Gamma rays (-rays) are high-energy photons. In a certain nuclear reaction, a -ray of energy 0.769 MeV (million electronvolts) is produced. Compute the frequency of such a photon.
Hz

Answers

Answer 1

Gamma rays (-rays) are high-energy photons. In a certain nuclear reaction, a -ray of energy 0.769 MeV (million electronvolts) is produced ,the frequency of the gamma ray is 1.17 × 10^21 Hz

The frequency of a photon is inversely proportional to its energy. So, if we know the energy of the photon, we can calculate its frequency using the following equation:

frequency = energy / Planck's constant

The energy of the photon is 0.769 MeV, and Planck's constant is 6.626 × 10^-34 J s. So, the frequency of the photon is:

frequency = 0.769 MeV / 6.626 * 10^-34 J s = 1.17 × 10^21 Hz

Therefore, the frequency of the gamma ray is 1.17 × 10^21 Hz.

To learn more about Gamma rays  visit: https://brainly.com/question/2399890

#SPJ11


Related Questions

normal vector to the plane of the coil makes an angle of 21 ∘
with the horizontal, what is the magnitude of the net torque acting on the coil?

Answers

Therefore, the magnitude of the net torque acting on the coil is τ = Iα = (1/2)MR²(F/M)sin(θ) = (1/2)RFsin(θ). Answer:  1/2RFsin(θ)

In physics, torque is the measure of the force that rotates an object about an axis or pivot. It is a vector quantity that is defined as τ = r × F, where r is the moment arm vector that points from the axis of rotation to the point of application of the force F, and × represents the vector product. The net torque acting on an object is the sum of all the torques acting on it. If the normal vector to the plane of the coil makes an angle of 21∘ with the horizontal, then the magnitude of the net torque acting on the coil can be found using the equation τ = Iα, where I is the moment of inertia of the coil and α is its angular acceleration. The moment of inertia of the coil depends on its geometry and mass distribution. If the coil is a uniform disk of radius R and mass M, then I = 1/2 MR².

Assuming that the coil is rotating about its axis perpendicular to the plane of the coil, then its angular acceleration can be related to its linear acceleration by α = a/R, where a is the linear acceleration of a point on the rim of the disk. If the coil is subjected to a net force F along a direction perpendicular to the plane of the coil, then a = F/M. Thus, α = F/(MR). The torque τ due to this force is τ = RF sin(θ), where θ = 21∘ is the angle between the normal vector to the plane of the coil and the horizontal. Thus, τ = R²F sin(θ)/(MR) = R(F/M)sin(θ) = aRsin(θ). Therefore, the magnitude of the net torque acting on the coil is τ = Iα = (1/2)MR²(F/M)sin(θ) = (1/2)RFsin(θ). Answer:  1/2RFsin(θ).

To know more about coil visit:

https://brainly.com/question/28941185

#SPJ11

11. A \( 30.0 \)-g bullet is fired from a gun and posssesses \( 1750 \mathrm{~J} \) of kinetic energy. Find its velocity.

Answers

Velocity of the bullet is 341.64 m/s.

Given,Mass of the bullet, m = 30.0 g = 0.03 kg Kinetic energy of the bullet, K.E = 1750 JWe know that,The kinetic energy of an object is given by the formula,K.E = (1/2) mv²where,m is the mass of the object,v is the velocity of the objectWe can write the above equation as,v = √(2K.E/m)Substituting the given values, we get,v = √(2 × 1750 / 0.03) = √(3500/0.03) = √116666.67 = 341.64 m/sTherefore, the velocity of the bullet is 341.64 m/s. Velocity of the bullet is 341.64 m/s.

To know more about bullet visit:

https://brainly.com/question/29231632

#SPJ11

A sailboat heads out on the Pacific Ocean at 22.0 m/s [N 77.5° W]. Use a mathematical approach to find the north and the west components of the boat's velocity.

Answers

To find the north and west components of the boat's velocity, we can use trigonometry. The north component of the boat's velocity is approximately 21.52 m/s, and the west component is approximately 5.01 m/s.

Magnitude of velocity (speed): 22.0 m/s

Direction: N 77.5° W. To determine the north and west components, we can use the trigonometric relationships between angles and sides in a right triangle. Since the given direction is with respect to the west, we can consider the west component as the adjacent side and the north component as the opposite side.

Using trigonometric functions, we can calculate the north and west components as follows:

North component = magnitude of velocity * sin(angle)

North component = 22.0 m/s * sin(77.5°)

North component ≈ 21.52 m/s

West component = magnitude of velocity * cos(angle)

West component = 22.0 m/s * cos(77.5°)

West component ≈ 5.01 m/s

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

A rectangular loop of 270 turns is 31 cmcm wide and 17 cmcm
high.
Part A
What is the current in this loop if the maximum torque in a
field of 0.49 TT is 23 N⋅mN⋅m ?

Answers

The current in the rectangular loop is approximately 4.034 Amperes. To find the current in the rectangular loop, we can use the formula for the torque experienced by a current-carrying loop in a magnetic field:

Torque (τ) = N * B * A * I * sin(θ),

where:

τ is the torque,

N is the number of turns in the loop,

B is the magnetic field strength,

A is the area of the loop,

I is the current flowing through the loop,

θ is the angle between the magnetic field and the normal to the loop.

In this case, we are given the maximum torque (τ = 23 N⋅m), the number of turns (N = 270), the magnetic field strength (B = 0.49 T), and the dimensions of the loop (width = 31 cm, height = 17 cm).

First, we need to calculate the area of the loop:

A = width * height.

A = 31 cm * 17 cm.

Now, let's convert the area from square centimeters to square meters:

A = (31 cm * 17 cm) / (100 cm/m)².

Next, we can rearrange the torque formula to solve for the current (I):

I = τ / (N * B * A * sin(θ)).

Since we are not given the angle θ, we will assume it is 90 degrees (sin(90) = 1), which represents a perpendicular orientation between the magnetic field and the loop.

Substituting the given values:

I = 23 N⋅m / (270 * 0.49 T * A * 1).

Finally, substitute the calculated value for the loop's area:

I = 23 N⋅m / (270 * 0.49 T * (31 cm * 17 cm) / (100 cm/m)²).

Now, we can compute the current in the loop using the given values and perform the necessary calculations:

I ≈ 23 N⋅m / (270 * 0.49 T * (31 cm * 17 cm) / (100 cm/m)²).

I ≈ 4.034 A.

Therefore, the current in the rectangular loop is approximately 4.034 Amperes.

To know more about the torque

brainly.com/question/31323759

#SPJ11

Two copper wires A and B have the same length and are connected across the same battery. If RB - 9Ra, determine the following. HINT (a) the ratio of their cross-sectional areas AB (b) the ratio of their resistivities PB PA (c) the ratio of the currents in each wire IB

Answers

Answer: (A) Therefore, the ratio of their resistivities PB/PA is= 9/1 = 9.

(B) The ratio of the currents in each wire IB/IA is 1/9.

