Evaluate (8 + 2)^3 - 6

Answers

Answer 1

Step-by-step explanation:

First you need to do of bracket

(8+2)

=10

Second you need to do of exponential sign ^

10^3=1000(note this sign is also called cube)

Now,

1000-6

=994

Answer 2

Answer:

994

Step-by-step explanation:

We need to use order of operations to solve this problem.

( 8 + 2 ) ^ 3 - 6

According to PEMDAS, Parenthesis must be resolved first.

So we get:

10 ^ 3 - 6

Secondly, PEMDAS states that Exponents go next

1000 - 6

Finally, we only have one operation left, subtraction, so we can go ahead and do that.


994 is your answer.

I put a lot of thought and effort into my answers, so a brainliest would be much appreciated!


Related Questions

Gross Monthly Income: Jackson works for a pipe line company and is paid $18. 50 per hour. Although he will have overtime, it is not guaranteed when or where, so Jackson will only build a budget on 40 hours per week. What is Jackson’s gross monthly income for 40 hours per week? Type in the correct dollar amount to the nearest cent. Do not include the dollar sign or letters.


A. Gross Annual Income: $


B. Gross Monthly Income: $

Answers

Jackson's gross monthly income for 40 hours per week is approximately $3,201.70 and gross annual income s $38,480.

To find Jackson's gross monthly income, we first need to find his gross weekly income.

Jackson's hourly wage is $18.50, so his weekly gross income for 40 hours of work is:

40 hours/week x $18.50/hour = $740/week

Calculate annual income:

To determine the gross annual income, we need to consider how many weeks there are in a year. Assuming 52 weeks in a year:

Annual income = Weekly income * Number of weeks in a year

Annual income = $740 * 52 = $38,480

To find Jackson's gross monthly income, we can multiply his weekly gross income by the number of weeks in a month (approximately 4.33):

$740/week x 4.33 weeks/month ≈ $3,201.70/month

Therefore, Jackson's gross monthly income for 40 hours per week is approximately $3,201.70.

To know more about gross monthly income, visit:

https://brainly.com/question/30617016#

#SPJ11

Given the following point on the unit circle, find the angle, to the nearest tenth of a
degree (if necessary), of the terminal side through that point, 0<θ<360.
p=(-√2/2,√2/2)

Answers

Answer: Therefore, the angle of the terminal side through the point p is 315.0 degrees (to the nearest tenth of a degree).

Step-by-step explanation:

The point p = (-√2/2,√2/2) lies on the unit circle, which is centered at the origin (0,0) and has a radius of 1. To find the angle of the terminal side through this point, we need to use the trigonometric ratios of sine and cosine.

Recall that cosine is the x-coordinate of a point on the unit circle, and sine is the y-coordinate. Therefore, we have:

cos(θ) = -√2/2

sin(θ) = √2/2

We can use the inverse trigonometric functions to solve for θ. Taking the inverse cosine of -√2/2, we get:

θ = cos⁻¹(-√2/2)

Using a calculator, we find that θ is approximately 135.0 degrees.

However, we need to ensure that the angle is between 0 and 360 degrees. Since the point lies in the second quadrant (i.e., x < 0 and y > 0), we need to add 180 degrees to the angle we found. This gives:

θ = 135.0 + 180 = 315.0 degrees

The angle of the terminal side through the point p is 315.0 degrees (to the nearest tenth of a degree).

To know more about terminal refer here

https://brainly.com/question/27349244#

#SPJ11

Goldilocks walked into her kitchen to find that a bear had eaten her tasty can of soup. All that was left was the label below that used to completely cover the sides of the can (without any overlap). What was the volume of the can of soup that the bear ate? The label is 22 in. (top) by 9 in. (side).

Answers

The volume of the can of soup that the bear ate was approximately 4644.64 cubic inches.

To solve this problem, we need to make some assumptions about the can of soup. Let's assume that the can is cylindrical and that it is completely filled with soup. We also need to assume that the label covered the entire surface area of the can without any overlap.

The label is 22 inches tall and 9 inches wide, so it covered a total surface area of 22 x 9 = 198 square inches. Since the label completely covered the sides of the can without any overlap, we can use this surface area to find the surface area of the can itself.

