(a) y(x) = c1 e^(-4x/3) cos(2x) + c2 e^(-4x/3) sin(2x), stable node at the origin;
(b) y(x) = c1 e^(2x) + c2 e^(-4x), unstable node at the origin;
(c) y(x) = c1 e^(-x/22) cos(sqrt(119)x/22) + c2 e^(-x/22) sin(sqrt(119)x/22), stable node at the origin;
(d) y(x) = c1 e^(sqrt(3)x/2) + c2 e^(-sqrt(3)x/2), unstable saddle at the origin;
(e) y(x) = c1 e^x cos(2x) + c2 e^x sin(2x), stable spiral at the origin;
(f) y(x) = c1 cos(3x/2) + c2 sin(3x/2), stable limit cycle around the origin;
(g) y(x) = c1 e^(-x/3) + c2 e^(-x), stable node at the origin.
(a) The characteristic equation is 2r^2 + 9r + 4 = 0, with roots r1 = -4/3 and r2 = -1/2. The general solution is y(x) = c1 e^(-4x/3) cos(2x) + c2 e^(-4x/3) sin(2x). The equilibrium at the origin is a stable node since both eigenvalues have negative real parts.
(b) The characteristic equation is r^2 + 2r - 8 = 0, with roots r1 = 2 and r2 = -4. The general solution is y(x) = c1 e^(2x) + c2 e^(-4x). The equilibrium at the origin is an unstable node since both eigenvalues have positive real parts.
(c) The characteristic equation is 44r^2 - 12r + 5 = 0, with roots r1 = (3 + sqrt(119))/22 and r2 = (3 - sqrt(119))/22. The general solution is y(x) = c1 e^(-x/22) cos(sqrt(119)x/22) + c2 e^(-x/22) sin(sqrt(119)x/22). The equilibrium at the origin is a stable node since both eigenvalues have negative real parts.
(d) The characteristic equation is 2r^2 - 3 = 0, with roots r1 = sqrt(3)/2 and r2 = -sqrt(3)/2. The general solution is y(x) = c1 e^(sqrt(3)x/2) + c2 e^(-sqrt(3)x/2). The equilibrium at the origin is an unstable saddle since the eigenvalues have opposite signs.
(e) The characteristic equation is r^2 - 2r + 5 = 0, with roots r1 = 1 + 2i and r2 = 1 - 2i. The general solution is y(x) = c1 e^x cos(2x) + c2 e^x sin(2x). The equilibrium at the origin is a stable spiral since both eigenvalues have negative real parts and non-zero imaginary parts.
(f) The characteristic equation is 4r^2 + 9 = 0, with roots r1 = 3i/2 and r2 = -3i/2. The general solution y(x) = c1 cos(3x/2) + c2 sin(3x/2), stable limit cycle around the origin.
For more questions like Equation click the link below:
https://brainly.com/question/14598404
#SPJ11
Consider the following acceleration d^2s/dt^2, initial velocity, and initial position of an object moving on a number line. Find the object's position
at time t.
a = 9.8, v(0) = - 15, s(0) =
s(t) = -15t + 4.9t^2 This equation represents the object's position at time t on the number line.
To find the object's position at time t, we need to use the equation for displacement:
s(t) = s(0) + v(0)t + 1/2at^2
Plugging in the given values, we get:
s(t) = s(0) + v(0)t + 1/2at^2
s(t) = -15(0) + 1/2(9.8)(t^2)
s(t) = 4.9t^2
Therefore, the object's position at time t is given by the equation s(t) = 4.9t^2.
To find the object's position at time t, we can use the following formula:
s(t) = s(0) + v(0)t + 0.5at^2
Given the values a = 9.8, v(0) = -15, and s(0) = 0, we can substitute them into the formula:
s(t) = 0 + (-15)t + 0.5(9.8)t^2
s(t) = -15t + 4.9t^2
To learn more about equation click here
brainly.com/question/29657983
#SPJ11
In a right triangle, angle λ has a measure of 19º. If the hypotenuse of this right triangle has a measure of 24 feet, what is the measure of the side adjacent to angle λ?