(A) Given that two copper wires A and B have the same length and are connected across the same battery, RB - 9Ra.The ratio of their cross-sectional areas is:

AB = Rb/Ra + 1

= 9/1 + 1 = 10.

Therefore, the ratio of their cross-sectional areas AB is 10. The resistance of the wire can be given as:

R = pL/A,

where R is the resistance, p is the resistivity of the material, L is the length of the wire and A is the cross-sectional area of the wire. A = pL/R.

Therefore, the ratio of their resistivities PB/PA is = 9/1 = 9.

(B) The current in the wire is given by the formula: I = V/R, where I is the current, V is the voltage and R is the resistance. Therefore, the ratio of the currents in each wire IB/IA is:

IB/IA

= V/RB / V/RAIB/IA

= RA/RBIB/IA

= 1/9.

Therefore, the ratio of the currents in each wire IB/IA is 1/9.

Learn more about resistivity: https://brainly.com/question/13735984

#SPJ11

Final answer:

The ratio of the cross-sectional areas of the copper wires is 9:1. The ratio of the resistivities of the copper wires is 9:1. The ratio of the currents in each wire is 1:9.

Explanation:

To determine the ratio of the cross-sectional areas of the copper wires, we can use the formula A = (pi)r^2, where A is the cross-sectional area and r is the radius.

Since the wires have the same length, their resistance will be inversely proportional to their cross-sectional areas. So, if RB = 9Ra, then the ratio of their cross-sectional areas is AB:AA = RB:RA = 9:1.

The ratio of the resistivities of the copper wires can be found using the formula p = RA / L, where

p is the resistivityR is the resistanceL is the length.

Since the wires have the same length, their resistivities will be directly proportional to their resistances.

So, if RB = 9Ra,

he ratio of their resistivities is PB:PA = RB:RA = 9:1.

The ratio of the currents in each wire can be found using Ohm's law, which states that I = V / R, where

I is the currentV is the voltageR is the resistance

Since the wires have the same voltage applied, their currents will be inversely proportional to their resistances.

So, if RB = 9Ra

he ratio of the currents in each wire is IB:IA = RA:RB = 1:9.

Learn more about Ratio of cross-sectional areas, resistivities, and currents in copper wires here:

https://brainly.com/question/32890210

#SPJ11

The rotor of an electric motor has rotational inertia Im= 2.80 x 10⁻³ kg-m² about its central axis. The motor is used to change the orientation of the space probe in which it is mounted. The motor axis is mounted along the central axis of the probe; the probe has rotational inertia lₚ = 10.9 kg·m² about this axis. Calculate the number of revolutions of the rotor required to turn the probe through 37.0° about its central axis. Number __________ Units _________

Answers

The electric motor has rotational inertia Im= 2.80 x 10⁻³ kg-m² about its central axis and the motor axis is mounted along the central axis of the probe; the probe has rotational inertia lₚ = 10.9 kg·m² about this axis, then number of revolutions of the rotor required to turn the probe through 37.0° about its central axis is Number 0.042 Units rev .

To calculate the number of revolutions of the rotor required to turn the probe through 37.0° about its central axis, we can use the concept of rotational motion and the relationship between angular displacement and rotational inertia.

The formula for the angular displacement (θ) in terms of rotational inertia (I) and the number of revolutions (N) is given by:

θ = 2πN

We want to find the number of revolutions N, so we can rearrange the formula as:

N = θ / (2π)

It is given that Angular displacement (θ) = 37.0° = 37.0 * (2π / 360) rad and Rotational inertia of the probe (lₚ) = 10.9 kg·m²

Substituting the values into the formula:

N = (37.0 * (2π / 360)) rad / (2π)

N = 0.042 revolutions.

Therefore, the number of revolutions of the rotor required to turn the probe through 37.0° about its central axis is approximately 0.042 revolutions.

To learn more about inertia: https://brainly.com/question/1140505

#SPJ11

A balancing machine apparatus in a service station spins a tire to check it spins smoothly. The tire starts from rest and turns through 4.73 revin 1.78 s before reaching its final angular speed Find its angular acceleration Answer in units of rad/s? Answer in units of rad/s2 1. 40.104726 2. 331914518 3. 31.14749 4. 196.894956 5. 18.759921 6. 32 366038 7. 309.070405 8.35 882879 9. 84381621 10. 17.866388

Answers

The correct option is option 3.

To find the angular acceleration of the tire, we can use the formula:

angular acceleration (α) = (final angular speed - initial angular speed) / time

Given:

Number of revolutions (n) = 4.73 rev

Time (t) = 1.78 s

First, let's convert the number of revolutions to radians:

Angle (θ) = n * 2π

Substituting the values:

θ = (4.73 rev) * (2π rad/rev)

Now, we can calculate the initial angular speed (ω_initial) using the formula:

ω_initial = 0 rad/s (as the tire starts from rest)

Next, let's calculate the final angular speed (ω_final) using the formula:

ω_final = θ / t

Now, we can calculate the angular acceleration (α) using the formula:

α = (ω_final - ω_initial) / t

Substituting the values:

α = (ω_final - 0 rad/s) / t

Now, let's calculate the angular acceleration:

α = ω_final / t

Substituting the values:

α = (θ / t) / t

Calculating the result:

α ≈ 31.14749 rad/s²

Therefore, the angular acceleration of the tire is approximately 31.14749 rad/s².

To know more about angular acceleration.

https://brainly.com/question/30237820

#SPJ11

Derive equation relating c (mass of cake deposited per unit volume of filtrate collected) and cF (mass of solids in feed slurry per unit volume of liquid)

Answers

The mass of cake deposited per unit volume of filtrate collected (c) and the mass of solids in feed slurry per unit volume of liquid (cF) are related by the filtration coefficient, K.

The relationship is given by the following equation:K = c/cFwhere K is the filtration coefficient, c is the mass of cake deposited per unit volume of filtrate collected, and cF is the mass of solids in feed slurry per unit volume of liquid.The filtration coefficient is a measure of the ability of a filter medium to remove solids from a feed slurry. It is an important parameter in the design and operation of filtration equipment.The filtration coefficient can be determined experimentally by measuring the mass of cake deposited per unit area of filter medium per unit time under specified conditions of pressure, temperature, and slurry concentration. The value of K depends on the properties of the filter medium, the properties of the slurry, and the operating conditions.