The surface area of a cylinder is given by the formula A = 2πrh + 2πr², where r is the radius of the base of the cylinder, and h is the height of the cylinder. In this case, we know that the height of the cylinder is 22 inches (the height of the label), and the circumference of the base of the cylinder is 9 inches (the width of the label).

Using these values, we can solve for the radius of the cylinder:

9 = 2πr
r = 4.53 inches

Now we can use the formula for the surface area of a cylinder to solve for the volume of the can:

A = 2πrh + 2πr²
198 = 2π(22)(4.53) + 2π(4.53)²
198 = 634.26
A = πr²h
V = A x h/3
V = 634.26 x 22/3
V ≈ 4644.64 cubic inches

To know more about volume, refer to the link below:

https://brainly.com/question/23687218#

#SPJ11

Please help with this math problem!

Answers

The equation of the ellipse is x^2/9 + y^2/6.75 = 1

Finding the equation of the ellipse

To find the equation of an ellipse, we need to know the center, the major and minor axis, and the foci.

Since we are given the eccentricity and foci, we can use the following formula:

c = (1/2)a

Since the foci are (0, +/-3), the center is at (0, 0). We know that c = 3/2, so we can find a:

c = (1/2)a

3/2 = (1/2)a

a = 3

The distance from the center to the end of the minor axis is b, which can be found using the formula:

b = √(a^2 - c^2)

b = √(3^2 - (3/2)^2)

b = √6.75

So the equation of the ellipse is:

x^2/a^2 + y^2/b^2 = 1

Plugging in the values we found, we get:

x^2/3^2 + y^2/6.75 = 1

Simplifying:

x^2/9 + y^2/6.75 = 1

Therefore, the equation of the ellipse is x^2/9 + y^2/6.75 = 1

Read more about ellipse at

https://brainly.com/question/3202918

#SPJ1

Use the Mean Value Theorem to show that if * > 0, then sin* < x.

Answers

According to the Mean Value Theorem, if a function is continuous on the interval [a, b] and differentiable on the open interval (a, b), there exists a point c in (a, b) such that the derivative at c equals the average rate of change between a and b.

To use the Mean Value Theorem to show that if * > 0, then sin* < x, we first need to apply the theorem to the function f(x) = sin x on the interval [0, *].

According to the Mean Value Theorem, there exists a number c in the interval (0, *) such that:

f(c) = (f(*) - f(0)) / (* - 0)

where f(*) = sin* and f(0) = sin 0 = 0.

Simplifying this equation, we get:

sin c = sin* / *

Now, since * > 0, we have sin* > 0 (since sin x is positive in the first quadrant). Therefore, dividing both sides of the equation by sin*, we get:

1 / sin c = * / sin*

Rearranging this inequality, we have:

sin* / * > sin c / c

But c is in the interval (0, *), so we have:

0 < c < *

Since sin x is a decreasing function in the interval (0, π/2), we have:

sin* > sin c

Combining this inequality with the earlier inequality, we get:

sin* / * > sin c / c < sin* / *

Therefore, we have shown that if * > 0, then sin* < x.
I understand that you'd like to use the Mean Value Theorem to show that if x > 0, then sin(x) < x. Here's the answer:

According to the Mean Value Theorem, if a function is continuous on the interval [a, b] and differentiable on the open interval (a, b), there exists a point c in (a, b) such that the derivative at c equals the average rate of change between a and b.

Let's consider the function f(x) = x - sin(x) on the interval [0, x] with x > 0. This function is continuous and differentiable on this interval. Now, we can apply the Mean Value Theorem to find a point c in the interval (0, x) such that:

f'(c) = (f(x) - f(0)) / (x - 0)

The derivative of f(x) is f'(x) = 1 - cos(x). Now, we can rewrite the equation:

1 - cos(c) = (x - sin(x) - 0) / x

Since 0 < c < x and cos(c) ≤ 1, we have:

1 - cos(c) ≥ 0

Thus, we can conclude that:

x - sin(x) ≥ 0

Which simplifies to:

sin(x) < x

This result is consistent with the Mean Value Theorem, showing that if x > 0, then sin(x) < x.

To know more about Mean Value Theorem click here:

brainly.com/question/29107557

#SPJ11

A sector with a central angle measure of 4/ 7π(in radians) has a radius of 16 cm. what is the area of the sector.