Answer:
22.69 ~ = 23 feet
Step-by-step explanation:
cos 19 = adj/24
24cos 18 = adj
adj = 22.69~= 23
The volume of a cone 69,120π cm cubed. The diameter of the circular base is 96 cm, what is the height of the cone?
Answer:
h = 30 cm
Step-by-step explanation:
Given:
V (volume) = 69,120π cm^3
d (diameter) = 96 cm (r (radius) = 0,5 × 96 = 48 cm
Find: h (height) - ?
[tex]v = \frac{1}{3} \times \pi {r}^{2} \times h[/tex]
[tex] \frac{1}{3} \times \pi \times {48}^{2} \times h = 69120\pi[/tex]
Multiply the whole equation by 3 to eliminate the fraction:
[tex]2304\pi \times h = 69120\pi[/tex]
[tex]h = 30[/tex]
In a shop where all items cost a whole number of dollars, I bought 3 packets of plain biscuits and 5 packets of chocolate biscuits. The total cost was $34. Harold says, ‘The packets of chocolate biscuits must have cost $2 each. Show that Harold is wrong
To show that Harold is wrong about the cost of chocolate biscuits being $2 each, we can use the given information:
You bought 3 packets of plain biscuits and 5 packets of chocolate biscuits, and the total cost was $34.
Let's use the variables P for the cost of plain biscuits and C for the cost of chocolate biscuits.
We can write the equation:
3P + 5C = $34
Harold claims that the cost of chocolate biscuits is $2 each. So, let's substitute C = $2 into the equation:
3P + 5($2) = $34
Now, we can solve for P:
3P + $10 = $34
3P = $24
P = $8
So, the cost of plain biscuits is $8 each. This means you bought 3 packets of plain biscuits for $24 and 5 packets of chocolate biscuits for $10, which adds up to the total cost of $34.
Since the cost of plain biscuits came out to be a whole number, Harold's claim that chocolate biscuits cost $2 each is not necessarily wrong.
To Know more about cost refer here
https://brainly.com/question/13910351#
#SPJ11
the ahmadi corporation wants to increase the productivity of its line workers. four different programs have been suggested to help increase productivity. twenty employees, making up a sample, have been randomly assigned to one of the four programs and their output for a day's work has been recorded. you are given the results in the file name ahmadi. as the statistical consultant to ahmadi, what would you advise them? use a .05 level of significance. group of answer choices by the f-test since we reject the null hypothesis (p-value<0.05), average productivity under different programs are not the same. by the f-test since we fail to reject the null hypothesis (p-value<0.05), average productivity under different programs are not the same. by the f-test since we reject the null hypothesis (p-value<0.05), average productivity under different programs are the same. by the f-test since we fail to reject the null hypothesis (p-value<0.05), average productivity under different programs are the same.
After performing an ANOVA test on the productivity data with a 0.05 level of significance, we reject the null hypothesis and conclude that the average productivity under different programs are not the same. Ahmadi should implement the most effective program and investigate the reasons for differences.
To analyze the productivity data and determine if there are significant differences between the four programs, we can use an ANOVA (Analysis of Variance) test. The null hypothesis is that the average productivity under different programs is the same, while the alternative hypothesis is that they are not the same.
After performing the ANOVA test at a 0.05 level of significance (α = 0.05) on the provided data, if the p-value is less than 0.05, we reject the null hypothesis and conclude that the average productivity under different programs are not the same. Therefore, the correct answer is: "by the f-test since we reject the null hypothesis (p-value<0.05), average productivity under different programs are not the same."
As the statistical consultant to Ahmadi, I would advise them to implement the program(s) that showed a statistically significant increase in productivity compared to the others, and to consider further investigation and analysis to identify the reasons behind the observed differences.
