The value of k i.e. rate constant indicate the reaction is very fast. In this case, it is the first-order reaction.
The higher value in this case is the order of 12. The unit of k is (1/time) i.e. (1/s). The rate expression is given as follows
[tex]r_{A}=\frac{dC_{A}}{dt}=-kC_{A}..............(1)dC = -kdt..............................(2)[/tex]
If we consider the case of CA, for example, either Iodide ions as their concentration are small as compared to BrO3- and hydrogen ions, then iodide ion concentration is decreasing very fast.
Similar is the case for others. So, it increases the rate of reaction of the order of 12. The rate of disappearance of reactants mentioned in the table is almost high and it shows nearly the same value of k.
2. The rate of reaction is based on the concentration of the limiting reactant.
The rate of reaction is given by the following expression. Integrating equation(2) from initial concentration (CA0) to final concentration (CA),
[tex]\int_{C_{A0}}^{C_{A}}-\frac{dC_{A}}{C_{A}} = k\int_{0}^{t}dt-ln\frac{C_{A}}{C_{A0}}=kt[/tex]
There is no information about the initial concentration of reactants (CA0) i.e. initial volume of stock solution for each of the reactants.
to know more about equations click here:
https://brainly.com/question/2972832
#SPJ4
The complete question is:
Rates of Chemical Reactions: A Clock Reaction tab/-R e p o r t Name Time MTWRF Reaction # k" k, 3.68 x 10,2 Explain why values for these four reactions should all be approximately equal: Use the k above and the reactant concentrations from Part A to predict the relative rate and time (t) for reaction mixture #5 (show work): trek" relative rateprekted
Determine the volume of a concentrated solution needed for dilution Question A stock solution has a concentration of 1.5 M SO2 and is diluted to a 0.54 M solution with a volume of 0.18 L. What was the volume of the stock solution? • Your answer should have two significant figures. Provide your answer below: FEEDBACK MORE INSTRUCTION SUBMIT Content attribution
The volume of the stock solution needed for dilution is 0.065 L.
How to find the volume of concentrated solution needed for dilution?
To determine the volume of the stock solution needed for dilution, we can use the dilution formula: C1V1 = C2V2, where C1 is the initial concentration, V1 is the initial volume, C2 is the final concentration, and V2 is the final volume.
Given:
C1 = 1.5 M (concentration of the stock solution)
C2 = 0.54 M (final concentration after dilution)
V2 = 0.18 L (final volume)
We need to find V1, the volume of the stock solution.
Using the formula: C1V1 = C2V2, we can solve for V1:
V1 = (C2V2) / C1
V1 = (0.54 M × 0.18 L) / 1.5 M
Now, calculate the value:
V1 ≈ 0.065 L
With two significant figures, the volume of the stock solution needed for dilution is 0.065 L.
To know more about Dilution Formula:
https://brainly.com/question/15136171?
#SPJ11
based on the distribution of electrons, which would you expect to be least likely to form a chemical bond with another atom?
Based on the distribution of electrons, an atom with a full outer shell is least likely to form a chemical bond with another atom.
What is a chemical bond?
A chemical bond is a link between two or more atoms or molecules that allows the formation of chemical compounds. Chemical bonds come in a variety of forms, including covalent, polar covalent, and ionic bonds. The electron configuration of an atom determines how it reacts in a chemical reaction. The atoms that need to form a bond are the ones that don't have complete valence shells. Valence electrons are found in the outermost shell of an atom, and they are the electrons that are involved in chemical bonding. An atom needs to obtain or lose electrons to complete the outer shell, which is done through chemical bonding. As a result, an atom with a full outer shell is least likely to form a chemical bond with another atom.
Learn more about chemical bonds on https://brainly.com/question/1974529
#SPJ11
What happens to initial reaction rate if enzyme concentration is tripled? (Assume conditions like those in the properties of enzymes lab, and assume that the pH and initial substrate concentration are constant.)A. The initial rate will increase by a factor of 9 because the rate is dependent on the square of the enzyme concentration.B. The initial rate will triple when enzyme concentration is tripled because the initial rate of reaction is linearly related to enzyme concentration.C. The fixed substrate concentration will hold the initial rate constant because only substrate concentration governs the reaction rate.D. The fixed pH will hold the initial rate constant because only pH governs the reaction rate.E. The initial rate will not change because the enzyme is saturated with substrate.
If enzyme concentration is tripled, the initial rate will triple when enzyme concentration is tripled because the initial rate of reaction is linearly related to enzyme concentration. The correct answer is option B.