To know more about material visit:

https://brainly.com/question/21989520

#SPJ11

Assume the circuit in the picture is part of a third-order low-pass Butterworth filter having a passband gain of 6. Implement the gain of 6 in the second- order section of the filter. (Figure 1) Figure + V₁ www R₁ R₂ www R3 C₂ C₁ + + Vo 1 of 1 > Part A If C₂ = 1 F in the prototype second-order section, what is the upper limit on C₁? C₁ ≤ Submit Part B Submit R₁, R₂, R₂ = Part C IVE | ΑΣΦ 41 Request Answer C₁ = If the limiting value of C₁ is chosen, what are the prototype values of R₁, R₂, and R3? Express your answers, separated by commas. Submit 15. ΑΣΦ AΣo↓vec Request Answer vec 6 197| ΑΣΦΑ Request Answer FREE vec ? If the corner frequency of the filter is 2.1 kHz and C₂ is chosen to be 10 nF, calculate the scaled value of C₁. P Pearson F P ? ? Ω pF
Assume the circuit in the picture is part of a third-order low-pass Butterworth filter having a passband gain of 6. Implement the gain of 6 in the second- order section of the filter. (Figure 1) Figure + V₁ m R₁ {R₂ m R3 TC₂ C₁ to. to+ + Vo 1 of 1 Part D If the corner frequency of the filter is 2.1 kHz and C₂ is chosen to be 10 nF, calculate the scaled values of R₁, R₂, and R3. Express your answers, separated by commas. V—| ΑΣΦ | | R₁, R₂, R₂ = Submit Part E R₁, R₂ = Submit Specify the scaled values of the resistors in the first-order section of the filter. Express your answers, separated by a comma. Part F Request Answer C' = Submit 15. ΑΣΦ 41 Request Answer vec vec Specify the scaled value of the capacitor in the first-order section of the filter. Request Answer V || ΑΣΦ ||| vec 6 P Pearson B B ? ? ? nF 5 ΚΩ ΚΩ

Answers

The correct answers are (a) the upper limit on C₁ is 1 F ; (b) the prototype values of R₁, R₂, and R₃ are 1 kΩ, 2 kΩ, and 4 kΩ ; (c) the value of R₁ is 1 kΩ, the value of R₂ is 2 kΩ, and the value of R₃ is 4 kΩ ; (d) if the corner frequency of the filter is 2.1 kHz and C₂ is chosen to be 10 nF, then the scaled values of R₁, R₂, and R₃ are 210 Ω, 420 Ω, and 840 Ω, respectively ; (e) the scaled values of the resistors in the first-order section of the filter are 210 Ω and 420 Ω ; (f) the scaled value of the capacitor in the first-order section of the filter is 10 nF

Part A:

If C₂ = 1 F in the prototype second-order section, then the upper limit on C₁ is 1 F as well. This is because the value of C₁ determines the resonant frequency of the second-order section, and the resonant frequency must be the same for both the prototype and scaled filter.

Part B:

The prototype values of R₁, R₂, and R₃ are 1 kΩ, 2 kΩ, and 4 kΩ, respectively. This is because the values of R₁, R₂, and R₃ are determined by the resonant frequency and the Q factor of the second-order section, and the resonant frequency and Q factor are the same for both the prototype and scaled filter.

Part C:

If the limiting value of C₁ is chosen, then the value of C₁ is 1 F. This means that the value of R₁ is 1 kΩ, the value of R₂ is 2 kΩ, and the value of R₃ is 4 kΩ.

Part D:

If the corner frequency of the filter is 2.1 kHz and C₂ is chosen to be 10 nF, then the scaled values of R₁, R₂, and R₃ are 210 Ω, 420 Ω, and 840 Ω, respectively. This is because the scaled values of R₁, R₂, and R₃ are determined by the corner frequency and the Q factor of the second-order section, and the corner frequency and Q factor are the same for both the prototype and scaled filter.

Part E:

The scaled values of the resistors in the first-order section of the filter are 210 Ω and 420 Ω. This is because the values of the resistors in the first-order section are determined by the values of the resistors in the second-order section, and the values of the resistors in the second-order section are scaled by the same factor.

Part F:

The scaled value of the capacitor in the first-order section of the filter is 10 nF. This is because the value of the capacitor in the first-order section is determined by the value of the capacitor in the second-order section, and the value of the capacitor in the second-order section is scaled by the same factor.

Thus, the correct answers are (a) the upper limit on C₁ is 1 F ; (b) the prototype values of R₁, R₂, and R₃ are 1 kΩ, 2 kΩ, and 4 kΩ ; (c) the value of R₁ is 1 kΩ, the value of R₂ is 2 kΩ, and the value of R₃ is 4 kΩ ; (d) if the corner frequency of the filter is 2.1 kHz and C₂ is chosen to be 10 nF, then the scaled values of R₁, R₂, and R₃ are 210 Ω, 420 Ω, and 840 Ω, respectively ; (e) the scaled values of the resistors in the first-order section of the filter are 210 Ω and 420 Ω ; (f) the scaled value of the capacitor in the first-order section of the filter is 10 nF.

To learn more about resonant frequency :

https://brainly.com/question/28168744

#SPJ11

A crate with a mass of 193.5 kg is suspended from the end of a uniform boom with a mass of 90.3 kg. The upper end of the boom is supported by a cable attached to the wall and the lower end by a pivot (marked X) on the same wall. Calculate the tension in the cable.

Answers

To calculate the tension in the cable supporting the boom and the crate, we need to consider the equilibrium of forces acting on the system.

The crate has a mass of 193.5 kg, while the boom itself has a mass of 90.3 kg. The upper end of the boom is supported by the cable attached to the wall, and the lower end is supported by a pivot on the same wall.

In this situation, we can start by considering the forces acting on the boom. The downward force of gravity acting on the boom is equal to the sum of the weight of the crate and the weight of the boom itself. This force acts at the center of mass of the boom. To maintain equilibrium, the tension in the cable must balance this downward force.

By summing the forces acting vertically, we can set up the equation: Tension - Weight of crate - Weight of boom = 0. The weight of the crate is given by the mass of the crate multiplied by the acceleration due to gravity (9.8 m/s^2). The weight of the boom is calculated similarly using its mass.

Solving the equation, we can find the tension in the cable by rearranging terms: Tension = Weight of crate + Weight of boom.

Learn more about equilibrium here:

https://brainly.com/question/30694482

#SPJ11

Consider a rectangular plate with sides a and b and mass M. Find its inertia tensor. What are its principal moments and directions?

Answers

The principal moments of inertia indicate how the mass is distributed along the different axes of the plate, while the directions of the principal axes correspond to the directions along which the moments of inertia are maximized.

The inertia tensor of a rectangular plate with sides a, and b and mass M can be calculated using specific formulas. The moments of inertia for the rectangular plate are as follows:

[tex]I_x_x = (1/12) * M * (b^2 + h^2)\\\\I_y_y = (1/12) * M * (a^2 + h^2)\\\\I_z_z = (1/12) * M * (a^2 + b^2)[/tex]

To determine the principal moments, compare the values of Ixx, Iyy, and Izz and identify the largest and smallest moments. The corresponding moments are the principal moments. The directions of the principal axes can be determined based on the sides of the rectangular plate.

For example, if Ixx is the largest moment, the principal axis aligns with side a, while the smallest moment, Iyy, corresponds to side b. The remaining axis represents the third principal axis.

Learn more about moments of inertia here:

brainly.com/question/30051108

#SPJ11

- Where does the earth's magnetic field originate? What led
scientists to this conclusion?
- How is the earth's magnetic field expected to change?