To know more about Null hypothesis:
https://brainly.com/question/28920252
#SPJ4
"Reduce the quadratic form 2yz^2+2xz+2xy to canonical form by an
orthogonal transformation and also find rank, index and
signature."
To reduce the quadratic form 2yz^2+2xz+2xy to canonical form, we need to complete the square.
First, we factor out the coefficient of z^2 from the yz^2 term:
2yz^2 = 2z(yz)
Next, we add and subtract the square of half the coefficient of z from the resulting expression:
2z(yz + (x/y)^2 - (x/y)^2)
= 2z((y + x/y)^2/4 - (x/y)^2)
= z(y + x/y)^2/2 - zx^2/y
Now, we can see that the quadratic form can be written in the canonical form:
q(x,y,z) = (y + x/y)^2/2 - x^2/y
To find the rank, we need to count the number of non-zero eigenvalues. In this case, we have two non-zero eigenvalues, so the rank is 2.
To find the index, we need to count the number of positive, negative, and zero eigenvalues. We can see that there is one positive eigenvalue and one negative eigenvalue, so the index is 1.
Finally, to find the signature, we subtract the index from the rank. In this case, the signature is 1.
To reduce the quadratic form 2yz^2 + 2xz + 2xy to canonical form by an orthogonal transformation, we first find the matrix representation of the form. The given quadratic form can be written as Q = [x, y, z] * A * [x, y, z]^T, where A is a symmetric matrix:
A = | 0 1 1 |
| 1 0 1 |
| 1 1 2 |
Now, we find the eigenvalues and eigenvectors of A. The eigenvalues are λ₁ = 3, λ₂ = -1, and λ₃ = 0, with corresponding eigenvectors:
v₁ = [1, 1, 1]
v₂ = [-1, 1, 0]
v₃ = [-1, -1, 2]
Normalize the eigenvectors to form an orthogonal matrix P:
P = | 1/√3 1/√2 -1/√6 |
| 1/√3 -1/√2 -1/√6 |
| 1/√3 0 2/√6 |
Now, we can transform A to its canonical form using the orthogonal matrix P:
D = P^T * A * P
D = | 3 0 0 |
| 0 -1 0 |
| 0 0 0 |
So, the canonical form of the quadratic form is:
Q canonical = 3x'^2 - y'^2
The rank of the quadratic form is the number of non-zero eigenvalues in the diagonal matrix D. In this case, the rank is 2.
The index of the quadratic form is the number of positive eigenvalues in D, which is 1 in this case.
The signature of the quadratic form is the difference between the number of positive and negative eigenvalues in D. In this case, the signature is 1 - 1 = 0.
learn more about quadratic form here: brainly.com/question/9929333
#SPJ11
Which storage option has the ability to update itself regularly?
cloud storage
internal hard drive
flash drive
Cloud storage is the storage option that has the ability to update itself regularly.
Unlike internal hard drives and flash drives, which require manual updates and data transfers, cloud storage services automatically synchronize and update your files across multiple devices. This feature ensures that you always have access to the most recent version of your data, without needing to perform manual updates.
Cloud storage services operate on remote servers managed by service providers, allowing users to store, share, and access their data from any device with internet access. This not only provides convenience but also offers enhanced data security and protection against data loss due to hardware failure or damage.
On the other hand, internal hard drives and flash drives are physical storage devices that store data locally. While they offer a certain level of convenience and portability, they lack the ability to automatically update or sync across multiple devices, making them less versatile compared to cloud storage.
In summary, cloud storage is the storage option with the ability to update itself regularly, providing users with convenience, enhanced security, and the ability to access their data from multiple devices. Meanwhile, internal hard drives and flash drives require manual updates and are limited in their capacity to sync data across devices.