Answers

The area of the sector is approximately 73.14 square centimeters.

The formula to calculate the area of a sector is given by A = (θ/2) × r^2, where θ is the central angle measure in radians, and r is the radius of the circle.

Substituting the given values in the formula, we get A = (4/7π/2) × 16^2

Simplifying this expression, we get A = (8/7) × 16^2 × π/2

A = 128π square centimeters/7

Using the approximation π ≈ 3.14, we can calculate the value of A as follows:

A ≈ (128 × 3.14) square centimeters/7 ≈ 573.44 square centimeters/7 ≈ 73.14 square centimeters (rounded to two decimal places)

Therefore, the area of the sector is approximately 73.14 square centimeters.

For more questions like Sector click the link below:

https://brainly.com/question/7512468

#SPJ11

Shea wrote the expression 5(y + 2) + 2 to show the amount of money five friends paid for snacks at a basketball game. Which expression is equivalent to the one Shea wrote?
a 5 + y + 5 + 2 + 4
b 5 x y x 5 x 2 +4
c 5 x y x 4 + 5 x 2 x 4
d 5 x y + 5 x 2 + 4

Answers

The expression that is equivalent to the one Shea wrote is b 5 x y x 5 x 2 +4

Which expression is equivalent to the one Shea wrote?

From the question, we have the following parameters that can be used in our computation:

5(y + 2) + 2 shows the amount of money five friends paid for snacks at a basketball game

This means that

Amount = 5(y + 2) + 2

When expanded, we have

Amount = 5 * y + 5 * 2 + 2

Using the above as a guide, we have the following:

The expression that is equivalent to the one Shea wrote is b 5 x y x 5 x 2 +4

Read more about expression at

https://brainly.com/question/15775046

#SPJ1

Given that MNPQ is a rectangle with vertices M(3, 4), N(1, -6), and P(6, -7), find the coordinates Q that makes this a rectangle

Answers

Given that MNPQ is a rectangle with verticles M(3, 4), N(1, -6), and P(6, -7), to find the coordinates of point Q, we can use the fact that opposite sides of a rectangle are parallel and have equal lengths.

First, let's find the vector MN and MP:

MN = N - M = (1 - 3, -6 - 4) = (-2, -10)
MP = P - M = (6 - 3, -7 - 4) = (3, -11)

Now, let's add the vector MN to point P:

Q = P + MN = (6 + (-2), -7 + (-10)) = (4, -17)

Therefore, the coordinates of point Q that make MNPQ a rectangle are Q(4, -17).


If you want to learn more about verticles, click here:
https://brainly.com/question/24681896
#SPJ11

A $70,000 mortgage is $629. 81 per month. What was the percent and for how many years?


9%, 20 years



9%, 25 years



7%, 20 years



9%, 30 years

Answers

The closest answer is 9% interest rate and 25 years term of the loan.

Assuming the $70,000 mortgage is a fixed-rate mortgage, we can use the formula for the monthly payment of a mortgage to solve for the interest rate and the term of the loan.

The formula is:

M = P [ i(1 + i)^n ] / [ (1 + i)^n - 1 ]

where:

M = monthly payment

P = principal (amount borrowed)

i = interest rate (per month)

n = number of months

Substituting the given values, we get:

$629.81 = $70,000 [ i(1 + i)^n ] / [ (1 + i)^n - 1 ]

Using a mortgage calculator or by trial and error, we can find that the closest answer is 9% interest rate and 25 years term of the loan.

learn more about "Principal amount":- https://brainly.com/question/25720319

#SPJ11

Analyze the diagram below and answer the questions that follow.
F
G
t
How many different ways can the line above be named? What are those names?
A. 2 ways; FG, GF
B. 3 ways; t, FG, GF
C. 4 ways; t, FG, FG, GF
D. 5 ways; t, FG, GF, FG GF

Answers

Answer: A. 2 ways; FG, GF

Step-by-step explanation: There are only two ways to name a line, and they are interchangeable: starting from one endpoint and naming the other endpoint second, or starting from the second endpoint and naming the first endpoint second.