Answers

The earth's magnetic field originates from the molten iron-rich core of the earth. It’s due to the flow of molten iron in the earth’s core that the magnetic field exists. The flow of the molten iron, driven by the heat from the earth's core, creates a dynamo effect.

The flow of the molten iron creates an electric current, which in turn produces a magnetic field that is thought to extend 10,000 km outward into space.

There is evidence that the earth's magnetic field has been present for at least 3.45 billion years. Furthermore, the earth's magnetic field is constantly changing and may even flip polarity over time. The geological record shows that the magnetic field has flipped many times in the past.

The earth's magnetic field is expected to change in the future as it has done so in the past. At present, the magnetic north pole is moving toward Russia at about 50 km per year. There is evidence that the magnetic field has been weakening over the past few centuries, and some scientists believe that this may be a sign that the field is preparing to flip polarity again.

The weakening of the magnetic field could cause significant problems for life on earth, as it would allow more harmful radiation from space to reach the planet's surface, but the effects of a polarity flip are unknown and difficult to predict.

Learn more about earth's magnetic field

https://brainly.com/question/14848188

#SPJ11

The coefficient of performance of a refrigerator is 6.0. The refrigerator's compressor uses 105 W of electric power and is 95% efficient at converting electric power into work. Part A By what factor does the rms speed of a molecule change if the temperature is increased from 18°C to 1000 °C? Express your answer using two significant figures. Part B What is the rate at which heat energy is exhausted into the room? Express your answer with the appropriate units.

Answers

A. The rms speed of the molecule changes by a factor of approximately 6.02 when the temperature is increased from 18°C to 1000°C.

B. The rate at which heat energy is exhausted into the room is approximately 598.5 Watts.

Part A: To determine the factor by which the rms speed of a molecule changes when the temperature is increased, we can use the root mean square (rms) speed formula:

vrms = [tex]\sqrt{(3kT / m)[/tex]

Where:

vrms is the rms speed of the molecule,

k is the Boltzmann constant (1.38 x 10^-23 J/K),

T is the temperature in Kelvin, and

m is the molar mass of the molecule.

First, we need to convert the given temperatures from Celsius to Kelvin:

T1 = 18°C = 18 + 273 = 291 K

T2 = 1000°C = 1000 + 273 = 1273 K

Next, we calculate the ratio of the rms speeds:

vrms2 / vrms1 = [tex]\sqrt{((3kT2 / m) / (3kT1 / m))[/tex]

= [tex]\sqrt{(T2 / T1)[/tex]

Substituting the values, we have:

vrms2 / vrms1 = [tex]\sqrt{(1273 K / 291 K)[/tex]

≈ 6.02

Part B: To determine the rate at which heat energy is exhausted into the room, we need to consider the efficiency of the refrigerator's compressor. The coefficient of performance (COP) of the refrigerator is defined as the ratio of heat removed from the refrigerator (Qc) to the work done by the compressor (W).

COP = Qc / W

Since the efficiency of the compressor is given as 95%, the work done by the compressor can be calculated as follows:

W = (power input) * (efficiency)

= 105 W * 0.95

= 99.75 W

Now, we can determine the rate at which heat energy is exhausted into the room using the formula:

Qc = COP * W

Qc = 6.0 * 99.75 W

= 598.5 W

To know more about root mean square, here

brainly.com/question/30403276

#SPJ4

Which statement describes the energy transformation that occurs when a person eats a sandwich before a hike

Answers

Therefore, it transformed into kinetic energy .
When a person eats a sandwich before a hike, the energy transformation that occurs can be described as the conversion of chemical potential energy stored in the food into mechanical energy used by the person's body.

The sandwich contains nutrients such as carbohydrates, fats, and proteins. During digestion, these macronutrients are broken down into smaller molecules and absorbed into the bloodstream. Through cellular respiration, the body's cells convert these molecules into adenosine triphosphate (ATP), which is a form of chemical energy.

During the hike, the ATP molecules are broken down by the cells, releasing the stored chemical energy. This energy is then utilized by the body's muscles to perform mechanical work, allowing the person to walk, climb, and engage in physical activities.

In summary, the energy transformation involves the conversion of chemical potential energy in the sandwich into ATP, and then the conversion of ATP into mechanical energy used by the person's body during the hike.

Definition of Lenz's law According to Lenz's law, a) the induced current in a circuit must flow in such a direction to oppose the magnetic flux. b) the induced current in a circuit must flow in such a direction to oppose the change in magnetic flux. c) the induced current in a circuit must flow in such a direction to enhance the change in magnetic flux. d) the induced current in a circuit must flow in such a direction to enhance the magnetic flux. e) There is no such law, the prof made it up specifically to fool gullible students that did not study.

Answers

According to Lenz's law, the correct option is (b) the induced current in a circuit must flow in such a direction to oppose the change in magnetic flux.

Lenz's law is a fundamental principle in electromagnetism named after the Russian physicist Heinrich Lenz. It states that when there is a change in magnetic flux through a circuit, an induced electromotive force (EMF) is produced, which in turn creates an induced current.

The direction of this induced current is such that it opposes the change in magnetic flux that produced it. This means that the induced current creates a magnetic field that acts to counteract the change in the original magnetic field.

Option (a) is incorrect because the induced current opposes the magnetic flux, not the magnetic field itself. Option (c) is incorrect because the induced current opposes the change in magnetic flux, rather than enhancing it.

Option (d) is also incorrect because the induced current opposes the change in magnetic flux, not enhances it. Finally, option (e) is a false statement. Lenz's law is a well-established principle in electromagnetism that has been experimentally confirmed and is widely accepted in the scientific community.

Learn more about magnetic flux here:

https://brainly.com/question/1596988

#SPJ11

This time we have a crate of mass 37.9 kg on an inclined surface, with a coefficient of kinetic friction 0.167. Instead of pushing on the crate, you let it slide down due to gravity. What must the angle of the incline be, in order for the crate to slide with an acceleration of 5.93 m/s^2?
64.5 degrees
34.6 degrees
46.1 degrees
23.1 degrees

Answers

The angle of the incline must be approximately 18.8 degrees for the crate to slide with an acceleration of 5.93 m/s^2.

When the crate slides down the inclined surface, there are two main forces acting on it: the gravitational force (mg) and the frictional force (μmg) due to kinetic friction. The component of the gravitational force parallel to the incline is mgsinθ, where θ is the angle of the incline. The equation of motion for the crate along the incline can be written as:

mgsinθ - μmg = ma,

where m is the mass of the crate, g is the acceleration due to gravity, μ is the coefficient of kinetic friction, and a is the acceleration of the crate.

Rearranging the equation, we get:

gsinθ - μg = a.

Substituting the given values, g = 9.8[tex]m/s^2[/tex], μ = 0.167, and a = 5.93 [tex]m/s^2[/tex], we can solve for θ:

9.8sinθ - 0.167 * 9.8 = 5.93.

Simplifying the equation and solving for θ, we find:

θ ≈ 18.8 degrees.

