Step-by-step explanation:
just substitute the value of g(X) and f(X)
Select the correct text in the table. Use the fundamental theorem of algebra to determine whether each statement is sometimes true, always true, or never true.
1. A quadratic function has 2 distinct roots. always sometimes never
2. A cubic function has at least 1 real root. always sometimes never
3. A function with a degree of 5 has 5 roots. always sometimes never
4. A quadratic function can have only 1 complex solution. always sometimes never
Answer:
1. Sometimes
2. Sometimes
3. Always
4. Sometimes
Step-by-step explanation:
1. Quadratic function : in which maximum power of [tex]x[/tex] is two.
The roots of quadratic function can be either equal or different.
For example:
[tex]x^{2} -2x+1[/tex] will have two equal roots i.e. 1 and 1.[tex]x^{2} -3x+2[/tex] will have two different roots i.e. 1 and 2.So, sometimes is the correct answer.
2. Cubic function has atleast 1 real root.
Cubic function has maximum power of [tex]x[/tex] as 3.
If the coefficients are real numbers then atleast 1 real root.
If the coefficients are imaginary in nature, then this is not true.
For example:
Cubic equation [tex]x^3 +i = 0[/tex] does not have any real root.
Cubic equation [tex]x^3 +1 = 0[/tex] has a real root x = -1.
So, it is sometimes true.
3. A function with degree 5 i.e. maximum power of [tex]x[/tex] as 5 will have 5 roots.
It is always true that a function will have number of roots equal to its degree.
4. Quadratic function can have only 1 complex solution.
Two complex solutions are also possible for a quadratic function.
For example:
[tex]x^{2} +1=0[/tex] will have two imaginary roots: [tex]x=i, -i[/tex]
It is also possible to have 1 complex solution,
For example:
[tex](x-1)(x-i) = 0[/tex] will have one complex root and one real root.
So, the statement is sometimes true.
Answer:
MY ANSWER IS CORRECT IN PLATO!!!
1. Sometimes
2. Always
3. Always
4. Never
Step-by-step explanation:
1. A quadratic function has 2 distinct roots SOMETIMES
2. A cubic Function has at least 1 root ALWAYS
3. A function with a degree of 5 has 5 roots ALWAYS
4. A quadratic function can have only 1 complex solution NEVER
I JUST GOT 100% on the quiz in PLATO
Given the diagram below, what is cos(45*)?
A.
B.
C.
D.
Answer:
The answer is option B
Step-by-step explanation:
To find cos 45° we must first find the adjacent and the hypotenuse
Let the adjacent be x
Let the hypotenuse be h
To find the adjacent we use tan
tan ∅ = opposite / adjacent
From the question
the opposite is 9
So we have
tan 45 = 9 / x
x tan 45 = 9
but tan 45 = 1
x = 9
Since we have the adjacent we use Pythagoras theorem to find the hypotenuse
That's
h² = 9² + 9²
h² = 81 + 81
h² = 162
h = √162
h = 9√2
Now use the formula for cosine
cos∅ = adjacent / hypotenuse
The adjacent is 9
The hypotenuse is 9√2
So we have
cos 45 = 9/9√2
We have the final answer as
cos 45 = 1 / √2Hope this helps you
Taylor and Jeff have been selling frozen pizzas for a class fundraiser. Taylor has sold half as many
pizzas as Jeff. Together they have sold a total of 126 pizzas. How many pizzas did Taylor sell?
Answer:
Taylor sold 42 pizzas
Step-by-step explanation:
Make a system of equations where t represents the number of pizzas Taylor sold and j represents the number that Jeff sold:
t + j = 126
j = 2t
We can solve this system by substitution, since we can substitute 2t as j.
t + j = 126
t + 2t = 126
3t = 126
t = 42
Taylor sold 42 pizzas.
Answer:
Step-by-step explanation:
Let x represent the number of pizzas that Tailor sold.
Let y represent the number of pizzas that Jeff sold.