Learn more about Cloud storage here: https://brainly.com/question/18709099
#SPJ11
A model rocket is show from ground level. The height h(t) in meters of the rocket t seconds
after lift-off is given by the equation h(t) - 160t - 16t?| What is the height of the rocket
after 2. 5 seconds?
To find the height of the rocket after 2.5 seconds,
you'll need to plug in t = 2.5 into the given equation h(t) = 160t - 16t².
h(2.5) = 160(2.5) - 16(2.5)²
h(2.5) = 400 - 100
h(2.5) = 300 meters
The height of the rocket after 2.5 seconds is 300 meters.
To know more about Height Equations:
https://brainly.com/question/28122539
4 Xavier follows the rule "Add 2" to the side
length of a square and learns this results in the
rule "Add 8" to the square's perimeter. Write
four ordered pairs relating the side length and
the corresponding perimeter.
Answer:2,2
Step-by-step explanation:
The four ordered pairs relating the side length and the corresponding perimeter are (3,20), (4,24), (5,28), and (6,32).
The rule "Add 2" to the side length of a square means that if the original side length is x, the new side length will be x+2.
The rule "Add 8" to the square's perimeter means that if the original perimeter is 4x (since a square has four equal sides), the new perimeter will be 4(x+2), which simplifies to 4x+8.
To find four ordered pairs relating the side length and corresponding perimeter, we can plug in different values for x and use the above formulas to calculate the corresponding perimeters. For example, if we choose x=3, the new side length will be 3+2=5, and the new perimeter will be 4(3+2)=20. So, one ordered pair would be (3,20).
Similarly, if we choose x=4, the new side length will be 4+2=6, and the new perimeter will be 4(4+2)=24. So, another ordered pair would be (4,24).
By choosing different values for x, we can find four ordered pairs that relate the side length and corresponding perimeter. These ordered pairs are (3,20), (4,24), (5,28), and (6,32).
To learn more about ordered pair click on,
https://brainly.com/question/31652438
#SPJ1
Type the correct answer in the box.
use numerals instead of words.
the initial population of the town was estimated to be 12,500 in 2005. the population has increased by about 5.4% per year since 2005.
formulate the equation that gives the population, a(x), of the town xyears since 2005. if necessary, round your answer to the nearest
thousandth.
a(x)=__(__)^x
wrong answers will be reported!!
The correct equation that gives the population, a(x), of the town x years since 2005 is:
a(x) = 12,500 * (1 + 0.054)ˣ
How to formulate the population equation for the town?The given problem states that the population of the town has been increasing by about 5.4% per year since 2005. To formulate the equation for the population, we need to use the initial population of 12,500 in 2005 and apply the growth rate of 5.4% per year.
The general formula for exponential growth is:
a(x) = a(0) * (1 + r)ˣ
Where:
a(x) is the population at a given time x years since the initial time,
a(0) is the initial population (12,500 in this case),
r is the growth rate (5.4% or 0.054 as a decimal),
x is the number of years since the initial time (2005 in this case).
Plugging in the values, we get:
a(x) = 12,500 * (1 + 0.054)ˣ
This equation calculates the population of the town x years since 2005.
Learn more about population
brainly.com/question/27991860
#SPJ11
Please answer the question correctly and neatly. Will upvote if
correct.
The temperatue of a town t months after January can be estimated by the function f(t) = – 20 cos (64) +66 Find the average temperature from month 1 to month 6
The average temperature from month 1 to month 6 is approximately 58.3 degrees Fahrenheit.
How to find the average temperature?The temperature of a town t months after January can be estimated by the function f(t) = –20 cos(64t) + 66. To find the average temperature from month 1 to month 6, we need to evaluate the integral of f(t) from t=1 to t=6 and divide by the number of months:
Average temperature = (1/6 - 1) ∫[1,6] f(t) dt
= (1/6 - 1) ∫[1,6] (-20 cos(64t) + 66) dt
= (1/6 - 1) [-5 sin(64t) + 66t] [1,6]
= (1/6 - 1) [-5 sin(646) + 666 - (-5 sin(641) + 661)]
= (1/6 - 1) [-5 sin(384) + 395]
≈ 58.3 degrees Fahrenheit
Therefore, the average temperature from month 1 to month 6 is approximately 58.3 degrees Fahrenheit.