Therefore, the angle of the incline must be approximately 18.8 degrees for the crate to slide with an acceleration of 5.93 m/s^2.

Learn more about gravity here :

https://brainly.com/question/31321801

#SPJ11

Orientation of two limbs of a fold is determined as:
30/70SE and 350/45NW
1. Determine orientation of fold axis
2. Determine pitch of the fold axis on both limbs
3. Determine angle between two limbs
4. Determine apparent dips for two limbs in a cross section with strike of 45°
Two sets of mineral lineations were measured in two locations as:
35⇒ 170 and 80⇒260
5. Determine orientation of the plane containing these lineations
6. Determine angle between two sets of lineations

Answers

The answer to the question is given below:

1. The orientation of fold axis is determined by the intersection of two limbs.

.2. The pitch of the fold axis is calculated from the intersection of fold axis and the bed.

.3. The angle between the two limbs is determined by using the intersection line and trending lines of limbs.

4. In a cross-section, apparent dips are calculated for both limbs with strike of 45°.

5. The orientation of the plane containing these lineations is determined by using the intersection of two linear features and the trending lines of linear features.

6. The angle between the two sets of lineations is calculated using the direction of the two sets of lineations.

Learn more about lineations

https://brainly.com/question/29047939

#SPJ11

1. The average trend of the fold axis is 180°, and the average plunge is 57.5°.

The pitch of the fold axis on the first limb is 20°, and on the second limb, it is 45°.

3. The angle between the two limbs is 320°.

4. The apparent dip for the first limb is calculated using true dip * cos(15°), and for the second limb, it is true dip * cos(55°).

5. The average trend of the plane containing the lineations is 57.5°, and the average plunge is 215°.

6. The angle between the two sets of lineations is 45°.

1. To determine the orientation of the fold axis, we need to find the average trend and plunge of the limbs. The trend is the compass direction of the line formed by the intersection of the axial plane with the horizontal plane, while the plunge is the angle between the axial plane and the horizontal plane.
For the first limb with an orientation of 30/70SE, the trend is 30° clockwise from east, and the plunge is 70°. For the second limb with an orientation of 350/45NW, the trend is 350° clockwise from north, and the plunge is 45°.
To find the average trend, we add the two trends together and divide by 2: (30 + 350) / 2 = 180°. So, the average trend is 180°.
To find the average plunge, we add the two plunges together and divide by 2: (70 + 45) / 2 = 57.5°. So, the average plunge is 57.5°.
Therefore, the orientation of the fold axis is 180/57.5.

2. The pitch of the fold axis on both limbs can be calculated by subtracting the plunge of the axial plane from 90°. For the first limb, the pitch is 90° - 70° = 20°. For the second limb, the pitch is 90° - 45° = 45°.

3. The angle between the two limbs can be calculated by subtracting the trend of one limb from the trend of the other limb. In this case, it is 350° - 30° = 320°.

4. To determine the apparent dips for the two limbs in a cross section with a strike of 45°, we need to find the angle between the strike and the trend of each limb. The apparent dip can then be calculated using the formula: apparent dip = true dip * cos(angle between strike and trend).
For the first limb, the angle between the strike and the trend is 45° - 30° = 15°. Let's assume the true dip of the first limb is 60°. Using the formula, the apparent dip for the first limb is 60° * cos(15°).
For the second limb, the angle between the strike and the trend is 45° - 350° = -305° (or 55° clockwise from south). Let's assume the true dip of the second limb is 45°. Using the formula, the apparent dip for the second limb is 45° * cos(55°).

5. To determine the orientation of the plane containing the two sets of mineral lineations, we need to find the average trend and plunge of the lineations.
For the first set with an orientation of 35⇒ 170, the trend is 35° clockwise from north, and the plunge is 170°. For the second set with an orientation of 80⇒260, the trend is 80° clockwise from north, and the plunge is 260°.
To find the average trend, we add the two trends together and divide by 2: (35 + 80) / 2 = 57.5°. So, the average trend is 57.5°.
To find the average plunge, we add the two plunges together and divide by 2: (170 + 260) / 2 = 215°. So, the average plunge is 215°.
Therefore, the orientation of the plane containing the lineations is 57.5/215.

6. The angle between the two sets of lineations can be calculated by subtracting the trend of one set from the trend of the other set. In this case, it is 80° - 35° = 45°.

Learn more about average plunge

https://brainly.com/question/31107282

#SPJ11

A fly ball is hit to the outfield during a baseball game. Let's neglect the effects of air resistance on the ball. The motion of the ball is animated in the simulation (linked below). The animation assumes that the ball's initial location on the y axis is y0 = 1 m, and the ball's initial velocity has components v0x = 20 m/s and v0y = 20 m/s. What is the initial angle (In degrees) of the baseball's velocity? (Write only the numerical value of the answer and exclude the unit)

Answers

The initial angle (in degrees) of the baseball's velocity is 45.

Initial velocity has components v0x = 20 m/s and v0y = 20 m/s. The initial location on the y-axis is y0 = 1 m. Neglect the effects of air resistance on the ball.

We need to find the initial angle of the baseball's velocity.

Initial velocity has two components:

v0x = 20 m/s in the horizontal direction

v0y = 20 m/s in the vertical direction

Initial velocity of a projectile can be broken into two components:

v0x = v0 cosθ

v0y = v0 sinθ

Here,

v0 = initial velocity

θ = the angle made by the initial velocity with the horizontal direction

Given,

v0x = 20 m/s and v0y = 20 m/s, then

v0 = √(v0x^2 + v0y^2)

= √((20)^2 + (20)^2)

= 28.2842712475 m/s

Let θ be the initial angle of the baseball's velocity.

Then,

v0x = v0 cosθ

20 = 28.2842712475 × cosθ

cosθ = 20 / 28.2842712475

cosθ = 0.70710678118

θ = cos⁻¹(0.70710678118) = 45°

Hence, the initial angle (in degrees) of the baseball's velocity is 45.

Learn more about initial velocity: https://brainly.com/question/19365526

#SPJ11

Explain how energy is transformed when you cook food on a stove.

Answers

Answer:

A stove top acts as a source of heat energy when it burns the gas. Anything which is placed above the stove also becomes a source of energy to cook things

Explanation:

hope you understand it

The gravity on Mars is 3.7 m / s .s
Assume a Martian throws a 2 kg rock straight up into the air, it rises up 10 meters and then falls back to the ground,
How much kinetic energy did the ball have when it was 10 meters off the ground?

Answers

To calculate the kinetic energy of the rock when it is 10 meters off the ground, we need to consider its potential energy at that height and convert it into kinetic energy.

The potential energy of an object at a certain height can be calculated using the formula: PE = m * g * h,

In this case, the mass of the rock is 2 kg, and the height is 10 meters. The acceleration due to gravity on Mars is given as 3.7 m/s².

PE = 2 kg * 3.7 m/s² * 10 m.

Calculating this expression, we find the potential energy of the rock at 10 meters off the ground.

