Looks like the given function is
[tex]f(x)=\dfrac1{9-x}[/tex]
Recall that for |x| < 1, we have
[tex]\displaystyle\frac1{1-x}=\sum_{n=0}^\infty x^n[/tex]
We want the series to be centered around [tex]x=4[/tex], so first we rearrange f(x) :
[tex]\dfrac1{9-x}=\dfrac1{5-(x-4)}=\dfrac15\dfrac1{1-\frac{x-4}5}[/tex]
Then
[tex]\dfrac1{9-x}=\displaystyle\frac15\sum_{n=0}^\infty\left(\frac{x-4}5\right)^n[/tex]
which converges for |(x - 4)/5| < 1, or -1 < x < 9.
Find the limit L for the given function f, the point x 0, and the positive number epsilon. Then find a number delta > 0 such that, for all x, 0less thanStartAbsoluteValue x minus x 0 EndAbsoluteValueless thandelta double right arrow StartAbsoluteValue f (x )minus Upper L EndAbsoluteValueless thanepsilon.
Answer:
L = -25 and δ = 0.02
Step-by-step explanation:
The function f, point [tex]x_0[/tex] and ε is missing in the question.
The function, f is f(x) = - 4x - 9
point, [tex]x_0[/tex] = 4
epsilon, ε = 0.08
So by the definition of limit,
[tex]\lim_{x \rightarrow x_0} f(x)= L[/tex]
Therefore,
[tex]\lim_{x \rightarrow 4} (-4x-9)[/tex]
L= -4(4)-9
L= -16-9
L= -25
So, for every ε > 0, for all δ > 0 such that
|f(x) - L| < ε [tex](0<|x-x_0|< \delta)[/tex]
[tex]|f(x)-L|<\epsilon \\|(-4x-9)-(-25)|<0.08\\|-4x+16|<0.08\\|-4(x-4)|<0.08\\|-4||x-4|<0.08\\4|x-4|<0.08\\|x-4|<\frac{0.08}{4}\\|x-4|<0.02\\0<|x-4|<0.02 \ \ \ \ \text{ comparing with}\ 0<|x-x_0|< \delta \\ \therefore \delta = 0.02[/tex]
PLEASE HELP URGENT THIS IS TRIGONOMETRY
Answer:
B. [tex] \frac{7x^2 + 11x}{x^2 + 6x + 5} [/tex]
Step-by-step explanation:
The sum is worked as shown below:
[tex] \frac{x}{x + 1} + \frac{6x}{x + 5} [/tex]
Use the common denominator to divide each denominator, then use the result to multiply the numerator, you'd have the following:
[tex] \frac{x(x + 5) + 6x(x + 1)}{(x + 1)(x + 5)} [/tex]
Use the distributive property of multiplication to solve
[tex] \frac{x(x) + x(5) + 6x(x) + 6x(1)}{(x(x + 5) + 1(x + 5)} [/tex]
[tex] \frac{x^2 + 5x + 6x^2 + 6x}{x^2 + 5x + x + 5} [/tex]
Pair like terms
[tex] \frac{x^2 + 6x^2 + 5x + 6x}{x^2 + 6x + 5} [/tex]
[tex] \frac{7x^2 + 11x}{x^2 + 6x + 5} [/tex]
The answer is B.
Hi can u help me plz
PLEASE PLEASE PLEASE HELP PLEAS :( THE SECOND ONE JEJEJEJDD PLEASEEEEEE
Answer:
P
Step-by-step explanation:
Count the line endings in each letter as you write it down.
Answer:
I agree with tonb .Ace,he's/she's right
x−15≤−6 solve for x pls help
Answer:
x≤9
Step-by-step explanation:
x−15≤−6
Add 15 to each side
x−15+15≤−6+15
x≤9
Answer:
[tex]\boxed{x\leq 9}[/tex]
Step-by-step explanation:
[tex]x-15 \leq -6[/tex]
[tex]\sf Add \ 15 \ to \ both \ parts.[/tex]
[tex]x-15 +15 \leq -6+15[/tex]
[tex]x\leq 9[/tex]
Help ASAP!!!!
