Find the regression line associated with the set of points. (Round all coefficients to four decimal places.) HINT [See Example 2.] (4, 6), (6, 10), (10, 14), (12, 2) y(x) =

Answers

Answer 1

The y-intercept, b, can be calculated as:

b = (Σy - mΣx) / n

To find the regression line associated with the set of points (4, 6), (6, 10), (10, 14), and (12, 2), we can use the least squares method. The regression line represents the best-fit line that minimizes the sum of the squared differences between the observed y-values and the predicted y-values on the line.

The equation for the regression line, y(x), can be written in the form y = mx + b, where m is the slope of the line and b is the y-intercept.

Using the given points, we can calculate the slope, m, and the y-intercept, b, to obtain the equation of the regression line.

The slope, m, is calculated as:

m = (nΣxy - ΣxΣy) / (nΣ[tex]x^2[/tex] - (Σ[tex]x)^2[/tex])

where n is the number of points, Σxy is the sum of the product of x and y values, Σx is the sum of the x-values, and Σy is the sum of the y-values.

Similarly, the y-intercept, b, can be calculated as:

b = (Σy - mΣx) / n

By substituting the given values into the formulas and performing the calculations, the equation for the regression line can be obtained.

For more such answers on Intercept

https://brainly.com/question/24212383

#SPJ8


Related Questions

NO LINKS!! URGENT HELP PLEASE!!

Use the laws of sines and cosines for the missing variable ​

Answers

Answer:

x = 8

Step-by-step explanation:

The given diagram shows a triangle with the length of two sides and its included angle.

To find the value of the missing variable x, we can use the Law of Cosines.

[tex]\boxed{\begin{minipage}{6 cm}\underline{Law of Cosines} \\\\$c^2=a^2+b^2-2ab \cos C$\\\\where:\\ \phantom{ww}$\bullet$ $a, b$ and $c$ are the sides.\\ \phantom{ww}$\bullet$ $C$ is the angle opposite side $c$. \\\end{minipage}}[/tex]

From inspection of the given triangle:

a = 18b = 21c = xC = 22°

Substitute the values into the formula and solve for x:

[tex]\begin{aligned}x^2&=18^2+21^2-2(18)(21)\cos 22^{\circ}\\x^2&=324+441-756\cos 22^{\circ}\\x^2&=765-756\cos 22^{\circ}\\x&=\sqrt{765-756\cos 22^{\circ}}\\x&=8.00306228...\\x&=8\end{aligned}[/tex]

Therefore, the value of the missing variable x is x = 8, rounded to the nearest hundredth.

Write a equation of the circle graphed below

Answers

Answer:

[tex](x+5)^2+(y+5)^2=25[/tex]

Step-by-step explanation:

Recall that the equation of a circle with center (h,k) and radius "r" is [tex](x-h)^2+(y-k)^2=r^2[/tex]

Since the center of the circle is (h,k)=(-5,-5) and the radius is r=5, then our equation will be [tex](x-(-5))^2+(y-(-5))^2=5^2[/tex] which can be simplified into [tex](x+5)^2+(y+5)^2=25[/tex]

Find the area of the shaded portion if we know the outer circle has a diameter of 4 m and the inner circle has a diameter of 1.5 m.

A. 43.2 m2

B. 10.8 m2

C. 12.6 m2

D. 1.8 m2

Answers

The correct answer should be B. 10.8 m2

b) Calculate the following using the order of operations and emphasizing factors of one.
2-(-7)+(-8)-(13) +-4-5

Answers

Using the order of operations and emphasizing factors of one, we can calculate the following expression:
2 - (-7) + (-8) - (13) + (-4) - 5
= 2 + 7 - 8 - 13 - 4 - 5
= -21
Therefore, the value of the expression is -21.
I hope this helps!

Answer:

-21

Step-by-step explanation:

2+7-8-13-4-5

9-30

-21

Hope it's helpful.

6, 12, 24, 48, 96, … Each term is 6 more than the previous term. Each term is 12 more than the previous term. Each term is 1/2 the previous term. Each term is 2 times the previous term.

Answers

The given sequence can be generated by multiplying each term by 2, starting from the initial term of 6.

The pattern that fits the given sequence 6, 12, 24, 48, 96, ... is that each term is 2 times the previous term.

In the sequence 6, 12, 24, 48, 96, ... there are multiple possible patterns, each resulting from a different rule applied to generate the next term. Let's examine each of the proposed patterns:

Each term is 6 more than the previous term:

Starting with 6, if we add 6 to each term, we get:

6 + 6 = 12

12 + 6 = 18

18 + 6 = 24

24 + 6 = 30

30 + 6 = 36

...

This pattern does not match the given sequence since it does not produce the subsequent terms.

