
If an equation is true for all values of x, then it is called an identity. To check if an equation is an identity, we can simplify both sides of the equation using algebraic methods and see if they are equal. If they are, then the equation is an identity.
On the other hand, if an equation is true for no values of x, then it is a contradiction. In this case, we can also simplify both sides of the equation using algebraic methods and see if they are not equal. If they are not, then the equation is a contradiction.
If neither of these cases applies, then the equation may be true for some values of x but not for others.
To learn more about Linear Equation from the given link
https://brainly.com/question/2030026
#SPJ1
Given f(x)=3x+4 and g(x)=2x^2−5x−9, find a) f[g(x)] b) g[f(x)] c) f[f(x)] d) f/g
and the domain of it written using interval notation.
To find the composite functions, we simply substitute one function into the other.
For example, f[g(x)] means we substitute g(x) into f(x) wherever there is an x. So, f[g(x)] = 3(g(x)) + 4 = 3(2x^2 − 5x − 9) + 4 = 6x^2 − 15x − 23.Similarly, we can find the other composite functions: g[f(x)] = 2(f(x))^2 − 5(f(x)) − 9 = 2(3x+4)^2 − 5(3x+4) − 9 = 18x^2 + 7x - 7f[f(x)] = 3(f(x)) + 4 = 3(3x+4) + 4 = 9x + 16
For the last part, f/g means we divide f(x) by g(x):f/g = (3x+4)/(2x^2−5x−9)The domain of this function is all real numbers except for the values of x that make the denominator equal to zero.
To find these values, we set the denominator equal to zero and solve for x:2x^2−5x−9 = 0(2x+3)(x-3) = 0x = -3/2, 3 So the domain of f/g is (-∞, -3/2) ∪ (-3/2, 3) ∪ (3, ∞) in interval notation.
You can read more about substitution at https://brainly.com/question/22340165
#SPJ11
Work out the lengths from a to b
Give your answer to one decimal place
The lengths of a and b are 9.4 and 12 respectively using the Pythagorean theorem.
What is Pythagoras Theorem?Pythagoras theorem states for a right angled triangle that, the sum of the squares of base and altitude is the square of the hypotenuse.
Given are two right angled triangles.
For the first right angled triangle, we have to find the length of the hypotenuse.
Using Pythagoras theorem,
a² = 8² + 5²
a² = 64 + 25
a² = 89
a = √89 = 9.43398 ≈ 9.4
For the second right angled triangle, we have to find the length of the altitude.
Using Pythagoras theorem,
17² = b² + 12²
b² = 17² - 12²
b² = 145
b = √145 = 12.04159 ≈ 12
Hence the length of and b are 9.4 and 12 respectively.
Learn more about Pythagoras Theorem here :
https://brainly.com/question/343682
#SPJ9
Your question is incomplete. Most probably, the complete question with the image of the triangle is given below.
Work out the lengths of sides a and b.
Give your answers to 1 decimal place.
Aquations (Level 2) , 10:02:21 PM atch help video for all values of x. x-(x+5)/(x+8)=(3)/(x+8)
The values of x that satisfy the equation are x = -8 and x = 1.
To find all values of x that satisfy the equation x-(x+5)/(x+8)=(3)/(x+8), we can follow the steps below:
1. Multiply both sides of the equation by (x+8) to eliminate the fractions:
(x+8)(x) - (x+5) = 3
2. Distribute the (x+8) on the left side of the equation:
x^2 + 8x - x - 5 = 3
3. Combine like terms on the left side of the equation:
x^2 + 7x - 5 = 3
4. Subtract 3 from both sides of the equation to get the equation equal to zero:
x^2 + 7x - 8 = 0
5. Factor the left side of the equation:
(x+8)(x-1) = 0
6. Set each factor equal to zero and solve for x:
x+8 = 0 or x-1 = 0
x = -8 or x = 1
To know more about equation click on below link:
https://brainly.com/question/14686792#
#SPJ11
Mark drove to the mall on a busy shopping day. He got to the mall parking lot at 6:46, but he didn't find a parking spot until 19 minutes later. What time was it when Mark finally parked the car?