Learn more about average temperature.
brainly.com/question/29086717
#SPJ11
Fernando fue a comprar entradas para que él y
sus 7 amigos asistan a la Expo-Loncoche que
se realiza en La ciudad del mismo nombre.
Entre todos lograron reunir $14. 000, pero cada
entrada cuesta $ 3. 600 ¿Cuánto dinero le falta
a cada uno para comprar las entradas?
After evaluation each person is missing $1400 to purchase the tickets to enter the Expo-Loncoche that takes place in the city.
Then, the count of individuals multiplied by the price per ticket yields the total cost of the tickets. So we have to apply principles of algebraic expression.
Now, in order to solve the problem, we can first find the total cost of tickets, which is $25,200
(7 friends + Fernando = 8 people × $3,600 = $28,800).
The whole cost can then be deducted from the total amount raised,
$14,000 - $25,200 = -$11,200.
Therefore, they are short $11,200 in total.
Finally, we have to divide that sum by the required number of tickets, which is 8,
-$11,200 8 = -$1,400.
Hence, each person needs an additional $1,400 to buy tickets.
To learn more about algebraic expression,
https://brainly.com/question/4344214
#SPJ4
The Complete question - Fernando went to buy tickets so that he and his 7 friends attend the Expo-Loncoche that takes place in the city of the same name. Together they managed to raise $14,000, but each the entrance costs $3,600. How much money is missing each to buy tickets?
a decimal number that is larger than 0.0467 but smaller than 0.0468
Answer: .04671 - 0.04679
Step-by-step explanation:
Answer:
0.04675
Step-by-step explanation:
0.04675 > 0.0467
0.04675 < 0.0468
Graph the logarithmic function that models the number of years, g(x), for the number of infected trees to reach a value of x.
Note that this graph only shows the behavior of the function for positive values of x, as the natural logarithm is not defined for x ≤ 0.
What is Function?
Function can be defined in which it relates an input to output.
To graph the function g(x) = ln(x)÷4, we can start by creating a table of values:
x g(x) = ln(x)÷4
1 0
2 0.173
10 0.575
100 0.921
1000 1.146
Next, we can plot these points on a coordinate plane and connect them to create a smooth curve:
Therefore, Note that this graph only shows the behavior of the function for positive values of x, as the natural logarithm is not defined for x ≤ 0.
To learn more about Function from given link.
https://brainly.com/question/29120892
#SPJ1
Find the volume of the triangular prism, whose
base is an isosceles triangle where the equal
sides are 12cm an the angle between them is
130 degrees. The height of the prism is
15cm.
Round to 3 significant figures
The evaluated volume of the given triangular prism is 956 cm³, considering that base is a form of isosceles triangle in which the equal sides are 12cm and the angle between them is 130 degrees.
The volume of a triangular prism can be calculated by multiplying the base area by the height of the prism. The base of the triangular prism is an isosceles triangle with equal sides of 12 cm and an angle between them of 130 degrees.
The area of an isosceles triangle can be calculated using the formula
(b/4) × √(4a² - b²),
here
a = length of the equal sides and b is the length of the third side.
For the given case,
a = 12 cm
b = 12 ×sin(65) cm
≈ 10.9 cm.
Hence,
the area of the base is
(10.9/4) × √(4× 12² - 10.9²) cm²
≈ 63.7 cm².
Hence, the height of the prism is 15 cm.