Each term is 12 more than the previous term:

Starting with 6, if we add 12 to each term, we get:

6 + 12 = 18

18 + 12 = 30

30 + 12 = 42

42 + 12 = 54

54 + 12 = 66

...

This pattern also does not match the given sequence.

Each term is 1/2 the previous term:

Starting with 6, if we multiply each term by 1/2, we get:

6 [tex]\times[/tex] 1/2 = 3

3 [tex]\times[/tex] 1/2 = 1.5

1.5 [tex]\times[/tex] 1/2 = 0.75

0.75 [tex]\times[/tex] 1/2 = 0.375

0.375 [tex]\times[/tex] 1/2 = 0.1875

...

This pattern does not match the given sequence.

Each term is 2 times the previous term:

Starting with 6, if we multiply each term by 2, we get:

6 [tex]\times[/tex] 2 = 12

12 [tex]\times[/tex] 2 = 24

24 [tex]\times[/tex]2 = 48

48 [tex]\times[/tex]2 = 96

96 [tex]\times[/tex]2 = 192

This pattern perfectly matches the given sequence. Each term is indeed 2 times the previous term, resulting in the next term.

For similar question on sequence.

https://brainly.com/question/28354530

#SPJ8  

Predict the number of sales in month 5

Answers

The predicted sales in month 5 is -2778.

Obtaining the linear equation which models the data :

y = bx + c

b = slope = (y2-y1)/(x2-x1)

b = (926-7408)/(4-1)

b = -2160.67

c = intercept ;

taking the points (x = 2 and y = 3704)

Inserting into the general equation:

3704 = -2160.67(2) + c

3704 = -4321.33 + c

c = 3704 + 4321.33

c = 8025.33

General equation becomes : y = -2160.67x + 8025.33

To obtain sales in month 5:

y = -2160.67(5) + 8025.33

y = -2778

Hence, the predicted sales in month 5 is -2778.

Learn more on linear regression: https://brainly.com/question/25987747

#SPJ1

HELP I NEED ANSWER

Write an exponential decay function where the y-intercept is 4 and the y-values decrease by a factor of one-half as x increases by 1.

Answers

The exponential decay function that satisfies the given conditions is:

[tex]f(x) = 4 * (1/2)^x[/tex].

In this equation, the y-intercept is 4, which means that when x = 0, the function value is 4. As x increases by 1, the function decreases by a factor of one-half. This behavior is captured by raising 1/2 to the power of x in the equation.

The base of the exponent, 1/2, ensures that the function decreases exponentially. When x = 1, the exponent becomes 1, and[tex]1/2^1[/tex] equals 1/2. This means that the function value decreases to half of its previous value. Similarly, when x = 2, the exponent becomes 2, and[tex]1/2^2[/tex] equals 1/4. The function value decreases to one-fourth of its previous value, and so on.

By multiplying the exponential term by 4, we ensure that the y-intercept is 4. This scaling factor allows us to control the initial value of the function and match the given condition.

The exponential decay function[tex]f(x) = 4 * (1/2)^x[/tex] represents a decaying process where the y-values decrease exponentially as x increases, while starting at a y-intercept of 4.

For more such questions on exponential decay function

https://brainly.com/question/12139640

#SPJ8

A right circular cone is intersected by a plane that passes through the cone's
vertex and is perpendicular to its base, as in the picture below. What is
produced from this intersection?
OA. A pair of parallel lines
B. A single line
OC. A point
OD. A pair of intersecting lines

Answers

Answer:

D. A pair of intersecting lines

Step-by-step explanation:

A conic section is a fancy name for a curve that you get when you slice a double cone with a plane. Imagine you have two ice cream cones stuck together at the tips, and you cut them with a knife. Depending on how you cut them, you can get different shapes. These shapes are called conic sections, and they include circles, ellipses, parabolas and hyperbolas. If you cut them right at the tip, you get a point. If you cut them slightly above the tip, you get a line. If you cut them at an angle, you get two lines that cross each other. That's what happened in your question. The plane cut the cone at an angle, so the curve is two intersecting lines. That means the correct answer is D. A pair of intersecting lines.

I hope this helps you ace your math question.

Snow Fall (Inches)
2.75
2.5
2.25
2
1.75
1.5
1.25
1
0.75
0.5
0.25
0
4
O A. 1.25
OB. 0.75
O C. 2.5
O D. 1.5

1
2
3
4
Time (hours after Midnight)
5
12. The graph above depicts the amount of snow accumulation from midnight to 5:00 a.m. The x-axis represents time (hours after midnight), and the y-axis represents the number of
inches of snow on the ground. How many inches of snow accumulated between 2:00 a.m. and 5:00 a.m.?