Together they have sold a total of 126 pizzas. This means that
x + y = 126- - - - - - - - -1
Taylor has sold half as many
pizzas as Jeff. This means that
x = 1/2 × y = y/2
Substituting x = y/2 into equation 1, it becomes
y/2 + y = 126
Multiplying both sides of the equation by 2, it becomes
y + 2y = 252
3y = 252
y = 252/3
y = 84
x = y/2 = 84/2
x = 42
Taylor sold 42 pizzas
Which equation shows function g in factored form?
g(x) = 2x^2 – 6x – 56
O A. g(x) = 2(x-4)(x + 7)
OB.g(x) = 2(x2-3x-28)
OC. g(x) = (2x + 7)(x-8)
OD. g(x) = 2(x + 4)(x - 7)
Answer:
[tex]\boxed{\sf Option \ D}[/tex]
Step-by-step explanation:
[tex]\sf g(x) = 2x^2-6x-56\\[/tex]
Factorizing using mid term break formula
[tex]\sf g(x) = 2x^2-14x+8x-56\\g(x) = 2x(x-7)+8(x-7)\\g(x) = (2x+8)(x-7)\\g(x) = 2(x+4)(x-7)[/tex]
The graph of an absolute value function has a vertex of (2,3) and crosses the x-axis at (−1,0) and (5,0). What is the equation for this absolute value function when y=0? A 0=|x+2|+3 B 0=|x−2|+3 C 0=−|x+2|+3 D 0=−|x−2|+3
Answer:
Option D.
Step-by-step explanation:
The vertex form of an absolute function is
[tex]y=a|x-h|+k[/tex]
where, a is a constant, (h,k) is vertex.
It is given that, vertex of an absolute function is (2,3). So, h=2 and k=3.
[tex]y=a|x-2|+3[/tex] ...(1)
It crosses the x-axis at (5,0). So put x=5 and y=0 to find the value of a.
[tex]0=a|5-2|+3[/tex]
[tex]-3=3a[/tex]
[tex]-1=a[/tex]
Put a=-1 in (1).
[tex]y=(-1)|x-2|+3[/tex]
[tex]y=-|x-2|+3[/tex]
Now, put y=0, to find the equation for this absolute value function when y=0.
[tex]0=-|x-2|+3[/tex]
Therefore, the correct option is D.
Answer:
I got this question on my test and I answered D cause if you look up the graph it matches the question
Step-by-step explanation:
D 0=−|x−2|+3
Which of the following is equivalent to4−(−5∗9−1)÷2+(5)2−7?
Answer:
-20
Step-by-step explanation:
Follow the PEDMAS order (from top to bottom):
Parentheses
Exponents
Division and Multiplication
Addition and Subtraction
(-5 × 9 - 1) ÷ 2 + (5)2 - 7
(-45 - 1) ÷ 2 + 10 - 7
-46 ÷ 2 + 10 - 7
-23 + 10 - 7
-13 - 7
-20
Answer:
-20
Step-by-step explanation:
=> [tex](-5 * 9-1)/2+(5)2-7[/tex]
Expanding parenthesis
=> [tex](-45-1)/2+10-7[/tex]
=> [tex]-46/2 + 3[/tex]
=> -23 + 3
=> -20
What is 7/8×3/9 reduced to lowest terms
Answer:
7/24
Step-by-step explanation:
7/8×3/8= 21/72
divide using 3
= 7/24
how do you graph X+2y=6
Answer:
x + 2y = 6
2y = -x + 6
y = -1/2x + 3
So, you will have a downward sloping, less steep line with an intercept at (0, 3).
You can use the Math is Fun Function Grapher and Calculator to graph the line.
Hope this helps!
Jacob needs to know if the volume of a storage bin is under 3,000 cubic feet. The
dimensions of the bin are 17 ft. X 15 ft. x 10 ft.
a. Is the bin under 3,000 cubic ft.?
b. If yes, by how much?
Answer:
It is less than 3000 ft^3 by 450 ft^3
Step-by-step explanation:
The volume of the bin
V = l*w*h
V = 17*15*10
V =2550 ft^3
If it less than 3000 ft^3
V = 3000- 2550 =450 ft^3
If is less by 450 ft^3
Answer:
Let’s first multiply all the numbers given
Since it wants the volume we need to use the formula
LxWxH
17x15x10=2,550
Part A: yes the bin is under 3,000
Part B: by 450 more because if you subtract 3,000 and 2,550 you will get 450
Hope this helps! :)
I need help I just don't understand
Answer: 9/7 or -5/2
Step-by-step explanation:
We can only factorise quadratics if they're in the format ax^2 + bx + c
Re-arranging the equation gives 14x^2 + 17x - 45 = 0
Factorising this quadratic gives:
(7x - 9)(2x + 5) = 0
There are numerous ways to factorise quadratics, using a calculator or via alternate methods you may have learnt in class. (E.g. 2 numbers multiply to make (14 * -45) and add up to make (17).