Answer:
7:05
Step-by-step explanation:
6:46 + 19 min = 7:05
A conical body is rotated with a constant speed of 37 rad/s; the base of the cone has a diameter of 18cm, and the thickness of the oil film is 0.8mm. If the viscosity of the oil is 4·10-3 [N·S/m2 ], find the torque required to maintain motion. Select the indicated motor.
The torque required to maintain motion of the rotating conical body in the oil film is 0.149 N·m.
The torque required to maintain motion of a rotating conical body in an oil film can be found using the equation T = (2πμωR^3h)/ln(R/h), where T is the torque, μ is the viscosity of the oil, ω is the angular velocity of the cone, R is the radius of the base of the cone, and h is the thickness of the oil film.
First, we need to convert the given values into the appropriate units. The diameter of the base of the cone is 18cm, so the radius is 9cm or 0.09m. The thickness of the oil film is 0.8mm, or 0.0008m. The viscosity of the oil is 4·10^-3 N·S/m^2, and the angular velocity of the cone is 37 rad/s.
Now we can plug these values into the equation:
T = (2π)(4·10^-3 N·S/m^2)(37 rad/s)(0.09m)^3/(0.0008m)
T = 0.149 N·m
Therefore, the torque required to maintain motion of the rotating conical body in the oil film is 0.149 N·m.
To select the indicated motor, we need to find a motor that can provide a torque of at least 0.149 N·m. This will ensure that the motor can maintain the constant motion of the conical body in the oil film.
Learn more about Torque
brainly.com/question/6855614
#SPJ11
Rewrite the product using a sum or difference of two functions.
2 sin (2???? /3 )sin (5????/ 6)
Two functions as cos (5x/6 - 4x/9) - cos (5x/6 + 4x/9)
We can rewrite the product using a sum or difference of two functions as follows:2 sin (2x/3) sin (5x/6)In order to rewrite the product using a sum or difference of two functions, we can use the following formula:2 sin A sin B = cos (A - B) - cos (A + B)Where A and B are two angles or expressions that contain an angle.So, 2 sin (2x/3) sin (5x/6) can be written as follows:2 sin (2x/3) sin (5x/6) = cos [(5x/6) - (2x/3)] - cos [(5x/6) + (2x/3)]On simplifying the above expression, we get2 sin (2x/3) sin (5x/6) = cos [(5x/6 - 4x/9)] - cos [(5x/6 + 4x/9)]= cos (5x/6 - 4x/9) - cos (5x/6 + 4x/9)Therefore, 2 sin (2x/3) sin (5x/6) can be rewritten using a sum or difference of two functions as cos (5x/6 - 4x/9) - cos (5x/6 + 4x/9).
Learn more about trigonometry
brainly.com/question/29002217
#SPJ11
Using the rational root theorem, list out all possibl f(x)=-x+14x^(3)-18x^(2)-4x^(5)-26x^(4)+8
The possible rational roots of f(x) are ±1, ±2, ±4, ±8, ±1/2, and ±1/4.
The Rational Root Theorem states that if a polynomial [tex]f(x) = anxn + an-1xn-1 + ... + a1x + a0[/tex] has a rational root, then it must be of the form p/q, where p is a factor of the constant term a0 and q is a factor of the leading coefficient an.
For the given polynomial [tex]f(x) = -x + 14x3 - 18x2 - 4x5 - 26x4 + 8[/tex], the constant term is 8 and the leading coefficient is -4.
The factors of 8 are ±1, ±2, ±4, and ±8. The factors of -4 are ±1, ±2, and ±4.
Therefore, the possible rational roots of f(x) are:
p/q = ±1/1, ±2/1, ±4/1, ±8/1, ±1/2, ±2/2, ±4/2, ±8/2, ±1/4, ±2/4, ±4/4, ±8/4
Simplifying gives us the possible rational roots:
±1, ±2, ±4, ±8, ±1/2, ±4/2, ±8/2, ±1/4, ±2/4, ±8/4
Simplifying further gives us the final list of possible rational roots:
±1, ±2, ±4, ±8, ±1/2, ±2, ±4, ±1/4, ±1/2, ±2
Removing duplicates, the final list of possible rational roots is:
±1, ±2, ±4, ±8, ±1/2, ±1/4
Therefore, the possible rational roots of f(x) are ±1, ±2, ±4, ±8, ±1/2, and ±1/4.