The initial rate of reaction and the enzyme concentration are directly proportional to each other. When the enzyme concentration is tripled, the initial rate of reaction will triple as well.
Assuming that conditions are like those in the properties of enzymes lab and pH and initial substrate concentration are constant, the initial rate of reaction depends on the enzyme concentration. Enzyme concentration affects the rate of the reaction at the beginning of the reaction. When the enzyme concentration is increased, the number of active sites available for the reaction is also increased.
The rate of a reaction is affected by several factors such as temperature, pH, substrate concentration, and enzyme concentration. In most cases, an increase in the enzyme concentration leads to an increase in the rate of the reaction. However, there comes a time when the rate of reaction reaches a maximum point irrespective of the enzyme concentration. At this point, the enzyme is said to be saturated with substrate.
Learn more about enzyme concentration here: https://brainly.com/question/13445202
#SPJ11
how many grams of methanol condense if methanol vapor releases 48.2 kj of heat at its boiling point?
Methanol is a colorless liquid that is used as a solvent, fuel, and antifreeze. It is commonly used in the chemical industry to manufacture formaldehyde, which is used in the production of plastics, adhesives, and textiles. The boiling point of methanol is 64.7 °C, and it has a heat of vaporization of 35.2 kJ/mol.
The heat of vaporization is the amount of heat required to convert a liquid into a gas. We can use the following formula to calculate the heat of vaporization:
q = n * ΔHv
where, q is the heat required is the number of moles of the substance, ΔHv is the heat of vaporization of the substance
Rearranging the equation to solve for n gives:
n = q / ΔHv
Now, let's plug in the given values:
q = 48.2 kJ
ΔHv = 35.2 kJ/mol
n = 48.2 kJ / 35.2 kJ/mol
n = 1.37 mol
So, 1.37 moles of methanol vapor condense when methanol vapor releases 48.2 kJ of heat at its boiling point. To find the mass of methanol, we can use the following formula:
m = n * MM
where m is the mass of the substance, n is the number of moles, and MM is the molar mass of the substance. The molar mass of methanol is 32.04 g/mol.
m = 1.37 mol * 32.04 g/mol
m = 43.91 g
Therefore, 43.91 grams of methanol condense if methanol vapor releases 48.2 kj of heat at its boiling point.
To learn more about "boiling point", visit: https://brainly.com/question/40140
#SPJ11
b) what key absorbance indicative of starting material 2-methylcyclohexanone should be absent? give wavenumber, bond type and functional group.
In the IR spectrum of 2-methylcyclohexanone, an important absorbance to be absent after the reaction is the carbonyl stretch at around 1710 cm⁻¹. This peak is indicative of the carbonyl functional group, which is present in the starting material but absent in the product, which is a cyclic ether.
The carbonyl functional group has a C=O bond, which is a strong and characteristic bond that absorbs infrared radiation at around 1710 cm⁻¹. This absorbance is an important feature in the IR spectrum of ketones and aldehydes, which both contain a carbonyl group.
In the case of the reaction of 2-methylcyclohexanone to form a cyclic ether, the carbonyl group is converted to an ether, which lacks a carbonyl functional group. Therefore, the absence of the carbonyl stretch absorbance at around 1710 cm⁻¹ in the IR spectrum of the product would indicate the successful conversion of the starting material to the desired product.
To learn more about 2-methylcyclohexanone refer to:
brainly.com/question/28187180
#SPJ4
which of the following would be the most soluble in water? question 7 options: a) ch3ch2ch2nh2 b) ch3ch2ch2ch2ch2ch2nh2 c) ch3ch2nh2 d) ch3nh2 e) ch3ch2ch2ch2nh2
Calculate the energy required to melt 40.3 g of ice at 0 oC.
The molar heat of fusion for ice is 6.02 kJ/mol.
the energy required to melt 40.3 g of ice at 0 oC.The molar heat of fusion for ice is 6.02 kJ/mol. the energy required to melt 40.3 g of ice at 0 oC is 13.5 kJ.
The energy required to melt a substance is given by the formula:
q = nΔH_fus
where q is the heat absorbed or released during the phase change, n is the number of moles of the substance undergoing the phase change, and ΔH_fus is the molar heat of fusion of the substance.