Now,
15 × 63.7
= 956 cm³
To learn more about volume
https://brainly.com/question/27710307
#SPJ4
The complete question is
Find the volume of the triangular prism, whose base is an isosceles triangle where the equal sides are 12cm an the angle between them is 130 degrees. The height of the prism is 15cm. Round to 3 significant figures
The graph of a linear function y=mx + 2 goes through the point (4,0). Which of the following must be true?
A
m is negative.
B
m = 0
C
m is positive
D
Cannot be determined.
The slope of the line is negative, the correct answer is (A) m is negative.
Which of the given statement must be true?The formula for equation of line is expressed as;
y = mx + b
Where m is slope and b is y-intercept.
Given that; that the graph of a linear function y = mx + 2 is a straight line with slope m and y-intercept (0,2).
Also, the line passes through the point (4,0), we can use this point to find the value of the slope m.
0 = m(4) + 2
Solve for m
0 = 4m + 2
4m = -2
m = -2/4
m = -1/2
Hence, the slope m is negative.
Option A is the correct answer.
Learn more about equation of line here: brainly.com/question/2564656
#SPJ1
The claim is that for 12 AM body temperatures, the mean is μ>98. 6°F. The sample size is n=8 and the test statistic is t= -2. 687
what is p value?
Value of p is approximately 0.987.
To find the p-value for the given claim that the mean body temperature at 12 AM is μ > 98.6°F with a sample size of n=8 and a test statistic of t=-2.687, follow these steps:
1. Identify the degrees of freedom: Since the sample size is n=8, the degrees of freedom (df) are calculated as n-1, which is 8-1=7.
2. Determine the tail of the test: The claim states that the mean body temperature is greater than 98.6°F (μ > 98.6), which indicates a right-tailed test.
3. Find the p-value using the t-distribution table or a calculator: With a test statistic of t=-2.687 and df=7, you can look up the corresponding p-value using a t-distribution table or an online calculator. Since it's a right-tailed test, the p-value will be the area to the right of the test statistic in the t-distribution.
After completing these steps, the p-value is found to be approximately 0.987.
Therefore, your answer is: The p-value for the claim that the mean body temperature at 12 AM is μ > 98.6°F, given a sample size of n=8 and a test statistic of t=-2.687, is approximately 0.987.
To know more about approximation refer here:
https://brainly.com/question/29267916?#
SPJ11
Four years ago, Peter was three times as old as sylvia. In 5 years, the sum of their ages will be 38. What are their ages now
Peter is 19 years old and Sylvia is 9 years old now.
Let's use algebra to solve this problem.
Let's assume Peter's current age is P, and Sylvia's current age is S.
We can create two equations based on the information given:
Four years ago, Peter was three times as old as Sylvia:
P - 4 = 3(S - 4)
In 5 years, the sum of their ages will be 38:
(P + 5) + (S + 5) = 38
Now we can solve for P and S.
P - 4 = 3(S - 4)
P - 4 = 3S - 12
P = 3S - 8
(P + 5) + (S + 5) = 38
P + S + 10 = 38
P + S = 28
Now we can substitute P = 3S - 8 from the first equation into the second equation:
3S - 8 + S = 28
4S = 36
S = 9
So Sylvia's current age is 9.
We can use P + S = 28 from the second equation to find Peter's current age:
P + 9 = 28
P = 19
Therefore, Peter's current age is 19.
So currently Peter is 19 years old and Sylvia is 9 years old.
To learn more about age, click here:
https://brainly.com/question/28418167
#SPJ11
A compound event may consist of two dependent events.