Answers

The amount of snow accumulated between 2 am and 5 am is: 1.25 inches

How to Interpret Linear Equation Graphs?

The general formula for the equation of a line in slope intercept form is:

y = mx + c

where:

m is slope

c is y-intercept

From the given graph attached, we see that the y-axis gives the amount of snow at different specific times.

Meanwhile the x-axis gives the time in hours after midnight

At 2am, the y-axis value is 1.25 inches, and as such at 2am snow accumulation was 1.25 inches.

At 5 am, the y-axis value reads 2.5 inches, and as such at 5am snow accumulation was 2.5 inches.

The difference in both snow accumulations is:  2.5 - 1.25 = 1.25

Hence, 1.25 inches snow accumulated between 2 am and 5 am.

Read more about Linear Equation Graphs at: https://brainly.com/question/28732353

#SPJ1

NO LINKS!! URGENT HELP PLEASE!!

Find each indicated measure ​

Answers

Answer:

b. 160°

d. 55°

Step-by-step explanation:

The Inscribed Angle Theorem states that an inscribed angle is half of the central angle that subtends the same arc.

In other words, if an angle is inscribed in a circle and it intercepts an arc, then the measure of the inscribed angle is equal to half the measure of the central angle that also intersects that arc.

For question:

b.

By using above theorem:

m arc XW=2* m arc XYW

m arc XW= 2*80=160°

d.

m arc WV=125°

The Inscribed Angle Diameter Right Angle Theorem states that any angle inscribed in a circle that intercepts a diameter is a right angle.

By using this theorem:

m arc WV+m arc XV =180°

Now

m arc XV =180°-m arc WV

m arc XV=180°-125°

n arc XV=55°

Answer:

[tex]\text{b.} \quad m\overset{\frown}{XW}=160^{\circ}[/tex]

[tex]\text{d.} \quad m\overset{\frown}{XV}=55^{\circ}[/tex]

Step-by-step explanation:

An inscribed angle is the angle formed (vertex) when two chords meet at one point on a circle.

An intercepted arc is the arc that is between the endpoints of the chords that form the inscribed angle.

[tex]\hrulefill[/tex]

Part b

From inspection of the given circle:

The inscribed angle is m∠WRX = 80°The intercepted arc is arc XW.

According to the Inscribed Angle Theorem, the measure of an inscribed angle is half the measure of the intercepted arc. Therefore:

[tex]m \angle WRX = \dfrac{1}{2}\overset{\frown}{XW}[/tex]

         [tex]80^{\circ}= \dfrac{1}{2}\overset{\frown}{XW}[/tex]

   [tex]\boxed{m\overset{\frown}{XW}=160^{\circ}}[/tex]

[tex]\hrulefill[/tex]

Part d

From inspection of the given circle:

The inscribed angle is m∠WVX = 90°The intercepted arc is arc WX.

According to the Inscribed Angle Theorem, the measure of an inscribed angle is half the measure of the intercepted arc. Therefore:

[tex]m \angle WVX= \dfrac{1}{2}\overset{\frown}{WX}[/tex]

         [tex]90^{\circ}= \dfrac{1}{2}\overset{\frown}{WX}[/tex]

    [tex]m\overset{\frown}{WX}=180^{\circ}[/tex]

The sum of the measures of the arcs in a circle is 360°.

[tex]m\overset{\frown}{VW}+m\overset{\frown}{WX}+m\overset{\frown}{XV}=360^{\circ}[/tex]

Therefore, so find the measure of arc XV, substitute the found measures of arcs VW and WX, and solve for arc XV:

[tex]125^{\circ}+180^{\circ}+m\overset{\frown}{XV}=360^{\circ}[/tex]

          [tex]305^{\circ}+m\overset{\frown}{XV}=360^{\circ}[/tex]

                    [tex]\boxed{m\overset{\frown}{XV}=55^{\circ}}[/tex]

Algebra Question
68% Oppose year round school
32% Favor year round school
Error +/- 5%

The error given in the graph represents the actual percent could be 5% more or 5% less than the percent reported by the survey.


A. Write and solve an absolute value equation to determine the least and greatest percent of students who could be in favor of year-round school.


B. A classmate claims that ⅓ of the student body is actually in favor of year-round school. Does this conflict with the survey data? Explain.


*can't add graph for some reason

Answers

A. To determine the least and greatest percentage of students who could be in favor of year-round school, we can use the error given in the survey, which is +/5%. Let's denote the actual percentage of students in favor of year-round school as x.

The least percentage can be found by subtracting 5% from the reported percentage of 32%:

32% - 5% = 27%

So, the least percentage of students in favor of year-round school is 27%.