To apply this formula to the melting of 40.3 g of ice at 0 oC, we first need to calculate the number of moles of ice present:
moles of ice = mass of ice / molar mass of ice
moles of ice = 40.3 g / 18.015 g/mol
moles of ice = 2.235 mol
Next, we can use the formula for q to calculate the energy required to melt the ice:
q = nΔH_fus
q = 2.235 mol × 6.02 kJ/mol
q = 13.5 kJ
Learn more about energy here:
https://brainly.com/question/1932868
#SPJ1
What is used to prepare a calibration curve? A solvent blank. A set of solutions with various unknown analyte concentrations. A set of solutions with a range of precisely known analyte concentrations. A set of solutions with the exact same analyte concentration.
To prepare a calibration curve is used A set of solutions with the exact same analyte concentration.
The calibration curve is the graphical representation of the relation in between the concentration or the amount of substance, and the signal or the measurement obtained from the analytical instrument or the assay. The calibration curve is to constructed by the measuring the signal or the response of instrument or the assay at the different known concentrations and the amounts of substance, and the plotting of these values on the graph.
The resulting curve is used to determine the concentration and the amount of the substance in the unknown sample by the measuring its signal.
To learn more about calibration curve here
https://brainly.com/question/21661427
#SPJ4
which indicator would be the best to use for a titration between 0.30 m c6h5cooh with 0.30 m naoh? you will probably need to consult the appropriate table in the book.
The best indicator to be used is Phenolphthalein.
Phenolphthalein changes color from colorless to pink as the solution becomes basic, which is ideal for this titration as the endpoint is when all the benzoic acid has reacted with the sodium hydroxide to form sodium benzoate, which is basic.
It is important to note that the equivalence point for this titration is not at a pH of 7, as it would be for the titration of a strong acid with a strong base. Instead, the equivalence point for the titration of a weak acid with a strong base is above a pH of 7, closer to a pH of 8-10.
Hence, Phenolphthalein would be the best indicator to use for a titration between 0.30 M [tex]C_6H_5COOH[/tex] with 0.30 M NaOH.
#SPJ11
To learn more about Indicator refer: https://brainly.com/question/12708635
flower position - S, dominant - tip if the stem, recessive - side of the stem, Parent 1 SS; Parent 2 ss
free/attached earlobe - L, dominant - attached earlobe, recessive - free earlobe, Parent 1 Ll ; Parent 2 LL
widow's peak - P, dominant - no widow's peak, recessive - have a widow's peak, Parent 1 Pp; Parent 2 PP
All of the progeny of two flowers with genotype Ss will have tips of the stem flowers.
In the event where one parent (genotype Pp) has a widow's peak and the other parent (genotype pp) does not, what is the likelihood that the child will also have a widow's peak?Every of their descendants will have a 50% chance of inheriting a widow's peak (dominant trait) and a 50% chance of not receiving a widow's peak if one parent has a widow's peak and the other parent does not (genotype Pp) (recessive trait).
What proportion of their children will have flowers on the side of the stem if two Ss genotype flowers are crossed?25% of the progeny of two flowers with genotype Ss will have blossoms on the side of the stalk (recessive trait).
To know more about the genotype visit:
https://brainly.com/question/25281070
#SPJ1
which compound would be expected to show intense ir absorption at 1640 cm-1? group of answer choices
The compound that would be expected to show intense IR absorption at 1640 cm-1 is an amide bond.
An amide bond has a strong absorption peak at around 1640 cm-1 in the infrared spectrum.
What is an IR Spectrum?An IR (infrared) spectrum is a representation of the molecular vibrations of a sample. It contains peaks that correspond to different functional groups in the sample. The frequency of these peaks is determined by the strength of the bond and the mass of the atoms involved.
For example, a C-H bond will absorb at a different frequency than an O-H bond.
The IR spectrum can be used to identify functional groups in a sample. Different functional groups will produce different peaks in the spectrum. The intensity of the peak can also provide information about the concentration of the functional group in the sample.
Amide Bond: An amide bond is a functional group that consists of a carbonyl group (C=O) bonded to an amino group (-NH2). It is commonly found in proteins and peptides. The amide bond has a strong absorption peak at around 1640 cm-1 in the infrared spectrum. This peak is caused by the stretching vibration of the carbonyl group.
The amide bond is important in biochemistry because it is responsible for the formation of peptide bonds between amino acids. The peptide bond is a key component of protein structure, and understanding its properties is crucial to understanding the function of proteins.
To know more about "ir absorption" refer here:
https://brainly.com/question/14389213#
#SPJ11
The above question is incomplete, The complete question is written below,
Which compound would be expected to show intense IR absorption at 1640 cm-1 among the given options?