This gives us our solutions.
x = 9/7 or x = -5/2
Answer:
See below.
Step-by-step explanation:
First, move all the terms to one side so we have only a zero on the right:
[tex]6x^2-17x+13=20x^2-32\\-14x^2-17x+45=0\\14x^2+17x-45=0[/tex]
(I divided everything by negative 1 in the third step. This is optional, but I like having the first term positive.)
Now, we just need to factor it. To factor, what you want to do is find two numbers a and b such that:
When a and b is multiplied together, they equal the first coefficient and constant multiplied together.
And when a and b is added together, they equal the second term.
In other words, we want to find two numbers that when multiplied equals 14(-45)=-630 and when added equals 17. Then, we can substitute this into the 17. You do this by guessing and checking. It's useful to have a calculator.
After a bit, you can find that 35 and -18 works. Thus:
[tex]14x^2+17x-45=0\\14x^2+35x-18x-45=0\\7x(2x+5)-9(2x+5)=0\\(7x-9)(2x+5)=0[/tex]
Now, the finish the problem, we just need to use the Zero Product Property and solve for x:
[tex]2x+5=0\\x=-5/2\\\\7x-9=0\\x=9/7[/tex]
Note: This only works for quadratics.
the perimeter of a square flower bed is 100 feet. what is the area of the flower bed in sqaure feet
Answer:
A =625 ft^2
Step-by-step explanation:
The perimeter of a square is
P = 4s where s is the side length
100 =4s
Divide each side by 4
100/4 = 4s/4
25 = s
A = s^2 for a square
A = 25^2
A =625
Given f(x) and g(x) = f(x) + k, use the graph to determine the value of k. A) 2 B) 3 C) 4 D) 5 IF YOU ANSWER IN 5 MINUTES I WILL GIVE BRAINLIEST!!!!!!!!!!!!!!!!!!!!!!
Ans k = 4
Step-by-step explanation:
Here g(x) =[tex]\frac{-1}{3}x + 1[/tex] and
f(x) = [tex]\frac{-1}{3} x -3[/tex]
Now, g(x) = f(x) + k
or, [tex]\frac{-1}{3}x + 1[/tex] = [tex]\frac{-1}{3} x -3 + k[/tex]
or, 1 + 3 = k
So, k = 4 Answer.
Translate this sentence into an equation. 59 is the sum of 11 and Mai’s score
Answer:
11 + Mai's Score = 59
Step-by-step explanation:
You need to add 11 and Mai's score together to get 59, so with the values given we can make the equation 11 + Mai's Score = 59.
*depending on the question, Mai's score may need to be said as a letter variable, so:
If m = mai's score,
11 + m = 59
I hope this helped! :)
(09.01 MC)
In circle A shown below, Segment BD is a diameter and the measure of Arc CB is 54°:
Points B, C, D lie on Circle A. Line segment BD is the diameter of circle A. Measure of arc CB is 54 degrees.
What is the measure of ∠DBC? (4 points)
Answer: 63°
Step-by-step explanation:
Since BD is the diameter, then arc BCD = 180°
Given that arc BC = 54°, then arc CD = 180° - 54° = 126°
∠DBC is an intercepted angle -> DBC = half of arc CD
[tex]\angle DBC=\bigg(\dfrac{1}{2}\bigg)126^o\quad =\large\boxed{63^o}[/tex]
Answer:
63
Step-by-step explanation:
There will be a circular patio with a diameter of 7 metres. Greg is going to put a tiled edge around the patio. What is the circumference of the patio? m Circumference of a circle = 2πr Use π = 3.14
Answer:
[tex]Circumference = 21.99 \ m[/tex]
Step-by-step explanation:
Circumference = [tex]\pi d[/tex]
Given that d = 7 m
[tex]Circumference = (3.14)(7)\\[/tex]
[tex]Circumference = 21.99 \ m[/tex]
Answer:
[tex]\boxed{21.98 \: \mathrm{meters}}[/tex]
Step-by-step explanation:
Apply formula for circumference of a circle.
[tex]C=\pi d[/tex]
[tex]d:diameter[/tex]
Take [tex]\pi =3.14[/tex]
Plug [tex]d=7[/tex]
[tex]C=3.14 \times 7[/tex]
[tex]C= 21.98[/tex]
Aiden is trying to pick up some lawn mowing jobs over the weekend to make extra money for a school trip. Each lawn in his neighborhood takes an average of 40 minutes to mow, and Aiden has no more than 11 hours, or 660 minutes, of available time to mow lawns. If Aiden mows his grandparents' farm which takes him 110 minutes, and x represents the number of lawns he mows in his neighborhood, which inequality represents this situation?