The greatest percentage can be found by adding 5% to the reported percentage of 32%:

32% + 5% = 37%

Therefore, the greatest percentage of students in favor of year-round school is 37%.

Hence, the least percentage is 27% and the greatest percentage is 37%.

B. A classmate claiming that ⅓ of the student body is actually in favor of year-round school conflicts with the survey data. According to the survey, the reported percentage in favor of year-round school is 32%, which is not equal to 33.3% (⅓). Therefore, the classmate's claim contradicts the survey results.

It's important to note that the survey provides specific data regarding the percentages of students in favor and opposed to year-round school. The claim of ⅓ being in favor does not align with the survey's findings and should be evaluated separately from the survey data.

what is the answer to the question it’s geometry

Answers

Answer:

127

Step-by-step explanation:

Angle C+Angle D=Angle ABC

Since C+D+CBD=180 and ABC+CBD=180

subtract getting C+D-CBD=0 and C+D=CBD

so 67+60=127 which is your answer

*Just to clarify, when i said C and D, i meant angle C and angle D

X-2
5 = 8 using the change of base formula logby=
log y
log b

Answers

By using the change of base formula: The solution to the equation log(base y) (X-2) = 5 is [tex]X = y^5 + 2.[/tex]

To solve the equation log(base y) (X-2) = 5 using the change of base formula, we can rewrite the equation as log(base b) (X-2) / log(base b) y = 5.

Using the change of base formula, we can choose any base for b.

Let's choose base 10 for simplicity.

So the equation becomes log(base 10) (X-2) / log(base 10) y = 5.

We know that log(base 10) (X-2) represents the logarithm of (X-2) to the base 10, and log(base 10) y represents the logarithm of y to the base 10.

Now, to solve for X, we can isolate it by multiplying both sides of the equation by log(base 10) y:

log(base 10) (X-2) = 5 [tex]\times[/tex] log(base 10) y.

This simplifies to:

log(base 10) (X-2) [tex]= log(base 10) y^5.[/tex]

Since the logarithms on both sides have the same base, we can remove the logarithm and equate the arguments:

[tex]X - 2 = y^5.[/tex]

Now we can solve for X by adding 2 to both sides:

[tex]X = y^5 + 2.[/tex]

For similar question on equation.

https://brainly.com/question/30092358  

#SPJ8

A water slide is a straight ramp 20 m long that starts from the top of a tower 18 m high. Find the angle the slide forms with the tower. Approximate to the nearest degree.

Answers

The angle the slide forms with the tower is approximately 41 degrees (rounded to the nearest degree).

To find the angle the slide forms with the tower, we can use trigonometric ratios. Let's consider the right triangle formed by the height of the tower (18 m), the length of the slide (20 m), and the angle we want to find.

Using the tangent function, we have:

tan(angle) = opposite/adjacent

In this case, the opposite side is the height of the tower (18 m) and the adjacent side is the length of the slide (20 m). Therefore:

tan(angle) = 18/20

To find the angle, we can take the inverse tangent (arctan) of both sides:

angle = arctan(18/20)

Using a calculator, we find that arctan(18/20) is approximately 40.56 degrees.

Therefore, the angle the slide forms with the tower is approximately 41 degrees (rounded to the nearest degree).

For more questions on tangent function, click on:

https://brainly.com/question/30162652

#SPJ8

DC=x-2
Height=4
AB=2x+4
The area of the trapezoid ABCD shown above is 70 square units. Calculate x.

Answers

Answer:

Step-by-step explanation:To calculate the value of x, we can use the formula for the area of a trapezoid:

Area = (1/2) * (sum of the parallel sides) * height

Given that the area of the trapezoid ABCD is 70 square units, we can set up the equation as follows:

70 = (1/2) * (AB + DC) * Height

Substituting the given values:

70 = (1/2) * ((2x + 4) + (x - 2)) * 4

Simplifying the equation:

70 = (1/2) * (3x + 2) * 4

Multiplying both sides by 2 to remove the fraction:

140 = (3x + 2) * 4

Dividing both sides by 4:

35 = 3x + 2

Subtracting 2 from both sides:

33 = 3x

Dividing both sides by 3:

x = 11

Therefore, the value of x is 11.

True or false: f(x) is a function.
0
3
6
9

f(x)
0
1
3

Answers

Answer:

Step-by-step explanation:

If {0, 3, 6, 9} are are your x's or domain  or input and there are no repeats, then yes TRUE it is a function.

How many boys are there in an introductory Chinese course if 352 students are enrolled and there are nine boys to every seven girls?

Answers

17x = 425

x = 25

8x = 200 boys

9x = 225 girls

Solve the system of equations.

y=x+5y=x2+5x−7

Enter your answers in the boxes.