A. Amino acid
B. Ethanol
C. Propanol
D. Butanal
why do you selectively form the cyclohexene product in the robinson annulation instead of one the possible cyclobutene (4-membered ring) products? (there may be multiple correct answers)
The Robinson annulation is a reaction that involves the formation of a conjugated enone via the reaction between an α,β-unsaturated ketone and a stabilized aldehyde or ketone. The reaction can proceed through several intermediates, including cyclic intermediates, that can potentially lead to different products, such as cyclobutenes and cyclohexenes.
However, the formation of cyclobutenes is typically less favored than that of cyclohexenes due to the ring strain associated with the 4-membered ring. Cyclobutenes are highly strained and can be unstable, which makes them more reactive and prone to undergo further reactions, such as ring-opening or rearrangements, that can lead to the formation of unwanted byproducts. On the other hand, cyclohexenes are less strained and more stable, which makes them less reactive and less likely to undergo further reactions.
In addition, the steric factors and regioselectivity of the reaction can also play a role in determining the product selectivity. For example, the formation of the cyclohexene product may be favored due to the spatial orientation of the reactants and the intermediates, which can lead to the formation of the most stable and least sterically hindered product. Overall, the selectivity for the formation of cyclohexene over cyclobutene in the Robinson annulation is determined by a combination of factors, including thermodynamics, kinetics, and stereochemistry.
To learn more about cyclohexene refer to:
brainly.com/question/6854548
#SPJ4
What is the definition of transuranic waste
Answer: Transuranic waste consists of materials containing alpha-emitting radionuclides, with half-lives greater than twenty years and atomic numbers greater than 92, in concentrations greater than 100 nanocuries per gram of waste.
Answer:
Transuranic radioactive waste is waste that contains manmade elements heavier than uranium on the periodic table. It is produced during nuclear fuel assembly, nuclear weapons research and production, and during the reprocessing of spent nuclear fuel.
Explanation:
Transuranic waste consists of waste that has been contaminated with man-made radioactive elements, heavier than uranium, like neptunium, plutonium, and americium. They might be produced from uranium and plutonium during reactor operations. The methods of disposal might be hiding it away in isolation plants, such as the Waste Isolation Pilot Plant, or diluting it so that the radionuclides returning to the atmosphere are harmless, or even burying them in the ground.
learn more https://brainly.com/question/9736963?referrer=searchResults
1
Select the correct diagram.
A substance is held in a sealed container. The substance takes the shape of the container, but the substance's particles do not fill the container's volume.
Heat is added to the substance, and all of its particles eventually vaporize. Which diagram shows how the particles are most likely arranged after the substance has completely vaporized?
There are numerous types of water. It is a solid at very low temperatures (below 0°C). When temperatures are "normal" (between 0°C and 100°C),
it's a liquid), it is. Water becomes a gas at temperatures higher than 100 °C. (steam). The temperature affects the state that the water is in. Each of the three states—solid, liquid, and gas—has a distinct set of physical characteristics. Solid, liquid, or gas are the three basic states of matter. Physical properties also include the state that a specific substance manifests. At ambient temperature, some substances, like oxygen and carbon dioxide, exist as gases, while others, like water and mercury metal, do so as liquids. The majority of metals are solids at normal temperature.
Learn more about temperatures here-
https://brainly.com/question/29072206
#SPJ1
if a buffer solution is 0.230 m in a weak acid ( a=7.4×10−5) and 0.400 m in its conjugate base, what is the ph?
4.37
Explanation:
To calculate the pH of the buffer solution containing 0.230 M weak acid (HA) with an ionization constant (Ka) of 7.4 × [tex]10^{-5}[/tex] and 0.400 M of its conjugate base (A-), you can use the Henderson-Hasselbalch equation:
pH = pKa + log([A-]/[HA])
Step 1: Calculate the pKa value from Ka:
pKa = -log(Ka) = -log(7.4 × [tex]10^{-5}[/tex]) ≈ 4.13
Step 2: Substitute the concentrations of A- and HA into the equation:
pH = 4.13 + log(0.400 / 0.230)
Step 3: Calculate the pH value:
pH ≈ 4.13 + log(1.739) ≈ 4.13 + 0.240 ≈ 4.37
Therefore, the pH of the buffer solution is approximately 4.37.
To know more about pH:
https://brainly.com/question/14451880?
#SPJ11
barium hydroxide and iron(iii) acetate solution are mixed in a flask what are the products of the reaction
Barium acetate (Ba(CH₃COO)₂) and iron(III) hydroxide (Fe(OH)₃) are the reaction's byproducts, with iron(III) hydroxide precipitating as a brownish-red substance.