A lube and oil change business believes that the number of cars that arrive for service is the same each day of the week. If the business is open six days a week (Monday - Saturday) and a random sample of n = 200 customers is selected, the critical value for testing the hypothesis using a goodness-of-fit test is x2 = 9. 2363 if the alpha level for the test is set at. 10

Answers

The hypothesis to be tested here is that the number of cars arriving for service is the same for each day of the week.

The null hypothesis, denoted as H0, is that the observed frequency distribution of cars is the same as the expected frequency distribution.

The alternative hypothesis, denoted as H1, is that the observed frequency distribution of cars is not the same as the expected frequency distribution.

To test this hypothesis, we use a goodness-of-fit test with the chi-square distribution. The critical value for a chi-square distribution with 6 - 1 = 5 degrees of freedom (one for each day of the week) and alpha level of 0.10 is 9.2363.

If the computed chi-square statistic is greater than 9.2363, then we reject the null hypothesis and conclude that the observed frequency distribution is significantly different from the expected frequency distribution.

Thus, if the computed chi-square statistic is greater than 9.2363, we can conclude that the number of cars arriving for service is not the same for each day of the week, and there is evidence to support the alternative hypothesis.

If the computed chi-square statistic is less than or equal to 9.2363, then we fail to reject the null hypothesis, and there is not enough evidence to suggest that the observed frequency distribution is different from the expected frequency distribution.

To know more about hypothesis, refer here:

https://brainly.com/question/29519577#

#SPJ11

Sort each set of triangle measurements into the appropriate category for number of possible triangles. No Triangles One Triangle Many Triangles 5, 15", 160 45°, 45°, 90° 2.8. 10 7, 24, 25 30", 85°, 60° 5 of 5 Done​

Answers

No Triangles: 160
One Triangle: 45°, 45°, 90°; 2.8, 10; 30", 85°, 60°
Many Triangles: 5, 15"; 7, 24, 25; 5 of 5 Done.

the figure above, AB is parallel to DE; (ABC = 800 and (CDE = 280. Find (DCB.(3mks)

Answers

Answer:

Step-by-step explanation:

Since AB is parallel to DE, we know that:

(ABC + BCD) = (CDE + EDC)

Substituting the given values, we get:

800 + BCD = 280 + EDC

Simplifying, we get:

BCD = EDC - 520

We also know that:

(BCD + CDE + DCE) = 180

Substituting BCD = EDC - 520 and CDE = 280, we get:

(EDC - 520 + 280 + DCE) = 180

Simplifying, we get:

EDC + DCE - 240 = 0

EDC + DCE = 240

Now we can solve for DCE in terms of BCD:

DCE = 240 - EDC

DCE = 240 - (BCD + 520)

DCE = 760 - BCD

Substituting this expression for DCE into the equation (BCD + CDE + DCE) = 180, we get:

BCD + 280 + (760 - BCD) = 180

Simplifying, we get:

1040 - BCD = 180

BCD = 860

Therefore, (DCB) = 180 - (BCD + CDE) = 180 - (860 + 280) = -960. However, since angles cannot be negative, we can add 360 degrees to this value to get:

(DCB) = -960 + 360 = -600

Therefore, (DCB) = -600 degrees.

Find parametric equations for the line that is tangent to the given curve at the given parameter value.
r(t) = 3t^2 i +(4t-1)j + t^3 k t = T_o = 4
what is the standard parameterization for the tangent line. (type expressions using t as the variable)
x =
y=
z=

Answers

The standard parametric equations for the tangent line to the curve r(t) at t = T₀ = 4 are: x = 24(t-4) + 48, y = 15(t-4) - 3, z = 64(t-4) + 64

To find the parametric equations for the tangent line to the curve r(t) at t = T₀ = 4, we can follow these steps:

Step 1: Find the point on the curve at t = T₀.

To find the point on the curve at t = T₀ = 4, we simply evaluate r(4):

r(4) = 3(4²)i + (4(4)-1)j + 4³k

= 48i + 15j + 64k

So the point on the curve at t = 4 is (48, 15, 64).

Step 2: Find the direction of the tangent line at t = T₀.

To find the direction of the tangent line, we need to take the derivative of r(t) and evaluate it at t = 4. So we first find r'(t):

r'(t) = 6ti + 4j + 3t²k

Then we evaluate r'(t) at t = 4:

r'(4) = 6(4)i + 4j + 3(4²)k

= 24i + 4j + 48k

So the direction of the tangent line at t = 4 is the vector <24, 4, 48>.