A.
40x + 110 ≤ 660
B.
110x + 40 ≤ 660
C.
110x + 40 ≥ 660
D.
40x + 110 ≥ 660
Answer:
A.
Step-by-step explanation:
40x is the number of lawns he can do, less the time to do his grandparents time (added to other law time) and he has 660 mins of less to complete them.
Answer:
a. 40x + 110 ≤ 660
Step-by-step explanation:
A landscaping company charges $50 per cubic yard of mulch plus a delivery charge of $24. Find a
linear function which computes the total cost C(in dollars) to deliver a cubic yards of mulch.
C(x) =
Answer: c(x) = $50*x + $24
Step-by-step explanation:
First, this situation can be modeled with a linear equation like:
c(x) = s*x + b
where c is the cost, s is the slope, x is the number of cubic yards of mulch bought, and b is the y-intercept ( a constant that no depends on the number x)
Then we know that:
The company charges $50 per cubic yard, so the slope is $50
A delivery charge of $24, this delivery charge does not depend on x, so this is the y-intercept.
Then our equation is:
c(x) = $50*x + $24
This is:
"The cost of buying x cubic yards of mulch"
WILL MARK BRAINLIST----- A particular map shows a scale of 1 cm:5 km. What would the map distance be (in cm) if the actual distance to be represented is 14 km?
Answer:
2.8 cm
Step-by-step explanation:
The map scale is 1 cm : 5 km. That means that 1 cm is equal to 5 km.
To find the map distance (in cm), we have to set up a ratio.
[tex]\frac{1 cm}{5 km} = \frac{x}{14 km}[/tex]
X (the map distance in cm) is over the actual distance of 14 km.
Now cross multiply and divide.
[tex]5x = 14[/tex]
[tex]\frac{5x}{5} = \frac{14}{5}[/tex]
[tex]x = 2.8 cm[/tex]
If the actual distance to be represented is 14 km, the map distance (in cm) will be 2.8 cm.
Hope that helps.
20 points please help!!!
Answer:
a = 16
b = [tex]\frac{3}{4}[/tex]
Step-by-step explanation:
Length of the design 16 inches is represented by the point (0, 16) and length of 12 inches by (1, 12).
That means these points lie on the graph of the function 'f' represented by,
f(x) = a(b)ˣ
For the point (0, 16),
f(0) = a(b)⁰
16 = a(1)
a = 16
For another point (1, 12),
f(1) = a(b)¹
12 = ab
12 = 16(b) [Since a = 16]
b = [tex]\frac{12}{16}[/tex]
b = [tex]\frac{3}{4}[/tex]
Therefore, values of a and b are 16 and [tex]\frac{3}{4}[/tex] respectively.
please show on graph (with x and y coordinates) state where the function x^4-36x^2 is non-negative, increasing, concave up
Answer:
[tex] y'' =12x^2 -72=0[/tex]
And solving we got:
[tex] x=\pm \sqrt{\frac{72}{12}} =\pm \sqrt{6}[/tex]
We can find the sings of the second derivate on the following intervals:
[tex] (-\infty<x< -\sqrt{6}) , y'' = +[/tex] Concave up
[tex]x=-\sqrt{6}, y =-180[/tex] inflection point
[tex] (-\sqrt{6} <x< \sqrt{6}), y'' =-[/tex] Concave down
[tex]x=\sqrt{6}, y=-180[/tex] inflection point
[tex] (\sqrt{6}<x< \infty) , y'' = +[/tex] Concave up
Step-by-step explanation:
For this case we have the following function:
[tex] y= x^4 -36x^2[/tex]
We can find the first derivate and we got:
[tex] y' = 4x^3 -72x[/tex]
In order to find the concavity we can find the second derivate and we got:
[tex] y'' = 12x^2 -72[/tex]
We can set up this derivate equal to 0 and we got:
[tex] y'' =12x^2 -72=0[/tex]
And solving we got:
[tex] x=\pm \sqrt{\frac{72}{12}} =\pm \sqrt{6}[/tex]
We can find the sings of the second derivate on the following intervals:
[tex] (-\infty<x< -\sqrt{6}) , y'' = +[/tex] Concave up
[tex]x=-\sqrt{6}, y =-180[/tex] inflection point
[tex] (-\sqrt{6} <x< \sqrt{6}), y'' =-[/tex] Concave down
[tex]x=\sqrt{6}, y=-180[/tex] inflection point
[tex] (\sqrt{6}<x< \infty) , y'' = +[/tex] Concave up
Differentiate with respect to x and simplify your answer. Show all the appropriate steps? 1.e^-2xlog(ln x)^3 2.e^-2x(log(ln x))^3 3.sin(xe^x)^3 4.sin^3(xe^x) 5.ln(xy)=e^2y
(1) I assume "log" on its own refers to the base-10 logarithm.