When barium hydroxide (Ba(OH)₂) and iron(III) acetate [Fe(CH₃COO)₃] solutions are mixed, a double displacement reaction occurs, resulting in the formation of a precipitate and a new solution. The balanced chemical equation for the reaction is:
Ba(OH)₂ + Fe(CH₃COO)₃ → Ba(CH₃COO)₂ + Fe(OH)₃
In this reaction, the barium ion (Ba²⁺) and the acetate ion (CH₃COO⁻) switch places to form barium acetate (Ba(CH₃COO)₂) and iron(III) hydroxide (Fe(OH)₃). The iron(III) ion (Fe³⁺) combines with hydroxide ions (OH⁻) from the barium hydroxide solution to form the insoluble iron(III) hydroxide precipitate.
Therefore, the products of the reaction are barium acetate (Ba(CH₃COO)₂) and iron(III) hydroxide (Fe(OH)₃), with the formation of a brownish-red precipitate of iron(III) hydroxide.
To learn more about barium hydroxide refer to:
brainly.com/question/30888146
#SPJ4
She measured the mass of the metal to be 352. 3 grams. Then she dropped the metal into a measuring cup and found that it displaced 18. 0 mL of water
The density of the metal will be 11.42 g/cc.
To calculate the density of the metal, we can use the following formula:
density = mass / volume
where mass is given as 225.6 grams and volume is the volume of water displaced by the metal, which is given as 19.7 mL.
However, we need to convert the volume from milliliters (mL) to cubic centimeters (cc), since the unit of density is grams per cubic centimeter (g/cc).
1 mL = 1 cc
Therefore:
volume = 19.7 mL = 19.7 cc
Now we can substitute the values into the formula:
density = 225.6 g / 19.7 cc
= 11.42 g/cc
To know more about density here
https://brainly.com/question/29775886
#SPJ4
--The given question is incomplete, the complete question is
"First she measured the mass of the metal to be 225.6 grams. Then she dropped the metal into a measuring cup and found that it displaced 19.7 mL of water. Calculate the density of the metal."--
what is the balanced equation acetic acid and sodium hydroxide ?
The balanced equation for the reaction between acetic acid and sodium hydroxide is
CH3COOH + NaOH → CH3COONa + H2O. This reaction is an example of a neutralization reaction, where an acid and a base react to produce a salt and water.
Acetic acid is an organic compound with the formula CH3COOH. It is a weak acid that dissolves in water to produce a sour or tart flavor. Sodium hydroxide, on the other hand, is a highly reactive compound with the formula NaOH. It is a strong base that reacts with acids to produce salt and water. When acetic acid and sodium hydroxide are mixed, a reaction occurs. The equation for this reaction is given below:
CH3COOH + NaOH → CH3COONa + H2O
In this equation, CH3COOH represents acetic acid, NaOH represents sodium hydroxide, CH3COONa represents sodium acetate, and H2O represents water. The equation is balanced, meaning that the same number of atoms of each element is present on both the reactant and product sides of the equation. The balanced equation above shows that acetic acid reacts with sodium hydroxide to form sodium acetate and water. The reaction between acetic acid and sodium hydroxide is an example of a neutralization reaction. This type of reaction occurs when an acid and a base react to form a salt and water.
To learn more about Neutralization :
https://brainly.com/question/23008798
#SPJ11
substances that can cause an immune reaction are called
Substances that can cause an immune reaction are called antigens.
These can include foreign particles like bacteria or viruses, as well as substances that the immune system mistakes as foreign, like allergens in certain foods or pollen. When an antigen enters the body, it can trigger an immune response, which involves the recognition and elimination of the antigen by immune cells like B cells and T cells. The immune system can also remember the antigen, allowing for a faster and stronger response if the antigen is encountered again. Antigens are an important part of the body's defense against pathogens, but can also contribute to autoimmune diseases and allergies when the immune system mistakenly targets the body's own tissues or harmless substances.
To learn more about antigens visit;
https://brainly.com/question/7597406
#SPJ4
The tiny particle of an atom that moves around the nucleus is the
if a person has to eliminate 600 mosmoles of waste solutes in the urine each day, and the maximum possible concentration of urine is 1400 mosmoles/l, what is the obligatory water loss?
In order to eliminate 600 mosmoles of waste solutes in the urine each day, the body needs to produce urine with a concentration of at least 600 mosmoles/l. However, the maximum possible concentration of urine is 1400 mosmoles/l, which means that the body will need to produce at least 600/1400 = 0.43 liters (or 430 milliliters) of urine to eliminate the waste solutes.