Step 3: Write the parametric equations for the tangent line.

To write the parametric equations for the tangent line, we use the point and direction found in steps 1 and 2. We can write the parametric equations as:

x = 48 + 24(t-4)

y = 15 + 4(t-4)

z = 64 + 48(t-4)

Simplifying these equations gives us:

x = 24t + 48

y = 4t - 3

z = 48t + 64

These are the standard parametric equations for the tangent line to the curve r(t) at t = 4.

To know more about standard parametric equations, refer here:
https://brainly.com/question/29734728#
#SPJ11

Maths ice cream shop has 7 cups of sprinkles to use on Sundays for the rest of the day if each Sunday serves with one 8th cup of sprinkles how many Sundays can they serve

Answers

56 Sundays Maths Ice Cream Shop can serve with 7 cups of sprinkles using one-eighth (1/8) cup of sprinkles per Sunday.

Converting the cups of sprinkles into eighths:

  7 cups × 8 eighths/cup

= 56 eighths


Dividing the total eighths by the eighths used per Sunday:

  56 eighths / (1/8 cup per Sunday)

= 56 Sundays

So, Maths Ice Cream Shop can serve for 56 Sundays using 7 cups of sprinkles with each Sunday serving one-eighth cup of sprinkles.

To learn more about fraction: https://brainly.com/question/17220365

#SPJ11

what is the sampling distribution of the sample mean? group of answer choices in practice, to estimate the mean values of a varibale in a large population, we only get to observe a sample, and we can only plot the distribution of this sample, not the distribution of the whole population. the distribution of the sample we have have observed is called the sampling distribution of the sample mean. if we hypothetically had a large number of samples taken from the same population, the distribution of the means of those individual samples is called the sampling distribution of the sample mean

Answers

The sampling distribution of the sample mean is the distribution of the means of all the individual samples that were hypothetically drawn from the same population.

A sampling distribution refers to the probability distribution of a statistic that is obtained from a large number of random samples drawn from a population. The sampling distribution is important because it enables us to make statistical inferences about the population based on the sample data.

This makes the sampling distribution a valuable tool for making statistical inferences about population parameters. We could randomly select a sample of students and compute their mean height. If we repeat this process many times and compute the mean height for each sample, we would obtain a sampling distribution of means. This distribution would provide information about the range of possible mean heights we might expect to see if we were to repeat the sampling process many times.

To learn more about Sampling distribution visit here:

brainly.com/question/29375938

#SPJ4

out of 500 people , 200 likes summer season only , 150 like winter only , if the number of people who donot like both , the seasons is twice the people who like both the season , find summer season winter season , at most one season with venn diagram​

Answers

Answer:

250 people like the summer season, 200 people like the winter season, and 50 people like both seasons.

Step-by-step explanation:

Let's assume that the number of people who like both summer and winter is "x". We know that:

- 200 people like summer only

- 150 people like winter only

- The number of people who don't like either season is twice the number of people who like both seasons

To find the value of "x", we can use the fact that the total number of people who don't like either season is twice the number of people who like both seasons:

150 - 2x = 2x

Solving for "x", we get:

x = 50

150 people like the winter season, 200 people like the summer season.

The number of people who don't like summer and winter is twice the number of people who like both seasons.

The number of people who like both the seasons= x

The number of people like summer 200

The number of people who like winter 150

The number of people who don't like summer and winter is twice the number of people who like both seasons.

To find the value of x, we can use the equation:

150-x= 2x

150= 3x

x= 50

The number of people who like both seasons is 50

The number of people who don't like both seasons is 100

For more information:

brainly.com/question/31893545

Rob bought a 1965 Fender Jazzmaster vintage electric guitar in 1980 for a price of $150. In 2010 it was appraised for $4,200. Suppose $150 was deposited in a variable-rate certifi cate of deposit for 30 years with interest compounded daily. A. If the CD paid 12. 3% interest for the fi rst 7 years, what would the balance be after the fi rst 7 years? Round to the nearest cent. B. If the CD paid 6% interest for the next 10 years, what would the balance be after the fi rst 17 years? Round to the nearest cent. C. If the CD paid 4. 1% interest for the remaining 13 years, what would the balance be after 30 years? Round to the nearest cent. D. What is the difference between the appraised value of the guitar and the amount the original $150 would have earned in the CD?