1. Solve for x. Round to the nearest hundredth if necessary.
Answer:
The answer is option B
34.28Step-by-step explanation:
To solve for x we use tan
tan ∅ = opposite / adjacent
From the question
The adjacent is x
The opposite is 19
So we have
tan 29 = 19/ x
x = 19/ tan 29
x = 34.276
x = 34.28 to the nearest hundredthHope this helps
Answer:
x ≈ 34.28
Step-by-step explanation:
Using the tangent ratio in the right triangle
tan29° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{19}{x}[/tex] ( multiply both sides by x )
x × tan29° = 19 ( divide both sides by tan29° )
x = [tex]\frac{19}{tan29}[/tex] ≈ 34.28 ( to the nearest hundredth )
Miguel is playing a game in which a box contains four chips with numbers written on them. Two of the chips have the number 1, one chip has the number 3, and the other chip has the number 5. Miguel must choose two chips, and if both chips have the same number, he wins $2. If the two chips he chooses have different numbers, he loses $1 (–$1). • Let X = the amount of money Miguel will receive or owe. Fill out the missing values in the table. (Hint: The total possible outcomes are six because there are four chips and you are choosing two of them.) Xi 2 –1 P(xi) • What is Miguel’s expected value from playing the game? • Based on the expected value in the previous step, how much money should Miguel expect to win or lose each time he plays? • What value should be assigned to choosing two chips with the number 1 to make the game fair? Explain your answer using a complete sentence and/or an equation.
Answer:
See explanation
Step-by-step explanation:
Step 1Miguel wins $2 is if he pulls two chips with the number 1.
Probability of winning is:
2/4 * 1/3 = 1/6 as there are 4 chips in totalProbability of loosing is:
1- 1/6 = 5/6Step 2Missing values we found in the step 1, can be populated in the table:
Xi === 2 === -1P(Xi) === 1/6 === 5/6Expected Value as per table data:
1/6*2 + 5/6*(-1) = -1/2Expected value is $1/2 loss each time he plays
Step 3To make the game fair, the expected value should be zero.
Then as per the calculation above, let's replace 2, with x, and find its value.
1/6x + 5/6*(-1) = 0 1/6x = 5/6 x= 5So the amount should be $5 to make the game fair.
Solve the formula V=LHW for L
Answer:
L = [tex]\frac{V}{HW}[/tex]
Step-by-step explanation:
Given
V = LHW ( isolate L by dividing both sides by HW )
[tex]\frac{V}{HW}[/tex] = L
Answer:
[tex]l = \frac{v}{w \times h} [/tex]
Step-by-step explanation:
[tex]v = l \times w \times h = \frac{v}{w \times h} = \frac{l \times h \times w}{w\times h} = l = \frac{v}{w \times h} [/tex]
Hope this helps ;) ❤❤❤
The domain of the function is given. Find the range.
f(x) = 5x - 1
Domain: (-1,0,1,2)
Range:{6, 1, -4,9)
Range: (-6, 1, -4,9)
Range: (-6,-1, 4, 9)
Range:{+6,+1,+4,+9
Answer:
your third answer
Step-by-step explanation:
its easy just plug in each domain into your function and the result will be the range
Find the multiplicative inverse of -9/2
Answer:
-2/9
Step-by-step explanation:
When you multiply a number by its multiplicative inverse, you should get 1. So, the multiplicative inverse (or reciprocal) of -9/2 is 1/(-9/2) which is -2/9. You can get the answer by simply flipping the numerator and denominator.
Brainliest for correct awnser! Over what interval is the function in this graph decreasing?
Answer:
Option (1)
Step-by-step explanation:
In the graph attached,
There are three intervals of the function graphed.
1st interval → -∞ < x < -3
2nd interval → -3 ≤ x ≤ 2
3rd interval → 2 < x < ∞
In the 1st interval, value of the function is constant. [represented by a straight horizontal line]
In the second interval, line graphed is slanting down. (slope of the line is negative).
Therefore, value of the function is decreasing in -3 ≤ x ≤ 2
In 3rd interval, slope of the line is positive. Therefore, function is increasing in the 3rd interval.
Option (1) will be the answer.
Answer: -3 ≤ x ≤ 2 is correct
Step-by-step explanation: I just took the exam :)
Please help Each statement describes a transformation of the graph of f(x) = x. Which statement correctly describes the graph of g(x) if g(x) = f(x) - 3
Answer:
C
Step-by-step explanation:
It is the graph of f(x) translated 3 units down. Think about in numerical terms,
if y = 5 y-1 = 5- 1 = 4, so that's what is happening with all numbers on the y axis. You have y = f(x) and you do y-3 = f(x)-3, so, all "y" points are translated 3 units down
Suppose you take a 12-question true or false quiz by guessing each answer. Use the binomial table to find the probability of guessing 6 or more questions correctly.
Answer:
0.6127 = 61.27% probability of guessing 6 or more questions correctly.