See more about rational roots at: https://brainly.com/question/29504617
#SPJ11
what is the value of x? (6x+8/4/7) A.128 4/7 B.120 C. 51 3/7 D.20
Answer:
You can not find X unless there is an answer you are looking for (Ex: 2x=4 so x=2) if there is nothing its equal to x can be everything and nothing
Step-by-step explanation:
identify the initial amount a and the rate of growth r (as a percent) of the exponential funtion y=25(1.2)^t. evaluate the funtion when t=5. round your answer to the nearest tenth
When t = 5, the value οf the expοnential functiοn[tex]y = 25(1.2)^t[/tex] is apprοximately 36.7.
What is an expοnential functiοn?An expοnential functiοn is a mathematical functiοn οf the fοrm[tex]f(x) = ab^x[/tex] where a and b are cοnstants, and x is the independent variable. The base b is a pοsitive cοnstant greater than 0 and nοt equal tο 1.
In the expοnential functiοn [tex]y = 25(1.2)^t[/tex], the initial amοunt is 25, which is the value οf the functiοn when t = 0.
The rate οf grοwth is 20%, which is the value οf the base οf the expοnential functiοn minus 1, expressed as a percentage. In this case, the base is 1.2, which is 20% greater than 1.
Tο evaluate the functiοn when t = 5, we substitute t = 5 intο the functiοn and simplify:
[tex]y = 25(1.2)^t[/tex]
[tex]y = 25(1.2)^5[/tex]
[tex]y = 25(1.469)[/tex]
[tex]y = 36.73[/tex]
Rοunding tο the nearest tenth, we get y ≈ 36.7.
Therefοre, when t = 5, the value οf the expοnential functiοn [tex]y = 25(1.2)^t[/tex]is apprοximately 36.7.
To learn more about the exponential function, visit:
https://brainly.com/question/2456547
#SPJ1
Help
Find the polynomial function with degree 3 in standard form, which has roots of 1 and 1 +i, and f(0) = -2.
Thanks in advance
The polynomial can be written as:
f(x) = x³ - 3x² + 4x - 2
How to find the polynomial?We know that the degree is 3, and two of the roots are x = 1 and x = 1 + i.
Then the last root must be 1 - i, so the polynomial is real, then if the leading coeficient of the polynomial is a, we can write:
f(x) = a*(x - 1)*(x - (1+ i))*(x - (1 - i))
Expanding that:
f(x) = a*(x - 1)*[x² -2x + 2]
f(x) = a*(x³ - 2x² + 2x - x² + 2x - 2)
f(x) = a*(x³ - 3x² + 4x - 2)
And we know that f(0) = -2, then we need to solve:
-2 = a*(0³ - 3*0² + 4*0 - 2)
-2 = a*-2
So a = 1
The polynomial is:
f(x) = x³ - 3x² + 4x - 2
Learn more about polynomials at:
https://brainly.com/question/4142886
#SPJ1
12-ounce soft drink has 41 grams of sugar, which is 14% of the normal daily allowance for sugar. Approximately how many grams of sugar are recommended in the normal diet?
Answer:
If 41 grams of sugar is 14% of the normal daily allowance for sugar, we can set up a proportion to solve for the recommended amount:
41 grams / x = 14% / 100%
where x is the recommended amount of sugar.
To solve for x, we can cross-multiply and simplify:
41 / 0.14 = x / 1
x = 292.86
Rounding to the nearest gram, the recommended amount of sugar in a normal diet is approximately 293 grams.
Slope=4; goes through (-3,0)
The equation of the line with slope 4 that goes through the point (-3,0) is y = 4x + 12.
The equation of the line passing through the point (-3,0) with a slope of 4 can be found using the point-slope form of a line's equation:
y - y1 = m(x - x1)
where the provided point is (x1, y1), and m is the slope.
When we change the values, we obtain:
y - 0 = 4(x - (-3))
Making the right side simpler:
y = 4x + 12
Hence, y = 4x + 12 is the equation of the line with slope 4 passing through the point (-3,0).