[tex]\left(e^{-2x}\log(\ln x)^3\right)'=\left(e^{-2x}\right)'\log(\ln x)^3+e^{-2x}\left(\log(\ln x)^3\right)'[/tex]
[tex]=-2e^{-2x}\log(\ln x)^3+\dfrac{e^{-2x}}{\ln10(\ln x)^3}\left((\ln x)^3\right)'[/tex]
[tex]=-2e^{-2x}\log(\ln x)^3+\dfrac{3e^{-2x}(\ln x)^2}{\ln10(\ln x)^3}\left(\ln x\right)'[/tex]
[tex]=-2e^{-2x}\log(\ln x)^3+\dfrac{3e^{-2x}(\ln x)^2}{\ln10\,x(\ln x)^3}[/tex]
[tex]=-2e^{-2x}\log(\ln x)^3+\dfrac{3e^{-2x}}{\ln10\,x\ln x}[/tex]
Note that writing [tex]\log(\ln x)^3=3\log(\ln x)[/tex] is one way to avoid using the power rule.
(2)
[tex]\left(e^{-2x}(\log(\ln x))^3\right)'=(e^{-2x})'(\log(\ln x))^3+e^{-2x}\left(\log(\ln x))^3\right)'[/tex]
[tex]=-2e^{-2x}(\log(\ln x))^3+3e^{-2x}(\log(\ln x))^2(\log(\ln x))'[/tex]
[tex]=-2e^{-2x}(\log(\ln x))^3+3e^{-2x}(\log(\ln x))^2\dfrac{(\ln x)'}{\ln10\,\ln x}[/tex]
[tex]=-2e^{-2x}(\log(\ln x))^3+\dfrac{3e^{-2x}(\log(\ln x))^2}{\ln10\,x\ln x}[/tex]
(3)
[tex]\left(\sin(xe^x)^3\right)'=\left(\sin(x^3e^{3x})\right)'=\cos(x^3e^{3x}(x^3e^{3x})'[/tex]
[tex]=\cos(x^3e^{3x})((x^3)'e^{3x}+x^3(e^{3x})')[/tex]
[tex]=\cos(x^3e^{3x})(3x^2e^{3x}+3x^3e^{3x})[/tex]
[tex]=3x^2e^{3x}(1+x)\cos(x^3e^{3x})[/tex]
(4)
[tex]\left(\sin^3(xe^x)\right)'=3\sin^2(xe^x)\left(\sin(xe^x)\right)'[/tex]
[tex]=3\sin^2(xe^x)\cos(xe^x)(xe^x)'[/tex]
[tex]=3\sin^2(xe^x)\cos(xe^x)(x'e^x+x(e^x)')[/tex]
[tex]=3\sin^2(xe^x)\cos(xe^x)(e^x+xe^x)[/tex]
[tex]=3e^x(1+x)\sin^2(xe^x)\cos(xe^x)[/tex]
(5) Use implicit differentiation here.
[tex](\ln(xy))'=(e^{2y})'[/tex]
[tex]\dfrac{(xy)'}{xy}=2e^{2y}y'[/tex]
[tex]\dfrac{x'y+xy'}{xy}=2e^{2y}y'[/tex]
[tex]y+xy'=2xye^{2y}y'[/tex]
[tex]y=(2xye^{2y}-x)y'[/tex]
[tex]y'=\dfrac y{2xye^{2y}-x}[/tex]
Andreas wants to estimate how many fish there are in a lake. One day he catches 20 fish,marks them,and returns them to the lake. The next day he catches 10 fish of which four are marked. Estimate the number of fish in the lake.