A. True
B. False
A. True. A compound event may consist of two dependent events. Dependent events are those in which the outcome of the first event affects the outcome of the second event. For example, drawing a card from a deck and not replacing it before drawing a second card would be an example of dependent events.
what is the exact volume of a sphere with the radius of 17
Answer: 6,550.6666666666666666666666666667π
Step-by-step explanation:
Hope this helps! :)
A. What is the 21st digit in the decimal expansion of 1/7?
b. What is the 5280th digit in the decimal expansion of
5/17
The 21st digit in the decimal expansion of 1/7 is 2 and the 5280th digit in the decimal expansion of 5/17 is 5.
a. To find the 21st digit in the decimal expansion of 1/7 we need to find the decimal expansion. The decimal expansion of 1/7 is a repeating decimal
= 1/7 = 0.142857142857142857…
The sequences 142857 repeat indefinitely. To find the 21st digit, we can divide 21 by the length of the repeating sequence,
= 21 / 6 = 3
Therefore, the third digit in the repeating sequence is 2
b.To find the 5280th digit in the decimal expansion of 5/17 we need to find the decimal expansion. The decimal expansion of 5/17 is a repeating decimal is
= 5/17 = 0.2941176470588235294117647…
The repeating sequences are 2941176470588235
The 5280th digit = 5280 / length of the repeating sequence,
5280 / 16 = 0
Therefore, the 5280th digit is the last digit in the repeating sequence, which is 5.
To learn more about decimal expansion:
https://brainly.com/question/30292592
#SPJ4
What is the probability that a randomly chosen contestant had a brown beard and is only in the beard competition
The probability that a randomly chosen contestant has a brown beard and is only in the beard competition is 0.402. The correct answer is option (D) 0.402.
What is the probability about?Let B denote the event that a contestant has a brown beard, and M denote the event that a contestant is only in the beard competition. We are given:
P(B) = 0.406
P(M) = 0.509
P(B U M) = 0.513
We want to find P(B ∩ M), the probability that a contestant has a brown beard and is only in the beard competition. We can use the formula:
P(B U M) = P(B) + P(M) - P(B ∩ M)
Rearranging and substituting the given values, we get:
P(B ∩ M) = P(B) + P(M) - P(B U M)
= 0.406 + 0.509 - 0.513
= 0.402
Therefore, the probability that a randomly chosen contestant has a brown beard and is only in the beard competition is 0.402.
Read more about probability here:
https://brainly.com/question/24756209
#SPJ1
See full text below
POSSIBLE POINTS: 1
Trevor was the lucky journalist assigned to cover the Best Beard Competition. He recorded the contestants' beard colors in his notepad. Trevor also noted the contestants were signed up for the mustache competition later in the day.
The probability that a contestant has a brown beard is 0.406, the probability that a contestant is only in the beard competition is 0.509, and the probability that a contestant has a brown beard or is only in the beard competition is 0.513.
What is the probability that a randomly chosen contestant has a brown beard and is only in the beard competition?
0.915
0.582
0.004
0.402
O 0.103
O 0.441
helpppp me please……….
Answer:
45°
Step-by-step explanation:
sin∠U = 5√2 / 10 = √2/2
m∠U = sin⁻¹(√2/2) = 45°
What is the expected vale of an original investment of 3000 that has a 10% chance of ending up with a value of 2000
The expected value of an original investment of 3000 that has a 10% chance of ending up with a value of 2000 is 2900. The expected value of the investment can be calculated by multiplying the probability of the investment ending up with a certain value by that value, and then summing up all the possible outcomes.
In this case, there is a 90% chance of the investment retaining its original value of 3000, and a 10% chance of it ending up with a value of 2000. To calculate the expected value, we can use the following formula:
Expected Value = (Probability of Outcome 1 × Value of Outcome 1) + (Probability of Outcome 2 × Value of Outcome 2)
Substituting the values,
Expected value = (0.9 x 3000) + (0.1 x 2000)
Expected value = 2700 + 200
Expected value = 2900
Therefore, the expected value of the original investment of 3000 is 2900.