Here's the answer for you guys if you need it (:

Answers

Answer:

(2, 7) and (-6, -1)

Step-by-step explanation:

y = x + 5

y = x² + 5x − 7

Equatig the above,

x² + 5x − 7 = x + 5

⇒ x² + 4x −12 = 0

⇒ x² + 6x - 2x - 12 = 0

⇒ x(x + 6) - 2(x + 6) = 0

⇒  (x - 2)(x + 6) = 0

⇒ x = 2 or x = -6

Eq(1) : y = x + 5 (given)

When x = 2

y = 2 + 5 = 7

Point : (2, 7)

When x = -6

y = -6 + 5 = -1

Point: (-6, -1)

What is the name of the Platonic solid below

Answers

The name of the Platonic solid that resembles a cuboid is the hexahedron, or more commonly known as a cube.

The correct answer is option C.

The name of the Platonic solid that resembles a cuboid is the hexahedron, also known as a cube. The hexahedron is one of the five Platonic solids, which are regular, convex polyhedra with identical faces, angles, and edge lengths. The hexahedron is characterized by its six square faces, twelve edges, and eight vertices.

The term "cuboid" is often used in general geometry to describe a rectangular prism with six rectangular faces. However, in the context of Platonic solids, the specific name for the solid resembling a cuboid is the hexahedron.

The hexahedron is a highly symmetrical three-dimensional shape. All of its faces are congruent squares, and each vertex is formed by three edges meeting at right angles. The hexahedron exhibits symmetry under several transformations, including rotations and reflections.

Its regularity and symmetry make the hexahedron an important geometric shape in mathematics and design. It has numerous applications in architecture, engineering, and computer graphics. The cube, as a special case of the hexahedron, is particularly well-known and widely used in everyday life, from dice and building blocks to cubic containers and architectural structures.

Therefore, the option which is the correct is C.

For more such information on: Platonic solid

https://brainly.com/question/32030513

#SPJ8

The question probable may be:

What is the name of the Platonic solid which resembles a cuboid?

A. Dodecaheron  

B. Tetrahedron

C. Hexahedron

D. Octahedron  

If a pound of rolled oats costs $4
, how many ounces can be bought for $1.95
?

Answers

Answer:

7.80 ounces can be bought for $1.95

Step-by-step explanation:

Step 1:  Determine how many ounces is in a pound:

Because we want our final answer to be in ounces, we first need to determine how many ounces is in a pound.  1 pound is equal to 16 ounces.  

Thus, 16 ounces cost $4.

Step 2:  Create a proportion to determine how many ounces can be bought for $1.95.

Since you can get 16 ounces for $4, we can create a proportion to determine how many ounces can be bought for $1.95:

16 ounces / $4 = x ounces / $1.95

Step 3:  Simplify on the left-hand side of the equation:

16/4 = x/1.95

4 = x/1.95

Step 4: multiply both sides by 1.95 to determine how many ounces can be bought for $1.95:

(4 = x/1.95) * 1.95

7.80 = x

Thus, 7.80 ounces can be bought for $1.95.

Pls help I’m stuck Tysm I can’t thank any more

Answers

Using the concept of perimeter of polygon, the perimeter of figure C is 27cm shorter than total perimeter of A and B

How much shorter is the perimeter of C than the total perimeter of A and B?

To solve this problem, we have to know the perimeter of the polygon C.

The perimeter of a polygon is the sum of all the lengths of the outer edges of the figure, that is, we must find the length of all the edges of the polygon, and then add these lengths to obtain the perimeter.

The perimeter of the figures are;

Using the concept of perimeter of a rectangle;

a. figure A = 2(4 + 11) = 30cm

b. figure B = 2(8 + 4) = 24cm

c figure C = 11 + 4 + 8 + 4 = 27cm

Now, we can add A and B and then subtract c from it.

30 + 24 - 27 = 27cm

Learn more perimeter of polygon here;

https://brainly.com/question/27083382

#SPJ1

Cual es l diferencia entre -4 y 6

Answers

Hola!

-4 - 6

= -10

the answer is -10

Use the formulas to answer this question.

One leg of a right triangle has length 11 and all sides are whole numbers. Find the lengths of the other two sides.

The other leg = and the hypotenuse =

Answers

The lengths of the other two sides of the right triangle are 36 and 85, respectively.

To find the lengths of the other two sides of a right triangle when one leg has a length of 11, we can use the Pythagorean theorem.

The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides.

Let's denote the lengths of the other leg and the hypotenuse as x and y, respectively.

According to the Pythagorean theorem, we have:

x² + 11² = y²

To find the values of x and y, we need to find a pair of whole numbers that satisfy this equation.

We can start by checking for perfect squares that differ by 121 (11^2). One such pair is 36 and 85.