Answers

a.  If the CD paid 12. 3% interest for the first 7 years, he balance be after the first 7 years will be $492.89.

b.  If the CD paid 6% interest for the next 10 years, the balance be after the first 17 years would be $784.98.

c.  If the CD paid 4. 1% interest for the remaining 13 years, the balance be after 30 years would be $1,265.59.

d. The difference between the appraised value of the guitar and the amount the original $150 would have earned in the CD is $2,784.41.

A. The annual interest rate for a CD that pays 12.3% interest compounded daily is 12.3%/365 ≈ 0.0337% per day. The balance after 7 years can be calculated using the formula:

Balance = $150 x (1 + 0.000337)^((365 x 7) / 365) ≈ $492.89

Rounding to the nearest cent, the balance after 7 years is $492.89.

B. After 7 years, the remaining term of the CD is 30 - 7 = 23 years. The annual interest rate for a CD that pays 6% interest compounded daily is 6%/365 ≈ 0.0164% per day. The balance after 17 years can be calculated using the formula:

Balance = $492.89 x (1 + 0.000164)^((365 x 10) / 365) ≈ $784.98

Rounding to the nearest cent, the balance after 17 years is $784.98.

C. After 17 years, the remaining term of the CD is 30 - 17 = 13 years. The annual interest rate for a CD that pays 4.1% interest compounded daily is 4.1%/365 ≈ 0.0112% per day. The balance after 30 years can be calculated using the formula:

Balance = $784.98 x (1 + 0.000112)^((365 x 13) / 365) ≈ $1,265.59

Rounding to the nearest cent, the balance after 30 years is $1,265.59.

D. The difference between the appraised value of the guitar and the amount the original $150 would have earned in the CD is:

$4,200 - $1,265.59 - $150 ≈ $2,784.41

Rounding to the nearest cent, the difference is $2,784.41.

Learn more about interest rate at https://brainly.com/question/25068711

#SPJ11

1
(Lesson 8.2) Which statement about the graph of the rational function given is true? (1/2 point)
4. f(x) = 3*-7
x+2
A. The graph has no asymptotes.
B.
The graph has a vertical asymptote at x = -2.
C. The graph has a horizontal asymptote at y =
+

Answers

The statement about the graph of rational function which is true is option B.  that is "The graph has a vertical asymptote at x = -2

What is a rational function?

A rational function in mathematics is any function that can be described by a rational fraction, which is an algebraic fraction in which both the numerator and denominator are polynomials.

So the statement about the graph of the rational function indicated above is true, this is because the denominator of the rational function is (x+2), which equals zero when x=-2. Therefore, the function is undefined at x=-2 and the graph has a vertical asymptote at that point.

Learn more about vertical asymptote:
https://brainly.com/question/4084552
#SPJ1

THIS IS DUE TONIGHT! PLEASE HELP ME! :c
USE STRUCTURE Complete the table to show the effect that the transformation has on the table of the parent function f(x)=x2.

g(x)is a reflection of f(x)across the x-axis.
x f(x) g(x)
-2 4
-1 1
0 0
1 1
2 4

Answers

The table of values to show the effect of the transformation is

x f(x) g(x)

-2 4   -4

-1 1      -1

0 0     0

1 1       -1

2 4     -4

Completing the table of values to show the effect

From the question, we have the following parameters that can be used in our computation:

f(x) = x²

Also, we have

g(x) is a reflection of f(x)across the x-axis

This means that

g(x) = -f(x)

So, we have

g(x) = -x²

Using the above as a guide, we have the following:

x f(x) g(x)

-2 4   -4

-1 1      -1

0 0     0

1 1       -1

2 4     -4

Read more about transformation at

https://brainly.com/question/27224272

#SPJ1

A translation is applied to the square formed by the points A(−3, −4) , B(−3, 5) , C(6, 5) , and D(6, −4) . The image is the square that has vertices ​ A′(−3, −6) ​, ​ B′(−3, 3) ​, C′(6, 3) and D′(6, −6) . Select the phrase from the drop-down menu to correctly describe the translation. The square was translated Choose... .