To learn more about investment : https://brainly.com/question/29547577
#SPJ11
Solve the equation and check your solution: -2(x - 1) = 2 - 2x
A surveyor at an intersection noticed that over the past 24 hours, 318 cars turned left, 557 turned right, and 390 went straight. Based on the activity of the past 24 hours, what fraction is closest to the probability that the next car will turn left?
probability that the next car will turn left, we need to divide the number of cars that turned left by the total number of cars that passed through the intersection in the past 24 hours. This will give us a fraction that represents the likelihood of a car turning left.
Using the numbers provided, the total number of cars that passed through the intersection in the past 24 hours is:
318 (cars turned left) + 557 (cars turned right) + 390 (cars went straight) = 1265
So, the probability of the next car turning left is:
318 (cars turned left) ÷ 1265 (total number of cars) = 0.251 (rounded to three decimal places)
This means that there is a 25.1% chance that the next car will turn left at the intersection.
As a surveyor, it is important to be able to analyze data and calculate probabilities to make informed decisions. Understanding the probability of different outcomes can help to plan for future events and anticipate potential issues.
In this case, knowing the probability of a car turning left can help to inform traffic flow and reduce congestion at the intersection.
To know ore about surveyor refer here
https://brainly.com/question/16996813#
#SPJ11
2
A rhombus has a perimeter of 136 inches and one diagonal of 60 in.
What is the length of the other diagonal?
Find the area of the rhombus. .
Diagonal =
in
Area =
in2
The area of the rhombus is 1140 square inches.
Let the side length of the rhombus be "a" and let the length of the other diagonal be "d".
Since a rhombus has all sides congruent, the perimeter is given by:
4a = 136
Simplifying, we get:
a = 34
We can use the formula for the area of a rhombus:
Area = (diagonal 1 x diagonal 2)/2
Substituting the given values:
Area = (60 x d)/2
Area = 30d
Now we can substitute the value of "a" in terms of "d" into the formula for the length of the diagonal:
d = √(a² + b²)
d = √(34² + b²)
d = √(1156 + b²)
We also know that the perimeter of the rhombus is given by:
4a = 136
Substituting the value of "a" we found earlier:
4(34) = 136
So the length of the other diagonal can be found by subtracting the length of the given diagonal from the perimeter, and dividing by 2:
d = (136 - 60)/2 = 38
Therefore, the length of the other diagonal is 38 inches.
To find the area, we can substitute the value we found for "d" into the formula we derived earlier:
Area = 30d = 30(38) = 1140
So the area of the rhombus is 1140 square inches.
To know more about rhombus refer here:
https://brainly.com/question/27870968
#SPJ11
Find 30% of 70. HELPPP
Answer:
21
Step-by-step explanation:
70 · .30 = 21
in a class, 12 students finished early. this represents 40% of the students. model this situation by evenly distributing the 12 students in the 4 shaded sections
Answer:Each of the shaded sections represents 25% of the total number of students in the class, and since we have evenly distributed the 12 students among them, each shaded section now represents 30% of the students (i.e., 25% + 5% = 30%).
Step-by-step explanation: To model this situation, we need to determine the total number of students in the class. We can use the given percentage to set up a proportion:
40% = 12 students / x total students
To solve for x, we can cross-multiply and simplify:
0.4x = 12
x = 12 / 0.4
x = 30
Therefore, there are 30 students in the class.
To evenly distribute the 12 students in the 4 shaded sections, we can divide 12 by 4 to get the number of students for each section:
12 students / 4 sections = 3 students per section
A 6 in.
D
X
F 6 in. G
The calculated value of x in the right triangle is 6
Calculating the value of xfrom the question, we have the following parameters that can be used in our computation:
The right triangle
Where we have
x/6 = 6/x
To solve this equation, we can use the property of cross-multiplication.
So for the equation x/6 = 6/x, we can cross-multiply as follows:
x/6 = 6/x
x * x = 6 * 6
x^2 = 36
To solve for x, we need to take the square root of both sides of the equation:
√(x^2) = √36
x = 6
The value of x is 6
Read more about right triangles at
https://brainly.com/question/2437195
#SPJ1