If we substitute x = 36 and y = 85 into the equation, we have:

36² + 11² = 85²

1296 + 121 = 7225

This equation is true, so the lengths of the other two sides are:

The other leg = 36

The hypotenuse = 85

For such more question on triangle:

https://brainly.com/question/17335144

#SPJ8

……………and ………… are appropriate x-axis and y-axis unit scales given the coordinates (50, 40).

OA. 50; 10

B. 10; 5

C. 10; 50

OD. 50; 1

Answers

10 and 5 are appropriate x-axis and y-axis unit scales given the coordinates (50, 40). Option B.

To determine the appropriate x-axis and y-axis unit scales given the coordinates (50, 40), we need to consider the relationship between the units on the axes and the corresponding values in the coordinate system.

The x-axis represents the horizontal dimension, while the y-axis represents the vertical dimension. The x-coordinate (50) represents a position along the x-axis, and the y-coordinate (40) represents a position along the y-axis.

To determine the appropriate scales, we need to consider how many units on the x-axis are needed to span the distance from 0 to 50 and how many units on the y-axis are needed to span the distance from 0 to 40.

In this case, the x-coordinate is 50, which means we need the x-axis to span a distance of 50 units. However, we don't have enough information to determine the scale for the x-axis accurately. Therefore, options A (50; 10) and D (50; 1) cannot be definitively chosen.

Similarly, the y-coordinate is 40, which means we need the y-axis to span a distance of 40 units. Considering the given options, option B (10; 5) would be a suitable scale, as it allows for the y-axis to span the necessary distance of 40 units.

In summary, given the coordinates (50, 40), the appropriate unit scales would be 10 units per increment on the x-axis and 5 units per increment on the y-axis (Option B).

For more question on coordinates visit:

https://brainly.com/question/29660530

#SPJ8


Charimaya is running a race around a square track of length 75 m. Find the distance covered by her at the end of her fifth round.​

Answers

At the end of her fifth round, Charimaya would have covered a distance of 1500 meters.

To find the distance covered by Charimaya at the end of her fifth round, we need to calculate the total distance covered in one round and then multiply it by five.

Given that the track is square-shaped with a length of 75 m, we know that all four sides of the track are equal in length.

To calculate the distance covered in one round, we need to find the perimeter of the square track. Since all sides are equal, we can simply multiply the length of one side by 4.

The length of one side of the square track is 75 m. Therefore, the perimeter of the track is:

Perimeter = 4 × 75 m = 300 m

So, Charimaya covers a distance of 300 m in one round.

To find the distance covered at the end of her fifth round, we multiply the distance covered in one round by 5:

Distance covered in 5 rounds = 300 m × 5 = 1500 m

Therefore, at the end of her fifth round, Charimaya would have covered a distance of 1500 meters.

It's worth noting that since the track is square-shaped, each round consists of running along all four sides of the track.

for more such question on distance visit

https://brainly.com/question/30395212

#SPJ8

what is the 20th term of the sequence that begins -4, 8, -16, 32...?

Answers

Answer:

-2097152 is the 20th term

Step-by-step explanation:

Write geometric sequence as an explicit formula

[tex]-4,8,-16,32\rightarrow-4(-2)^0,-4(-2)^1,-4(-2)^2,4(-2)^3\\a_n=a_1r^{n-1}\rightarrow a_n=-4(-2)^{n-1}[/tex]

Find the n=20th term

[tex]a_{20}=-4(-2)^{20-1}=-4(-2)^{19}=4(-524288)=-2097152[/tex]

Use the equation 20x+12y= 24 as an equation in three different linear systems. Write a second equation so that each system has a different number of solutions. Explain what you did for each system.​

Answers

We have created three different linear systems using the equation 20x + 12y = 24.

System 1 has infinitely many solutions, System 2 has no solution, and System 3 has a unique solution.

Let's create three different linear systems using the equation 20x + 12y = 24 and ensure that each system has a different number of solutions.

System 1:

Equation 1: 20x + 12y = 24 (given)

Equation 2: 40x + 24y = 48

Explanation: In this system, we multiplied both sides of the given equation by 2 to create Equation 2.

By doing so, we have essentially created two equations that are multiples of each other.

Since the equations are equivalent, they represent the same line, and the system has infinitely many solutions.

Any values of x and y that satisfy the first equation will automatically satisfy the second equation as well.

System 2:

Equation 1: 20x + 12y = 24 (given)

Equation 2: 20x + 12y = 48

Explanation: In this system, we changed the constant term in Equation 2 to 48.

By doing so, we have created two parallel lines with the same slope. Since the lines are parallel, they will never intersect, and the system has no solution.