The amount of water that the body needs to produce this volume of urine is called the obligatory water loss. In this case, the obligatory water loss would be 430 milliliters of water per day. However, this is just the minimum amount of water required to eliminate waste solutes. In reality, the body needs to produce more urine to eliminate other substances and maintain a proper balance of electrolytes, which means that the actual obligatory water loss is typically higher.
Factors such as diet, exercise, and environmental conditions can also affect the amount of water needed to maintain proper hydration and eliminate waste products. Therefore, it's important to drink enough water and maintain a healthy lifestyle to support optimal kidney function and overall health.
To learn more about volume refer to:
brainly.com/question/14710169
#SPJ4
Consider the following molecules:
- BrCl
- PF3
- SF4
- SCl2
- CS2
Which one of these molecules has bonds that are most polar?
The molecule SF4 has the most polar bonds out of the given options.
Polarity in a bond depends on the electronegativity difference between the atoms involved in the bond. The greater the electronegativity difference, the more polar the bond. In the given molecules, the electronegativity difference between the atoms in SF4 is the largest, making it the most polar molecule.
The electronegativity of an atom is a measure of its ability to attract electrons towards itself. Fluorine has the highest electronegativity value among the given atoms, followed by oxygen, chlorine, and bromine, respectively. In SF4, there is a polar covalent bond between sulfur and fluorine, with the electronegativity difference between them being the largest.
The polarity of the bonds in the other molecules is comparatively lower, with either smaller electronegativity differences or symmetrical molecular structures leading to cancelation of bond polarities.
To know more about polar bonds, refer here:
https://brainly.com/question/13631142#
#SPJ11
What is the approximate volume of gas in a 1.50 mol sample that exerts a pressure of 0.922 atm and has a temperature of 10.0ºC (283 K)? (R= 0.0821 L atm over mol K )
PV = nRT
V= ___ L (Answer Format: XX.X)
The approximate volume of the gas is 31.0 L in a 1.50 mol sample that exerts a pressure of 0.922 atm and has a temperature of 10.0ºC .
We can use the Ideal Gas Law equation:
PV = nRT
where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.
Rearranging the equation, we get:
V = (nRT) / P
Substituting the given values, we get:
V = (1.50 mol * 0.0821 L atm/mol K * 283 K) / 0.922 atm
V = 31.0 L
A gas law is a mathematical equation that describes the behavior of gases under certain conditions, such as temperature, pressure, volume, and number of moles. There are several gas laws, including Boyle's law, Charles's law, Gay-Lussac's law, and the combined gas law, among others. These laws are based on experimental observations of gas behavior and provide a way to predict how gases will behave under various conditions.
Learn more about ideal gas law here:
https://brainly.com/question/28257995
#SPJ1
At a certain temperature and pressure, CO₂ molecules travel at
200.0 mph. How fast do H₂ molecules go?
Temperature, pressure, and molar mass all affect how quickly gas molecules move. Lighter gas molecules move more quickly than heavy ones when pressure and temperature are the same.
How can you determine a molecule's speed?To determine a molecular speed, multiply the gas constant by three times, divide the result by the temperature, and then take the square root of this number.
Why do H2 molecules move more quickly than o2 molecules?All gaseous molecules have an equal average kinetic energy at a given temperature. The gas hydrogen will have the highest average velocity because it has the lowest mass among these gases.
To know more about molecules visit:-
https://brainly.com/question/19556990
#SPJ9
aqueous hydrobromic acid hbr reacts with solid sodium hydroxide naoh to produce aqueous sodium bromide nabr and liquid water h2o. what is the theoretical yield of sodium bromide formed from the reaction of 1.6g of hydrobromic acid and 0.20g of sodium hydroxide? be sure your answer has the correct number of significant digits in it. g
The theoretical yield of sodium bromide formed from the reaction of 1.6 g of hydrobromic acid and 0.20 g of sodium hydroxide is 2.04 g.
The theoretical yield of sodium bromide is calculated by the equation: mass of sodium bromide = (moles of hydrobromic acid) x (molar mass of sodium bromide). First, you need to calculate the moles of hydrobromic acid. This can be done by dividing the mass of hydrobromic acid (1.6 g) by the molar mass of hydrobromic acid (80.91 g/mol):
Second, you need to calculate the moles of sodium hydroxide. This can be done by dividing the mass of sodium hydroxide (0.20 g) by the molar mass of sodium hydroxide (39.99 g/mol):
Moles of sodium hydroxide = 0.20 g / 39.99 g/mol = 0.005 moles.