Answer:
50
Step-by-step explanation:
The ratio of marked fish to caught fish is 4:10, we need to solve for x in 20:x, since 4 * 5 = 20, 10 * 5 = x so x = 50 fish.
If John has pairs of red, orange, yellow, blue and green socks, how many can he wear them in over 5 days, repetition is allowed because hog is alright with wearing dirty socks. A)5! B)25 C)5^5 D)125
Answer:
Total ways = 5×5×5×5×5
Total ways = 5^5
Total ways = 3125
Therefore, the correct option is C) 5^5
Step-by-step explanation:
John has pairs of red, orange, yellow, blue and green socks.
Which means that John has 5 different colors pairs of socks.
We are asked to find out in how many ways can he wear them over 5 days.
1st Day:
On the first day John has 5 ways to choose from.
2nd Day:
On the second day John has 5×5 ways to choose from.
(Since repetition is allowed)
3rd Day:
On the third day John has 5×5×5 ways to choose from.
4th Day:
On the fourth day John has 5×5×5×5 ways to choose from.
5th Day:
On the fifth day John has 5×5×5×5×5 ways to choose from.
Total ways = 5×5×5×5×5
Total ways = 5^5
Total ways = 3125
Therefore, the correct option is C) 5^5
Which point is a solution to the inequality shown in this graph?
Answer: A, (0, -3)
Step-by-step explanation:
Inequalities, once graphed, take the form of the image you attached:
Linear inequalities are straight lines, sometimes dotted and sometimes solid, with shading on one side of the line.
Any point in the shading is a correct solution to the inequality.
When the line is solid, any point on the line is a solution to the inequality.When the line is dotted, only the shaded area past the line includes solutions - points on the line are not solutions.In this case, the line is solid, so any point on the line is a solution to the inequality.
Looking at answer choice A: (0, -3), it lies on the line as the y-intercept.
The correct choice is A.
Someone help me please
Answer:
31 m
Step-by-step explanation:
v=l*w*h since it is a cube then all sides (a) are equal:
v=(a*a*a)=a^3
v1+v2=1331 for the first two boxes(
a³+a³=∛1331
l=w=h=11*2=22
v=729 ( for the second cube)
a=∛729=9
9+22=31 m
THe graph is going further than the outline ben 10 benden
Answer:
EB = 9
Step-by-step explanation:
CD = AB
The line with the value of five that also forms a right angle with EB is a perpendicular bisector to AB.
So the value of EB is half of AB (AB is equal to CD).
18/2 = 9
There were females and males present at the high school pep rally. Find the ratio of males to the total number of people present. Express as a simplified ratio.
Answer: 4:9
Step-by-step explanation:
The complete question is provide in the attachment below.
Given, Number of females = 125
Number of males = 100
Total people = 120+100=225
Now, the ratio of males to the total number of people present = [tex]\dfrac{\text{Total number of males}}{\text{Total people}}[/tex]
[tex]=\dfrac{100}{225}[/tex]
Divide numerator and denominator by 25 , we get
Ratio of males to the total number of people present =[tex]\dfrac{4}{9}[/tex]
Hence, the ratio of males to the total number of people present = 4:9
Dan's mean average on 5 exams is 86 determine the sum of his score
Answer: 430
Step-by-step explanation:
An average of 5 scores can be found via: (the sum of the scores)*5. Thus, simply multiply 86*5 to get that the sum of his scores is 430
Hope it helps <3
the solution of the equation 0=4+4(m+1) is
Answer:
[tex]\boxed{m = -2}[/tex]
Step-by-step explanation:
[tex]0 = 4+4(m+1)[/tex]
Resolving Parenthesis
[tex]0 = 4+4m + 4[/tex]
[tex]0 = 4m+8[/tex]
Subtracting 8 to both sides
[tex]-8 = 4m[/tex]
[tex]4m = -8[/tex]
Dividing both sides by 4
m = -8/4
m = -2
Step-by-step explanation:
4+4m+4= 0
4m+8=0
4m=-8
m= -8/4=-2
I reallly need help with this
Answer:
m<5 == m<1 since alternate interior angles are same value
m<3 == m<6 since alternate interior angles are same value
m<6 + m<5 + m<2 = m<1 + m<2 + m<3 = 180
Step-by-step explanation:
The use of alternate interior angles definition allows for you to make this completion. You can use this since you have a line intersecting a point on two parallel lines. From here, you know that the measures of the angles are the same as the measure of the line, thus you have proven the internal sum of angles to be 180 degrees.