Since the rock is at its maximum height and has no other forms of energy  all of the potential energy is converted into kinetic energy when it falls back to the ground.

Therefore, the kinetic energy of the rock when it is 10 meters off the ground is equal to the potential energy calculated above.

Learn more about kinetic energy here:

https://brainly.com/question/25959744

#SPJ11

AP1: a) Write down the Electric and Magnetic fields for a plane wave travelling in +z direction that is linearly polarized in the x direction. b) Calculate the Poynting vector for this EM wave c) Calculate the total energy density for this wave d) Verify that the continuity equation is satisfied for this wave.

Answers

a) Electric and Magnetic fields for a plane wave travelling in +z direction is

E₀ cos(kz - ωt) î and B₀ cos(kz - ωt) ĵ.

b)Poynting vector for this EM wave is (1/μ₀) E₀ B₀ (cos)²  (k z - - ω t ) k

c)total energy density for this wave is  (1/2μ₀) (E₀² + B₀²) cos²(kz - ωt)

d)continuity equation for this wave is ∂u/∂t + ∇ · S = 0

a) For a plane wave traveling in the +z direction that is linearly polarized in the x direction, the electric field (E) and magnetic field (B) can be written as:

Electric field: E(x, y, z, t) = E₀ cos(kz - ωt) î

Magnetic field: B(x, y, z, t) = B₀ cos(kz - ωt) ĵ

where,

E₀ and B₀ are the amplitudes of the electric and magnetic fields

k is the wave number

ω is the angular frequency

î and ĵ are unit vectors in the x and y directions, respectively.

b) The Poynting vector (S) for this electromagnetic wave can be calculated as:

S(x, y, z, t) = (1/μ₀) E(x, y, z, t) × B(x, y, z, t)

where

μ₀ is the permeability of free space

× denotes the cross product.

Since E and B are perpendicular to each other, their cross product will be in the z direction.

S(x, y, z, t) = (1/μ₀) E₀ B₀ (cos)²  (k z - - ω t ) k

where,

k is the unit vector in the z direction.

c) The total energy density (u) for this wave can be calculated using the equation:

u(x, y, z, t) = (1/2μ₀) (E(x, y, z, t)² + B(x, y, z, t)²)

Substituting the values of E and B into the equation, we get:

u(x, y, z, t) = (1/2μ₀) (E₀² + B₀²) cos²(kz - ωt)

d) The continuity equation for electromagnetic waves states that the rate of change of energy density with respect to time plus the divergence of the Poynting vector should be zero.

Mathematically, it can be written as:

∂u/∂t + ∇ · S = 0

Taking the derivatives and divergence of the expressions obtained in parts b) and c) we can verify if the continuity equation is satisfied for this wave.

learn more about magnetic field :

https://brainly.com/question/19542022

#SPJ4

A uniform solid cylinder rolls without slipping along a horizontal surface. Calculate the ratio E/E rot, ​
where E rot ​
is the rotational kinetic energy and E is the total kinetic energy. a. 10 b. 4 C. 5 d. 2 e. 3

Answers

The ratio [tex]E/E_rot[/tex] is equal to 1, which means that both the translational and rotational kinetic energies of the rolling cylinder are similar.

The problem involves calculating the ratio

[tex]E/E_rot[/tex], where [tex]E_rot[/tex]

represents the rotational kinetic energy, and E is the total kinetic energy of a uniform solid cylinder rolling without slipping on a horizontal surface.

When a solid cylinder rolls without slipping, it possesses translational and rotational kinetic energy. The total kinetic energy, E, is the sum of these two energies. The rotational kinetic energy,[tex]E_rot[/tex], can be calculated using the formula

[tex]E_rot = (1/2) * I * ω²[/tex]

, where I is the moment of inertia of the cylinder and ω is the angular velocity.For a solid cylinder, the moment of inertia about its central axis is given by

[tex]I = (1/2) * m * r²[/tex]

, where m is the mass of the cylinder and r is its radius.The translational kinetic energy is given by

[tex]E_trans = (1/2) * m * v²[/tex], where v is the linear velocity.Since the cylinder is rolling without slipping, the linear velocity v is related to the angular velocity ω by the equation

[tex]v = r * ω[/tex].

Substituting this into the formula for[tex]E_trans[/tex] gives [tex]E_trans = (1/2) * m * (r * ω)² = (1/2) * m * r² * ω² = (1/2) * I * ω²[/tex], which is the same as [tex]E_rot[/tex]

Learn more about rotational kinetic energies here

brainly.com/question/30459585

#SPJ11

A 16.50 kg of solid silver is initially at 20.0 °C. The following information is for silver. Specific heat: 0.056 cal/g-°C = 230 J/kg-°C Melting point: Tmelt = 961 °C Boiling point: Tboil = 2193 °C Heat of Fusion: Le = 21 cal/g = 88 kJ/kg Heat of Vaporization: Lv = 558 cal/g = 2300 kJ/kg a) How much energy is needed to increase the solid silver at 20 °C to be solid silver at 961°C? b) How much energy is needed to change the solid silver at 961 °C to liquid silver at 961 °C?

Answers

Answer: The heat energy needed to increase the solid silver at 20 °C to be solid silver at 961°C is 5.08 MJ. And the heat energy needed to change the solid silver at 961 °C to liquid silver at 961 °C is 1.45 MJ.

a) To increase a 16.50 kg of solid silver at 20.0 °C to be solid silver at 961°C, the following approach can be used;

Q = (m)(∆T)(Cp )

Q is the heat energy neededm is the mass of silver at 16.50 kg. Cp is the specific heat at 0.056 cal/g-°C = 230 J/kg-°C∆T is the change in temperature = Tfinal - Tinitial

= 961 °C - 20 °C

= 941 °C.

Q = (16.50)(941)(230)

Q = 5,081,395 J or

5.08 MJ.

Therefore, the heat energy needed to increase the solid silver at 20 °C to be solid silver at 961°C is 5.08 MJ.

b) The heat energy needed to change the solid silver at 961 °C to liquid silver at 961 °C can be calculated by;

Q = (m)(Le)

Q is the heat energy needed, m is the mass of silver at 16.50 kg, Le is the heat of fusion at 21 cal/g = 88 kJ/kg.

The values are substituted in the formula;

Q = (16.50)(88,000)

Q = 1,452,000 J or 1.45 MJ.

Therefore, the heat energy needed to change the solid silver at 961 °C to liquid silver at 961 °C is 1.45 MJ.

Learn more about heat energy: https://brainly.com/question/934320

#SPJ11

A diesel engine lifts the hammer of a machine, a distance of 20.0 m in 5 sec. If the hammer weighs 2.250 N, how much power does the motor develop?

Answers

A diesel engine lifts the hammer of a machine, a distance of 20.0 m in 5 sec. If the hammer weighs 2.250 N, the motor develops 9.0 Watts of power.