Moles of hydrobromic acid = 1.6 g / 80.91 g/mol = 0.0198 moles.
Finally, the theoretical yield of sodium bromide can be calculated by multiplying the moles of hydrobromic acid (0.0198 moles) by the molar mass of sodium bromide (102.89 g/mol):
Theoretical yield of sodium bromide = 0.0198 moles x 102.89 g/mol = 2.04 g.
To know more about sodium bromide, refer
https://brainly.com/question/15409724#
#SPJ11
Identify the type of symbiotic relationship described in each scenario.
Some wasps lay their eggs on caterpillars called tomato hornworms. When the eggs hatch, the young wasps burrow
into the caterpillar's body and eat it alive. The adult wasps then fly away. This is an example of
The described scenario is an example of parasitism.
Parasitism is a type of symbiotic relationship in which one species benefits while the other is harmed. In this case, the wasps benefit by using the caterpillar as a host for their young, which ultimately leads to the death of the caterpillar.
The caterpillar, on the other hand, is harmed as its body is used as a food source for the developing wasp larvae, ultimately leading to its death. This type of interaction is common in nature, with many species relying on others as a source of food or shelter, even if it comes at the cost of the host's well-being.
To learn more about parasitism refer to:
brainly.com/question/22589174
#SPJ4
you are given 0.725 grams of a white powder and told that it is a mixture of potassium carbonate and sodium carbonate. you are asked to determine the percent composition by mass of the sample. you add some of the sample to 10.00 ml of 0.9947 m nitric acid until you reach the equivalence point. when you have added enough carbonate to completely react with the acid, you reweigh your sample and find that the mass is 0.171 g. calculate the mass of the sample that reacted with the nitric acid. calculate the moles of nitric acid that reacted with the sample.
The moles of nitric acid that reacted with the sample is 0.09947 mol.
The given problem requires you to determine the percent composition by mass of the sample which is a mixture of potassium carbonate and sodium carbonate. To do this, you must first calculate the mass of the sample that reacted with the nitric acid and the moles of nitric acid that reacted with the sample.
Given:
Mass of white powder = 0.725 g
Mass of sample after reaction = 0.171 g
Volume of nitric acid = 10.00 ml
Molarity of nitric acid = 0.9947 M
Step 1: Calculate the mass of the sample that reacted with the nitric acid.
Mass of sample that reacted with nitric acid = Mass of white powder – Mass of sample after reaction
Mass of sample that reacted with nitric acid = 0.725 g – 0.171 g
Mass of sample that reacted with nitric acid = 0.554 g
Step 2: Calculate the moles of nitric acid that reacted with the sample.
Moles of nitric acid that reacted with the sample = (Volume of nitric acid x Molarity of nitric acid)/1000
Moles of nitric acid that reacted with the sample = (10.00 ml x 0.9947 M)/1000
Moles of nitric acid that reacted with the sample = 0.09947 mol
Therefore, the mass of the sample that reacted with the nitric acid is 0.554 g and the moles of nitric acid that reacted with the sample is 0.09947 mol.
To know more about Nitric acid refer here :
https://brainly.com/question/22698468
#SPJ11
Aqueous Precipitation Reactions:
1. Complete and balance the following chemical equations for double replacement reactions. Make sure you indicate if a solid precipitate is formed.
2. Write the lonic Equation and the net ionic equation for each
The two equations are -Ca2+(aq) + 2Cl–(aq) + 2K+(aq) + CO32–(aq) →CaCO3(s) + 2K+(aq) + 2Cl–(aq)Net Ionic Equation: Ca2+(aq) + CO32–(aq) → CaCO3(Sonic Equation: Mg2+(aq) + SO42–(aq) + 2K+(aq) + 2OH–(aq) → Mg(OH)2(s) + 2K+(aq) + SO42–(aq)Net Ionic Equation: Mg2+(aq) + 2OH–(aq) → Mg(OH)2(s)
What is aqueous solutions?Aqueous solution is a type of solution in which a solute is dissolved in water. It is the most common type of solution, and is often referred to as a dilute solution. Aqueous solutions are aqueous because they are composed mainly of water molecules, which are polar molecules and can dissolve many other substances. Examples of aqueous solutions include salt water, sugar water, and vinegar.