Step-by-step explanation:
For each question, there are only two possible outcomes. Either you guess the correct answer, or you do not. The probability of guessing the correct answer of a question is independent of other questions. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
12 questions:
This means that [tex]n = 12[/tex]
True-false:
Two options, one of which is correct. So [tex]p = \frac{1}[2} = 0.5[/tex]
Find the probability of guessing 6 or more questions correctly.
[tex]P(X \geq 6) = P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 6) = C_{12,6}.(0.5)^{6}.(0.5)^{6} = 0.2256[/tex]
[tex]P(X = 7) = C_{12,7}.(0.5)^{7}.(0.5)^{5} = 0.1934[/tex]
[tex]P(X = 8) = C_{12,8}.(0.5)^{8}.(0.5)^{4} = 0.1208[/tex]
[tex]P(X = 9) = C_{12,9}.(0.5)^{9}.(0.5)^{3} = 0.0537[/tex]
[tex]P(X = 10) = C_{12,10}.(0.5)^{10}.(0.5)^{2} = 0.0161[/tex]
[tex]P(X = 11) = C_{12,11}.(0.5)^{11}.(0.5)^{1} = 0.0029[/tex]
[tex]P(X = 12) = C_{12,12}.(0.5)^{12}.(0.5)^{0} = 0.0002[/tex]
[tex]P(X \geq 6) = P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12) = 0.2256 + 0.1934 + 0.1208 + 0.0537 + 0.0161 + 0.0029 + 0.0002 = 0.6127[/tex]
0.6127 = 61.27% probability of guessing 6 or more questions correctly.
Your parents are giving you $210 a month for four years while you are in college. At an interest rate of .49 percent per month, what are these payments worth to you when you first start college?
Answer:
These payments will be worth $11,332.94.
Step-by-step explanation:
We can calculate this as an annuity but with monthly periods and monthly interest rates.
Then, we have:
C = cash flow per period = $210
n = number of payments = 48
i = interest rate = 0.49% = 0.0049
Then, we can calculate the future value of this stream of deposits as:
[tex]FV=C\left[\dfrac{(1+i)^n-1}{i}\right]\\\\\\FV=210\left[\dfrac{(1.0049)^{48}-1}{0.0049}\right]=210\left[\dfrac{1.2644-1}{0.0049}\right]=210\left[\dfrac{0.2644}{0.0049}\right]\\\\\\FV=210\cdot 53.966\\\\\\FV=11332.94[/tex]
An open box is made from a 10cm by 20cm Piece of Tin by cutting a square from each corner and folding the edges. The area of the resulting base is 96 cm2. What is the length of the sides of the squares?
Answer:
2 cm
Step-by-step explanation:
If x is the length of the sides of the squares, then the height of the box is also x. The length and width of the base are 10−2x and 20−2x. The area of the base is the length times the width.
96 = (10 − 2x) (20 − 2x)
96 = 200 − 20x − 40x + 4x²
0 = 4x² − 60x + 104
0 = x² − 15x + 26
0 = (x − 2) (x − 13)
x = 2 or 13
Since x < 5, x = 2.
So the length of the sides of the squares is 2 cm.
Find the area of the triangle. Round the answer to the nearest tenth. A. 4.4 square units B. 5.2 square units C. 6.8 square units D. 8.8 square units
Answer:
A. 4.4 units²
Step-by-step explanation:
Area of a Triangle: A = 1/2bh
sin∅ = opposite/hypotenuse
cos∅ = adjacent/hypotenuse
Step 1: Draw the altitude down the center of the triangle
- We should get a perpendicular bisector that creates 90° ∠ and JM = KM
- We should also see that we use sin∅ to find the h height of the triangle and that we use cos∅ to find length of JM to find b base of the triangle
Step 2: Find h
sin70° = h/3.7
3.7sin70° = h
h = 3.47686
Step 3: Find b
cos70° = JM/3.7
3.7cos70° = JM
JM = 1.26547
Step 4: Find entire length base JK
JM + KM = JK
JM = KM (Definition of Perpendicular bisector)
2(JM) = JK
2(1.26547) = 2.53095
b = 2.53095
Step 5: Find area
A = 1/2(3.47686)(2.53095)
A = 4.39988
A ≈ 4.4
Different hotels in a certain area are randomly selected, and their ratings and prices were obtained online. Using technology, with x representing the ratings and y representing price, we find that the regression equation has a slope of 120 and a y-intercept of negative 353.
What is the equation of the regression line?
Select the correct choice below and fill in the answer boxes to complete your choice.
A) y=..+(..)^x
B) y=..+(..)^x
C) y=..+(..)^x
D) y=..+(..)^x
Answer:
y = -353 + 120xStep-by-step explanation:
First step is using a linear regression equation:
In a linear regression model y = b0 + b1x
where y be the response variable
and x be the predictor variable.
let b1 = slope
b0 = intercept of the line.