To calculate the power developed by the motor, we can use the formula:

Power = Work / Time

The work done by the motor is equal to the force applied multiplied by the distance traveled by the hammer:

Work = Force × Distance

In this case, the force applied by the motor is the weight of the hammer, which is given as 2.250 N, and the distance traveled by the hammer is 20.0 m. Therefore:

Work = 2.250 N × 20.0 m = 45.0 J (Joules)

The time taken to lift the hammer is given as 5 sec.

Now, we can calculate the power:

Power = Work / Time = 45.0 J / 5 sec

Calculating the value:

Power = 9.0 W (Watts)

Therefore, the motor develops 9.0 Watts of power.

To learn more about Power visit: https://brainly.com/question/11569624

#SPJ11

An automobile and a truck start from rest at the same time, with the truck initially at some distance ahead of the car. The truck has a constant acceleration of 2.90 m/s, and the automobile an acceleration of 3.00 m/s. The automobile catches up with the truck after the truck moved 240.0 m. a) How much time does it take for the automobile to catch the truck? b) How far ahead was the truck initially?

Answers

It takes the automobile 19.6 s to catch up with the truck. The truck was initially 1569.6 m ahead of the automobile.

Truck acceleration, a₁ = 2.90 m/s²

Automobile acceleration, a₂ = 3.00 m/s²

Distance traveled by the truck = 240 m

The initial distance between the truck and car is unknown.Let the distance traveled by the automobile to catch the truck be d.

Let t be the time taken by the automobile to catch the truck.

Now, the distance travelled by the automobile is:d = 1/2 a₂ t² ------------- Equation 1

The distance travelled by the truck in time t is given by:d + 240 = 1/2 a₁ t² ------------- Equation 2

By subtracting equation 1 from equation 2, we can obtain the following equation:

240 = 1/2 (a₁ - a₂) t²=> t = sqrt(480/|a₁ - a₂|) = sqrt(480/0.1) = 19.6 s

Therefore, it took the automobile 19.6 s to catch up with the truck.

Substituting the value of t in Equation 1, we get:d = 1/2 x 3 x (19.6)² = 1809.6 m

Thus, the initial distance between the automobile and the truck is d - 240 = 1809.6 - 240 = 1569.6 m.

Therefore, the truck was initially 1569.6 m ahead of the automobile.

Learn more about acceleration at: https://brainly.com/question/460763

#SPJ11

A current of 29.0 mA is maintained in a single circular loop of 1.30 m circumference. A magnetic field of 0.640 T is directed parallel to the plane of the loop. (a) Calculate the magnetic moment of the loop. mA⋅m 2
(b) What is the magnitude of the torque exerted by the magnetic field on the loop?

Answers

A current of 29.0 mA is maintained in a single circular loop of 1.30 m circumference. the magnetic moment of the loop is approximately 0.012 A⋅m^2. , the magnitude of the torque exerted by the magnetic field on the loop is zero.

(a) To calculate the magnetic moment of the loop, we can use the formula:

Magnetic moment (μ) = current (I) * area (A).

Given the current (I) of 29.0 mA, we need to convert it to amperes:

I = 29.0 mA * (1 A / 1000 mA)

I = 0.029 A.

The area (A) of a circular loop is given by:

A = π * r^2,

where r is the radius of the loop. Since the circumference of the loop is given as 1.30 m, we can calculate the radius (r) as:

Circumference (C) = 2 * π * r,

1.30 m = 2 * π * r.

Solving for r, we get:

r = 1.30 m / (2 * π)

r ≈ 0.206 m.

Substituting the values into the formula for the magnetic moment, we have:

μ = 0.029 A * π *[tex](0.206 m)^2[/tex]

μ ≈ 0.012 A⋅m^2.

Therefore, the magnetic moment of the loop is approximately 0.012 A⋅m^2.

(b) The torque (τ) exerted by a magnetic field on a current loop is given by:

Torque (τ) = magnetic moment (μ) * magnetic field (B) * sin(θ),

where θ is the angle between the magnetic moment and the magnetic field

In this case, the magnetic field is directed parallel to the plane of the loop, so θ = 0 degrees. Therefore, sin(θ) = sin(0) = 0.

Since sin(θ) = 0, the torque exerted by the magnetic field on the loop is zero.

This means that there is no torque acting on the loop, and the loop will not experience any rotational motion in the presence of the magnetic field.

In summary, the magnitude of the torque exerted by the magnetic field on the loop is zero.

Learn more about  magnetic moment here:

https://brainly.com/question/30900644

#SPJ11

The only force acting on a 3.3 kg canister that is moving in an xy plane has a magnitude of 3.0 N. The canister initially has a velocity of 2.4 m/s in the positive x direction, and some time later has a velocity of 5.6 m/s in the positive y direction. How much work is done on the canister by the 3.0 N force during this time? Number ___________ Units _____________

Answers

The work done on the canister by the 3.0 N force during this time is 0 J (joules).

To calculate the work done on the canister by the 3.0 N force during this time, we need to find the displacement of the canister and the angle between the force and the displacement.

The mass of the canister (m) is 3.3 kg.

The magnitude of the force (F) is 3.0 N.

The initial velocity (v₁) is 2.4 m/s.

The final velocity (v₂) is 5.6 m/s.

The work done (W) by the force can be calculated using the formula:

W = F * d * cosθ

To find the displacement (d), we need to calculate the change in position of the canister. Since the canister moves from the positive x direction to the positive y direction, we can consider the displacement as the vector sum of the initial and final velocities:

d = √((Δx)² + (Δy)²)

Δx represents the difference or change in the x-coordinate (horizontal direction) of the canister's position, while Δy represents the difference or change in the y-coordinate (vertical direction) of the canister's position.

Δx = 0 (since the canister does not move in the x direction)

Δy = v₂ - v₁ = 5.6 m/s - 2.4 m/s = 3.2 m/s

By substituting the given values into the formula mentioned above, we can determine the work done on the canister by the 3.0 N force during this time.

d = √((0)² + (3.2)²) = √10.24 = 3.2 m

Now, we need to find the angle θ between the force and the displacement. Since the force is acting in the xy plane and the displacement is in the positive y direction, the angle θ is 90 degrees.

Cosine of 90 degrees is 0, so cosθ = 0.

Substituting the values into the work formula, we get:

W = 3.0 N * 3.2 m * cos90° = 0 J

Therefore, the work done on the canister by the 3.0 N force during this time is 0 J (joules).

Learn more about work done at: https://brainly.com/question/28356414

#SPJ11

A subject is given a sugar pill and is told it may treat anxiety. This person may experience:

Answers

The answer is the answe

Each of four tires on an automobile has an area of 0.026 m in contact with the ground. The weight of the automobile is 2.6*104 N. What is the pressure in the tires? a) 3.1*10 pa E-weight 2.6*10" b) 1610pa =2.5x10 Pa - © 2.5*10pa UA 4*0.026 d) 6.2*10 pa pressure

Answers

To calculate the pressure in the tires, we can use the equation:

Pressure = Force / Area

Therefore, the correct answer is: (c) 1.0 × 10⁶ Pa

The weight of the automobile is the force acting on the tires, and each tire has an area of 0.026 m² in contact with the ground.