There are no values of x and y that satisfy both equations simultaneously.

System 3:

Equation 1: 20x + 12y = 24 (given)

Equation 2: 40x + 24y = 48

Explanation: In this system, we multiplied both sides of Equation 2 by 2 to create Equation 2.

By doing so, we have created two equations that have the same slope but different y-intercepts.

Since the lines are not parallel and have different y-intercepts, they will intersect at a single point, and the system has a unique solution.

There will be one specific pair of values for x and y that satisfy both equations simultaneously.

For similar question on linear systems.  

https://brainly.com/question/30373310  

#SPJ8

Determine the surface area and volume. Note: The base is a square.

Answers

Answer:

volume=60cm3, surface area=96cm2

Step-by-step explanation:

volume=1/3×(6×6)×5

=60cm3

surface area= 4(1/2×6×5)+(6×6)

=96cm2

What is the sum of the series?

∑k=14(2k2−4)



Enter your answer in the box.

Answers

Answer:

44

Step-by-step explanation:

The sum of the series [tex]\sum_{k=1}^4[/tex] (2k²−4) is 44.

The series is: [tex]\sum_{k=1}^4[/tex] (2k²−4)

Let's find the value of each term for k=1, k=2, k=3, and k=4, and then add them up:

For k=1:

2(1)² - 4 = 2(1) - 4 = 2 - 4 = -2

For k=2:

2(2)² - 4 = 2(4) - 4 = 8 - 4 = 4

For k=3:

2(3)² - 4 = 2(9) - 4 = 18 - 4 = 14

For k=4:

2(4)² - 4 = 2(16) - 4 = 32 - 4 = 28

Now, let's add all the terms:

-2 + 4 + 14 + 28 = 44

So, the sum of the series [tex]\sum_{k=1}^4[/tex] (2k²−4) is 44.

To know more about series:

https://brainly.com/question/11346378


#SPJ2

What is the percent of 1 - 3√(5/35) ?

Answers

Answer:

1 - 3√(5/35) = 1 - 3√(1/7) = 1 - 3*(1/sqrt(7)) ≈ 0.0755
0.0755 * 100 = 7.55%

Step-by-step explanation:

To find the percentage of 1 - 3√(5/35), we need to first evaluate the expression.

1 - 3√(5/35) = 1 - 3√(1/7) = 1 - 3*(1/sqrt(7)) ≈ 0.0755

To convert this decimal to a percentage, we simply multiply by 100:

0.0755 * 100 = 7.55%

Other Questions
Define fugacity and fugacity coefficients for pure species and for species in a mixture. b) Equations (1) and (2) below are the expressions for Gibbs energy, first, for a state at pressure P; second, for a low-pressure reference state, denoted by *, both for temperature T: G = F(T) + RT Infi G = T(T) + RTinfi (2) By using equation (1) and (2) derive an expression for fugacity as shown in equation (3) In n4=[-(S-Si)] (3) R 573.15 = ii. For water at a temperature of 300C, calculate the values of fugacity fi and fugacity coefficient p from data in the steam tables at pressure of 3950 kPa and at saturation pressure. Molecular weight of water is 18.015 g/mol. At 300C and low-pressure reference state (1kPa), water is an ideal gas (steam) and its entropy and enthalpy values are H = 3076.8 J. g and S = 10.3450 J.g. K- below. provided Values of the universal gas constant are respectively. Why a typically developing student may be resistant to beingfriends with a student with a disability? Consider the lines:L_1x=3-3s, y=5-4s, z=8.and L_2x=-2+2t, y=-4+5t, z=t,Find the intersection point P, of L_1 and L_2.Find the general equation of the plane II, perpendicular to the line L_1 and passing through the point (4,-1,-2). What are the pros and cons of children and adolescencesparticipating in organized sports? The flow of sewage to the aeration tank is 2,500 m3 /d. If theCOD of the influent sewage is 350 mg/L, how much kgs of COD areapplied to the aeration tank daily? The test which is used to determine the specific gravity for a soil sample is called? (1.5/1.5 Points) Hydrometer test Sand equivalent test Fineness modulus test Loss Angeles 3 In the calculation of percent finer for soil classification using the hydrometer test, the readings should be corrected for? (1.5/1.5 Points) Meniscus and temperature corrections. Meniscus and zero corrections. All corrections Zero correction only. Pls help Which statement is true?A. As x increases, the rate of change of f(x) exceeds the rate of change of g(x).B. As x increases, the rate of change of g(x) exceeds the rate of change of f(x).C. On every interval of x-values, the average rate of change of g(x) exceeds the average rate of change of f(x).D. On every interval of x-values, the average rate of change of f(x) exceeds the average rate of change of g(x). Find the general solution to the following ODES. Then, verify that your solution is indeed the general solution by substitution. Show your work. a. y" - 2y + 9y = 0 b. y" - y = 0 c.y" - 4y + y = 0 d.y" - 25y' + 5y = 0 b. The present water consumption in the city is 10,000 {~m}^{3} / {d} and the existing treatment plant has a design capacity of 18,500 {~m}^{3} / {d} at maximum Which pairs of angles must atways be the same? Select one: a. Angle of incidence and angle of reflection b. Angle of incidence and angle of refraction c. Angle of reflection and angle of refraction d. Angle of incidence and angle of diffraction Two waves cross and result in a wave with a targer amplitude than either of the originat waves, This is called Select one: a. phase exchange b. negative superimposition c. destructive interference d. constructive interference Here is the code that take an analog input (AN1) and convert it to result port B and port C as binary. Draw the 16F877A circuit for given code, (20p) connect LEDs to show the result of ADC (LEDs must be connected in order, LEDO to LED9 or LED9 to LEDO, our ADC is 10 bit), Connect a potentiometer to provide analog input between OV and +5V to AN1, Circuit should contain at least minimum electrical connection (like XTAL, Vdd, Vss, etc.) unsigned int adc; void main() ( ADCONI - 0x80; TRISA - OXFF; // PORTA is input TRISB - 0x3F; // Pins RB7, RB6 are outputs TRISC = 0; // PORTC is output while (1) ( adc - ADC Read (1); // Get 10-bit results of AD conversion } //of channel 1 PORTC- adc; // Send lower 8 bits to PORTB PORTE adc >> 2; // Send 2 most significant bits to RC7, RC6 Advanced Oxidation Processes (AOPs) have been gaining a lot of attention in water treatment processes due to their ability to mineralize priority and odour causing compounds combined with their disinfection properties. Several types of AOPs have been developed and operate through various mechanisms.(1)One of the major drawbacks cited against commercialization of TiO2 photocatalysis is the need to use energy intensive UV light. List 5 possible solutions to this problem that researchers have tried to implement in PLC SCADA application. usually the SCADA inputs are: A) Switches B) LDVT C) Potentiometer D) All of these O D O A O B 5 points 3.1) Normally open contacts in PLC are open when: A) When Input is not energized B)When the input is energized C) When input is higher than 20 volts D)None of these O D O O A 5 points Which word describes a words emotional association or suggested meanings Calculate and plot the following discrete-time signals. u[k 1], r[k + 2]. r[-k 1]u[k - 2] - . (-0.5k)u[k -2] * [-k + 10]. 12. Which of the following statements about parenting style, temperament and attachment is true? a. Most studies suggest that parenting style does not impact the quality of attachment, but a child's temperament does. b. Most studies suggest that parenting style has a greater impact than a child's temperament on the quality of attachment. c. Most studies suggest that a child's temperament has a greater impact than parenting style on the quality of attachment. d. Most studies suggest that a child's temperament does not impact the quality of attachment, but parenting style does. (b) Describe an application in which H.261 is preferred over MPEG. Explain why H.261 is preferred for the application you described. [ 4 marks] Choose the correct forms of the verb in the brackets for these sentencesi.There (is/are) a few shirts for sale.ii. Each of us (was / were) treated alike.iii.iv.Neither peter nor Paul (want/wants) to go.The students and their teacher (is/are) hosting the party.Thirty-five minutes (is/are) to short a time to finish the race.The girl, with several others (was/were) waiting outside the buildinAll but Joy (is/are) here.The trials of Brother Jero (is/are) available hereix. The cattle (is/are) grazing in the field.X.Everybody (has/have) collected the book. The kinematic viscosity of oxygen at 20c and a pressure of 150 kpa (abs) is 0. 104 stokes. Determine the dynamic viscosity of oxygen at this temperature and pressure The biochemical process of glycolysis, the breakdown of glucose in the body to release energy, can be modeled by the equations dx dy = -x +ay+x? y, = b - ay - x?y. dt dt Here x and y represent concentrations of two chemicals, ADP and F6P, and a and b are positive constants. One of the important features of nonlinear linear equations like these is their stationary points, meaning values of x and y at which the derivatives of both variables become zero simultaneously, so that the variables stop changing and become constant in time. Setting the derivatives to zero above, the stationary points of our glycolysis equations are solutions of -x + ay + xy = 0, b-ay - xy = 0. a) Demonstrate analytically that the solution of these equations is b x=b, y = a + 62 Type solution here or insert image /5pts. b) Show that the equations can be rearranged to read x = y(a + x). b y = a + x2 and write a program to solve these for the stationary point using the relaxation method with a = 1 and b = 2. You should find that the method fails to converge to a solution in this case.