To know more about Equation visit:
https://brainly.com/question/29657992
#SPJ9
what is the solution for x if -4x + 6 > 10
Answer: x < -1
Step-by-step explanation:
-4x + 6 > 10
-4x > 10 - 6
-4x > 4
x < 4/-4
x < -1
Answer:
[tex]\tt x > -1[/tex]Step-by-step explanation:
[tex]\tt -4x + 6 > 10[/tex]
Subtract 6 from both sides:-
[tex]\tt -4x + 6 -6 > 10-6[/tex][tex]\tt -4x > 4[/tex]Divide both sides by -4:-
[tex]\tt \cfrac{-4x}{4} > \cfrac{4}{-4}[/tex][tex]\tt x > -1[/tex]________________________
Hope this helps! :)
HURRYYYY ILL GIVE 10 POINTS!
What is the surface area of this right rectangular prism?
Enter your answer in the box.
in2
Dave is driving from Portola Ave. To Springs Street. Portola Ave. Is marked as "A" and Springs Street is marked as "E".
He takes 3 miles to go to the ice store. (C)
He drives back to Portola Ave. Where his house is.
From A to C is 6 miles
After a few hours he drives to the market (D)
he spends 25 minutes there and drives back home which is 24 miles.
He stops by a gas station (B) when he goes back home. He takes 10 minutes there.
Then when he’s home, he packs items which takes 55 minutes.
Then he drives to springs street (E)
This takes 40 miles.
He realized that he forgot something at the market, so he drives back to the market which is 5 miles away.
Then he drives back to Springs Street
After he enters the airport (E) he takes 25 minutes to have his luggage checked and boards the plane. Then the plane immediately takes off.
It is 12:45pm when Dave is about to go the ice store.
When he rests for a few hours after coming back from ice store he rests for 2 hours.
What time does the plane take off?
When he rests for a few hours after coming back from ice-store he rests for 2 hours the time the plane takes off is 9:10 pm.
Total distance traveled is 151 miles.
Dave spends 25 + 10 + 55 + 25 = 115 minutes (or 1 hour and 55 minutes) on stops.
Dave rests for 2 hours.
To calculate the time the plane takes off, we need to add up all the time Dave spends on driving, stops, and rests, and then add that time to the time he starts (12:45 pm).
Time to drive from A to C and back to A: 2 * 6 / 60 = 0.2 hours
Time to drive from A to C to D to B to A: (6 + 24 + 24 + 3) / 60 = 0.95 hours
Time to drive from A to C to D to home to E to market to E: (6 + 24 + 24 + 40 + 5 + 5) / 60 = 2.33 hours
Time to rest: 2 hours
Total time spent: 0.2 + 0.95 + 2.33 + 1.92 = 5.4 hours
Time of departure: 12:45 pm + 5.4 hours = 6:25 pm
Adding 45 minutes for the luggage check and boarding, the plane takes off at 6:25 pm + 0.45 hours = 7:10 pm
Adding another 2 hours for the time zone difference, the plane takes off at 7:10 pm + 2 hours = 9:10 pm.
To learn more about time follow the link: brainly.com/question/28050940
#SPJ4
Describe and correct the error a student made when naming the polynomial. -2x^(3)+5x^(4)-3x is a cubic trinomul.
The correct name for the polynomial -2x^(3)+5x^(4)-3x is a quartic trinomial.
The student made an error when naming the polynomial as a "cubic trinomial". A cubic polynomial is one where the highest degree is 3, and a trinomial is a polynomial with three terms.
While this polynomial does have three terms, its highest degree is actually 4, as seen in the 5x^(4) term.
Therefore, the correct name for this polynomial would be a "quartic trinomial".
To summarize, the error the student made was naming the polynomial as a cubic trinomial instead of a quartic trinomial. The correct name for the polynomial -2x^(3)+5x^(4)-3x is a quartic trinomial.
To know more about cubic polynomial click on below link:
https://brainly.com/question/28081769#
#SPJ11
8.5 is 11 less than a number h.
Answer:
h is 19.5
Step-by-step explanation:
8.5 is 11 less than h
8.5 = h - 11
Add 11 to both sides
19.5 = h
Find f(4). what does f(4) represent
I need this byh tonigth aswell please help
Answer:
x = 40°
Step-by-step explanation:
given Δ ABD is isosceles with AB = AD
then the base angles are congruent , that is
∠ ABD = ∠ ADB = 25°
given ABC is a straight line then the 3 angles on it sum to 180° , that is
∠ ABD + x + 115° = 180°
25° + x + 115° = 180°
x + 140° = 180° ( subtract 140° from both sides )
x = 40°