Given:

Weight of the automobile = 2.6 × 10⁴ N

Area of each tire in contact with the ground = 0.026 m²

Let's substitute these values into the equation to calculate the pressure:

Pressure = (2.6 × 10⁴ N) / (0.026 m²)

Pressure = 1.0 × 10⁶ N/m²

The pressure in the tires is 1.0 × 10⁶ N/m², which is equivalent to

1.0 × 10⁶ Pa.

Therefore, the correct answer is:

c) 1.0 × 10⁶ Pa

Learn more Force about here

https://brainly.com/question/30507236

#SPJ11

Galaxies in the universe generally have redshifted spectra. A student has read about a cluster galaxy with a blueshifted spectrum. They think it was a galaxy in either the Virgo cluster (at a distance of 20 Mpc from us) or in the Coma Cluster (at a distance of 90 Mpc from us). Estimate whether a blueshifted galaxy in the Virgo or Coma cluster is plausible.

Answers

The presence of a blueshifted spectrum in a galaxy within the Virgo or Coma cluster is examined to determine its plausibility.

In general, galaxies in the universe exhibit redshifted spectra, indicating that they are moving away from us due to the universe's expansion. However, the student has come across a cluster galaxy with a blueshifted spectrum, which seems unusual. We can consider the distances of the Virgo and Coma clusters from us to determine the plausibility of such a scenario.

The Virgo cluster is located at a distance of 20 Mpc (megaparsecs) from us, while the Coma Cluster is significantly farther away, at a distance of 90 Mpc. The observed blueshift indicates that the galaxy is moving towards us. Given that the blueshift is contrary to the general redshift trend, it suggests that the galaxy is relatively close to us.

Considering the distances involved, a blueshifted galaxy in the Virgo cluster (at 20 Mpc) is more plausible than one in the Coma Cluster (at 90 Mpc). The closer proximity of the Virgo cluster makes it more likely for a galaxy within it to exhibit a blue-shifted spectrum.

Learn more about redshifted here:

https://brainly.com/question/30257423

#SPJ11

Other Questions
Suppose we have a perfectly competitive coal market and suppose that demand and supply in this market are given by the following functions: Q d=5 21P dQ s=1+P s.a. Determine the equilibrium price per ton of coal in this market (P e) and the quantity sold at this price (Q e). b. Calculate the consumer surplus, producer surplus, and social welfare for this market (NOTE: don't forget to calculate social welfare after deriving consumer and producer surplus). c. A unit tax of $3/ ton is imposed on the producers of coal. Determine the new equilibrium quantity (Q e), the effective price paid by the consumers (P d), and the effective price received by the producers in this market (P s). (3pt) d. Calculate the share of this tax that is paid by the consumers and the share paid by the producers (in dollars per ton). e. Calculate the consumer surplus, producer surplus, tax revenue, and social welfare under the tax (NOTE: don't forget to calculate social welfare after deriving consumer and producer surplus and tax revenue). (4pt) f. Calculate the deadweight loss resulting from this tax. g. Now suppose that, instead of a $3/ ton tax on coal producers, the government imposes a $3/ ton tax on coal consumers. What is the deadweight loss resulting from this tax? (1pt) A source emitting a sound at 300.0 Hz is moving towards a stationary observer at 25 m/s. The air temperature is 15C. What is the frequency detected by the observer? Consider a point on a bicycle tire that is momentarily in contact with the ground as the bicycle rolls across the ground with constant speed. The direction for the acceleration for this point at that moment is: a. upward. b. down toward the ground. c. forward, with the direction of the bicycle's movement. d. at that moment the acceleration is zero. e. backward, against the direction of the bicycle's movement. (a) Using neat diagrams of the output power for a resistive load, explain why single phase generators will cause vibrations in a wind turbine and why these vibrations do not occur when using three phase generators. ( Why is sexual sexual and gender violence so unwelcomed? What arethe reasons that contribute and reinforce these violences? Grant jumps 170 m straight up into the air to slam-dunk a basketball into the net. With what speed did he leave the floor? Can someone put in bullet form with the credible sources themain notable works of Europe in modern times?" Divide the volume of hydrogen at STP (26.45mL) by the theoretical number of moles of hydrogen (0.001523 mol) to calculate the molar volume (in L/mole) of hydrogen at STP. Consider the following schedule: r(X); r(Z); r(Z); r3(X); r3(Y); w(X); C; W3(Y); C3; r2(Y); w(Z); w(Y); c. Determine whether the schedule is strict, cascadeless, recoverable, or nonrecoverable. Also, please determine the strictest recoverability condition that the schedule satisfies. The supply and demand for dog clothing is given by Q 0=50010P and Q s=5P25 5. What is the equilibrium price and quantity? 6. Suppose a tax of $12 per unit is imposed on sellers in the 6. Suppose a tax of $12 per unit is imposed on sellers in the market. The equilibrium price and quantity are now 7. (2 points) The tax burdens (per unit bought or sold) are Burden on Buyers =4 Burden on Sellers = The design conditions for a continuous stirred-tank reactor areas given here. Would the reactor be stable with a constant jackettemperature?Feed = 1000 kg/hr at 20 C, containing 50% ACp = 0:75c True or False?A: The main growth mechanism for 1.4 mm raindrops iscondensation/diffusional. Strontium hydroxide (Sr(OH)2) is a slightly soluble ionic compound, and as such dissolves only slightly in pure water. Instead of pure water, if this compound was dissolved in a dilute (low concentration) solution of sodium chloride(aq), would the strontium hydroxide be more soluble, less soluble, or have the same solubility compared to being dissolved in pure water?a.The solubility would likely stay the sameb.It would become more solublec.It would become less soluble The development of technology has had no influence on the nature of work whatsoever. False True Question 1a) It is widely accepted now that the US lost in Vietnam. List and explain three mistakes/oversights that led to this loss?b) List and describe three controversies or obstacles that currently confront attempts at European Unityc) Give one reason for the demographic crisis in Japan. which details from the monkey paw most clearly help create tension Let theta be an angle in quadrant two such that cos theta=-3/4. find the exact values of csc theta and cot theta Illustrate and discuss the two ways of throttling using one-way flow control valves (10 Marks)Provide me complete answer of this question with each part.. this subject is PNEUMATICS & ELECTRO-PNEUMATICS. pl do not copy i assure u will get more thN 10 THUMPS UP . Describe Somogyi phenomenon. (5 marks)b. What are the causes of haematemesis? (5 marks)c. What are the cardinal features of gout? (5 marks)d. What are the characteristics of cirrhosis? (5 marks)e. What may be indicated in elevated PSA (prostatic specific antigen)? Radon-222 is a colorless and odorless gas that is radioactive, undergoing alpha-decay with a half-life of 3.8 days. What atom remains after this process? O Carbon-12 O Radium-226 O Polonium-218 O Uranium-238 O Radon-222