1. Aqueous solutions of calcium chloride and potassium carbonate are mixed
Complete Equation: CaCl2(aq) + K2CO3(aq) → CaCO3(s) + 2KCl(aq)
Ionic Equation: Ca2+(aq) + 2Cl–(aq) + 2K+(aq) + CO32–(aq) → CaCO3(s) + 2K+(aq) + 2Cl–(aq)
Net Ionic Equation: Ca2+(aq) + CO32–(aq) → CaCO3(s)
2. Aqueous solutions of magnesium sulfate and potassium hydroxide are mixed
Complete Equation: MgSO4(aq) + 2KOH(aq) → Mg(OH)2(s) + K2SO4(aq)
Ionic Equation: Mg2+(aq) + SO42–(aq) + 2K+(aq) + 2OH–(aq) → Mg(OH)2(s) + 2K+(aq) + SO42–(aq)
Net Ionic Equation: Mg2+(aq) + 2OH–(aq) → Mg(OH)2(s)
Aqueous precipitation reactions occur when two aqueous solutions are mixed and a solid precipitate is formed. This happens when two soluble ionic compounds react to form an insoluble compound. The complete equation for a precipitation reaction shows the complete reactants and products, including the ions present in both the reactants and the products. The ionic equation shows the ions present in the reactants and products, and the net ionic equation shows only the ions that are involved in the reaction. In the two examples above, both reactions form a solid precipitate, and the net ionic equation shows that both reactions involve an exchange of ions to form the insoluble product.
To know more about an aqueous solution click-
https://brainly.com/question/19587902
#SPJ1
name the compound so2 using the stock system.PLS HELPP ASAPP
Answer:SO2 is a covalent compound made up of sulfur and oxygen atoms, so the stock system is not applicable here as it is used for naming compounds that contain metal ions with different oxidation states.Instead, the IUPAC (International Union of Pure and Applied Chemistry) name for SO2 is sulfur dioxide.
Explanation:So I helped you help me please
The compound SO₂ is named sulfur dioxide using the Stock system.
In the Stock system, the names of chemical compounds are based on the oxidation states of the elements involved. The oxidation state refers to the charge that an atom carries when it forms a compound.
Sulfur (S) has an oxidation state of +4, and oxygen (O) has an oxidation state of -2. The compound's name reflects these oxidation states.
Combining the elements and their oxidation states, the compound is named "sulfur(IV) oxide" using the Stock system. However, it is more commonly known as sulfur dioxide, which is the traditional name for the compound.
To learn more about the Stock system, follow the link:
https://brainly.com/question/31567840
#SPJ6
what mass grams of nitric acid , hno₃, is required to neutralize (completely react with) 4.30 g of ca(oh)₂ according to the acid-base reaction: 2 hno₃(aq) ca(oh)₂(aq) → 2 h₂o(l) ca(no₃)₂(aq)
7.31 g of nitric acid (HNO₃) is required to neutralize 4.30 g of calcium hydroxide (Ca(OH)₂). To find the mass of nitric acid (HNO₃) required to neutralize 4.30 g of calcium hydroxide (Ca(OH)₂), follow these steps:
Step 1: Find the molar mass of Ca(OH)₂ and HNO₃.
Ca(OH)₂: (1 × 40.08) + (2 × 15.999) + (2 × 1.008) = 74.093 g/mol
HNO₃: (1 × 1.008) + (1 × 14.007) + (3 × 15.999) = 63.012 g/mol
Step 2: Convert the mass of Ca(OH)₂ to moles.
moles of Ca(OH)₂ = mass / molar mass = 4.30 g / 74.093 g/mol ≈ 0.0580 mol
Step 3: Determine the stoichiometric ratio of HNO₃ to Ca(OH)₂ from the balanced chemical equation.
The balanced equation is: 2 HNO₃ + Ca(OH)₂ → 2 H₂O + Ca(NO₃)₂
The stoichiometric ratio of HNO₃ to Ca(OH)₂ is 2:1.
Step 4: Convert moles of Ca(OH)₂ to moles of HNO₃ using the stoichiometric ratio.
moles of HNO₃ = moles of Ca(OH)₂ × (2 moles of HNO₃ / 1 mole of Ca(OH)₂) = 0.0580 mol × 2 = 0.116 mol
Step 5: Convert moles of HNO₃ to mass.
mass of HNO₃ = moles × molar mass = 0.116 mol × 63.012 g/mol ≈ 7.31 g
So, 7.31 g of nitric acid (HNO₃) is required to neutralize 4.30 g of calcium hydroxide (Ca(OH)₂).
Know more about moles
https://brainly.com/question/29367909
#SPJ11