Let the variable ratings be by denoted by x and the variable price be denoted by y.
From the given information it is known that, price (y) is response variable and ratings (x) predictor variable.
Therefore, price can be predicted using ratings.
Second step is to obtain the regression equation of the variables price (y) and ratings (x):
so the slope of the regression equation is 120 and the y-intercept is -353.
then b0 = -353
therefore,
(price)y = b0 + b1x (ratings)
y = -353 + 120x
The equation of the regression line is y = -353 + 120x.
Given that,
The regression equation has a slope of 120 and a y-intercept of negative 353.Based on the above information, the equation is as follows:
y = -353 + 120x
Learn more: brainly.com/question/17429689
A business tenant has a percentage lease stating rent payment is greater of 2% of the business’s total gross sales volume or a minimum base rental of $1,000.00 per month. In the past year, sales totaled $435,000. How much rent did the business pay?
Answer:
$12,000
Step-by-step explanation:
By paying the minimum rent, the tenant would pay $1000 * 12 = $12,000.
Rent cannot be less than $12,000.
If the 2% of sales is greater than $12,000, then 2% of sales becomes the rent.
Now we calculate 2% of annual sales.
2% * $435,000 = $8,700
Since the minimum rent, $12,000, is greater than 2% of sales, then rent is $12,000.
A clinical trial was conducted to test the effectiveness of a drug for treating insomnia in older subjects. Before treatment, 17 subjects had a mean wake time of 104.0 min. After treatment, the 17 subjects had a mean wake time of 97.5 min and a standard deviation of 21.9 min. Assume that the 17 sample values appear to be from a normally distributed population and construct a 95% confidence interval estimate of the mean wake time for a population with drug treatments. What does the result suggest about the mean wake time of 104.0 min before the treatment? Does the drug appear to be effective?
Answer:
The 95% confidence interval of mean wake time for a population with treatment is between 86.2401 and 108.7599 minutes.
This interval contains the mean wake time before treatment and which does not prove to be effective
Step-by-step explanation:
GIven that :
sample size n = 17
sample mean [tex]\overline x[/tex] = 97.5
standard deviation [tex]\sigma[/tex] = 21.9
At 95% Confidence interval
the level of significance ∝ = 1 - 0.95
the level of significance ∝ = 0.05
[tex]t_{\alpha/2} = 0.025[/tex]
Degree of freedom df = n - 1
Degree of freedom df = 17 - 1
Degree of freedom df = 16
At ∝ = 0.05 and df = 16 , the two tailed critical value from the t-table [tex]t_{\alpha/2 , 16}[/tex] is :2.1199
Therefore; at 95% confidence interval; the mean wake time is:
= [tex]\overline x \pm t_{\alpha/2,df} \dfrac{s}{\sqrt{n}}[/tex]
= [tex]97.5 \pm 2.1199 \times \dfrac{21.9}{\sqrt{17}}[/tex]
= 97.5 ± 11.2599
= (86.2401 , 108.7599)
Therefore; the mean wake time before the treatment was 104.0 min
The 95% confidence interval of mean wake time for a population with treatment is between 86.2401 and 108.7599 minutes.
This interval contains the mean wake time before treatment and which does not prove to be effective
What is the simplified expression for 3 y squared minus 6 y z minus 7 + 4 y squared minus 4 y z + 2 minus y squared z?
WILL MARK BRAINLEST
Answer:
7y⁴- 10yz - y²z - 5
Step-by-step explanation:
First collect like terms
3y²+ 4y²- 6yz - 4yz - y²z - 7+2
7y⁴-10yz - y²z - 5
Answer:
Its C
Step-by-step explanation:
The area of a triangle is 14 square inches. The base is 28 inches. What is the height in inches? Do not include units in your answer.
Answer:
Hey there!
A=1/2bh
14=1/2(28)h
14=14h
h=1
Hope this helps :)
Answer:
the height is 1 inchStep-by-step explanation:
Area of a triangle is
[tex] \frac{1}{2} \times b \times h[/tex]
where b is the base
h is the height
From the question
Area = 14in²
b = 14 inches
So we have
[tex]14 = \frac{1}{2} \times 28 \times h[/tex]
which is
[tex]14 = 14h[/tex]
Divide both sides by 14
That's
[tex] \frac{14}{14} = \frac{14h}{14} [/tex]
We have the final answer as
h = 1
Therefore the height is 1 inch
Hope this helps you
Please answer this correctly without making mistakes
Answer:
B)Gift shop
pls mark me as BRAINLIEST
hope the answer helped you
What is the value of y iin this equation? 4(y-3) =48
Answer:
y = 15Step-by-step explanation:
Question:
4(y - 3) = 48
1. Distribute
4y - 12 = 48
2. Simplify Like terms
4y - 12 = 48
+ 12 + 12
4y = 60
3. Solve
4y = 60
/4 /4
y = 15
4. Check:
4(y - 3) = 48
4((15) - 3) = 48
4(12) = 48
48 = 48 Correct!
Hope this helped,
Kavitha
Answer:
[tex]y=15\\[/tex]
Step 1:
To find y, we first have to multiply [tex]4(y-3)[/tex]. When we do that (4 * y, 4 * - 3), we get [tex]4y-12[/tex].
Step 2:
Our equation looks like this now:
[tex]4y-12=48[/tex]
To solve this equation, we have to add 12 on both sides so we can cancel out the -12 on the left side of the equation.
[tex]4y-12(+12)=48(+12)[/tex]
[tex]4y=60[/tex]
Now, we can divide 4 on both sides to get y by itself.
[tex]4y/4\\60/4[/tex]
[tex]y=15[/tex]
Find the surface area of this shape (here is the grid too)
Answer:
12
Step-by-step explanation:
The second diagram is most helpful for finding the surface area.
Find the area of the middle square: 2 * 2 = 4Find the area of the triangle using A = 1/2*B*H, so A = 1/2 * 2 * 2 = 2Since there are 4 triangles, the surface area of all the triangles is 2 * 4 = 8Add the surface area of the triangles with the surface area of the square to get the total surface area: 8 + 4 = 12If you want further tutoring help in geometry or other subjects for FREE, check out growthinyouth.org.
Suppose Miss Roxanne Davenport is 25 years old right now and puts away $1,800 per quarter in an account that returns 6% interest. a.) How much will be in the account when she turns 65? b.)What is her total contribution to the account?
Answer:
a. Total amount after 65 years = $1179415.39
b. The total contribution to the account = $288000
Step-by-step explanation:
Given annuity amount = $1800
Total number of years for contribution = 65 – 25 = 40 years
Interest rate = 6%
a. Total amount after 65 years = Annuity[((1+r)^n -1) / r]
Total amount after 65 years = 1800×((1+.06/4)^(4 × 40) - 1)/(.06/4)
Total amount after 65 years = $1179415.39
b. The total contribution to the account =1800 × 4 Quarter × 40 Years
The total contribution to the account = $288000
What decimal is equivalent to 10/3?
Answer:
3.33333333 . . .
Step-by-step explanation:
Answer:
3.33333333
Step-by-step explanation:
Its a forever number, i forgot the term i think its called a terminal number, or nonterminal i forget. You divide 10 / 3 and get 3.33333333333333333333 forever
21. In the figure given below, AC is parallel to DE. Find the valuesof xy and z and hence find the 2DBE.
21-70X
509
Answer:
X= 50°
Y= 70°
Z= 30°
BDE= 30°
2BDE= 60°
Step-by-step explanation:
(2x -70 )+z+(2x+20)=180...(sum of angle on a straight line)
2x -70 = BDE... alternate angles
Y + (2x-70)+(50+x-20) = 180...(sum of angles in a triangle)
X-20 = z ... alternate and opposite angles
(2x -70 )+z+(2x-+20)=180
2x-70 + x-20 +2x +20= 180
5x -70= 180
5x = 250
X= 50°
X-20 = z
50-20= z
30° = z
2x -70 = BDE
2(50) -70 = BDE
100-70 = BDE
30°= BDE
Y + (2x-70)+(50+x-20)
Y + 100-70 +50 +50 -20 = 180
Y + 200-90=180
Y= 70°
2BDE = 2*30
2BDE= 60°
resultado de
x²-3x=0
Answer:
x = 3,0
Step-by-step explanation:
x²-3x=0
1- x(x - 3) = 0
2- x = 0 , x = 3
Answer:
X1=0 X2=3
Step-by-step explanation:
Factorize x²-3x=x*(x-3)=0
So x=0 or x-3=0
SO x1=0 x2-3=0
x2=3
The quotient of a number and -5 has a result of 2. What is the number?
Type the correct answer in the box. Use numerals instead of words.
Answer:
-10
-5 * 2 = -10
Hope this is right
Solve the given systems of equations:
x-y+z=1
-3x+2y+z=1
2x-3y+4z=3
Answer:
x = 3/2
y = 2
z = 3/2
Step-by-step explanation:
There are multiple methods to solve these. Message me for the method you need to see step by step.