Answers

The square was translated 2 units downwards.

Describing the transformation

From the question, we have the following parameters that can be used in our computation:

Points A(−3, −4) , B(−3, 5) , C(6, 5) , and D(6, −4) . The image is the square that has vertices ​ A′(−3, −6) ​, ​ B′(−3, 3) ​, C′(6, 3) and D′(6, −6)

The square was translated 2 units downward since all the y-coordinates of the vertices of the image square are 2 units less than the corresponding y-coordinates of the vertices of the pre-image square.

Read more about transformation at

https://brainly.com/question/27224272

#SPJ1

QUESTION 3 2 - 1 Let () . Find the interval (a,b) where y increases. As your answer please input a+b QUESTION 4 Let(x) = xº - 6x3 - 60x2 + 5x + 3. Find all solutions to the equation f'(x) = 0. As your answer please enter the sum of values of x for which f() -

Answers

The interval where y increases for the function f(x) = (4x² - 1)/(x² + 1) is (-∞, -0.5) U (0.5, ∞) is 0.5-(-∞) = ∞.

To find the intervals where the function f(x) = (4x² - 1)/(x² + 1) increases, we need to find its derivative and determine its sign. The derivative of f(x) can be found using the quotient rule:

f'(x) = [(8x)(x² + 1) - (4x² - 1)(2x)]/(x² + 1)²

Simplifying this expression, we get:

f'(x) = (12x - 4x³)/(x² + 1)²

To find the critical points, we need to solve the equation f'(x) = 0:

12x - 4x³ = 0

4x(3 - x²) = 0

This gives us the critical points x = 0 and x = ±√3. We can now test the intervals between these critical points to determine the sign of f'(x) in each interval.

Testing x < -√3, we choose x = -4, and we get f'(-4) = (-224)/(17²) < 0. Therefore, f(x) is decreasing on this interval.

Testing -√3 < x < 0, we choose x = -1, and we get f'(-1) = (16)/(2²) > 0. Therefore, f(x) is increasing on this interval.

Testing 0 < x < √3, we choose x = 1, and we get f'(1) = (16)/(2²) > 0. Therefore, f(x) is increasing on this interval.

Testing x > √3, we choose x = 4, and we get f'(4) = (-224)/(17²) < 0. Therefore, f(x) is decreasing on this interval.

Hence, the interval where f(x) increases is (-∞, -0.5) U (0.5, ∞). Therefore, the answer is 0.5 - (-∞) = ∞.

For more questions like Function click the link below:

https://brainly.com/question/16008229

#SPJ11

WHATS THE AREAA OF THE PARALLELOGRAM

Answers

Answer:16 + (1/2) × 8 = 16 + 4 = 20 unit2

Step-by-step explanation:

A ball is drawn randomly from a jar that contains 8 red balls, 7 white balls, and 3 yellow balls. Find the probability of the given event. Write your answers as reduced fractions or whole numbers. (a) P(A red ball is drawn) = (b) P(A white ball is drawn) = (c) P(A yellow ball is drawn) = (d) P(A green ball is drawn) =

Answers

(a) P(A red ball is drawn) = 4/9

(b) P(A white ball is drawn) = 7/18

(c) P(A yellow ball is drawn) = 1/6

(d) P(A green ball is drawn) = 0



(a) To find the probability that a red ball is drawn, we'll use the following formula:
P(A red ball is drawn) = (Number of red balls) / (Total number of balls)

There are 8 red balls and a total of 8+7+3 = 18 balls in the jar. So, the probability of drawing a red ball is:
P(A red ball is drawn) = 8/18 = 4/9

(b) To find the probability that a white ball is drawn:
P(A white ball is drawn) = (Number of white balls) / (Total number of balls)

There are 7 white balls, so the probability of drawing a white ball is:
P(A white ball is drawn) = 7/18

(c) To find the probability that a yellow ball is drawn:
P(A yellow ball is drawn) = (Number of yellow balls) / (Total number of balls)

There are 3 yellow balls, so the probability of drawing a yellow ball is:
P(A yellow ball is drawn) = 3/18 = 1/6

(d) To find the probability that a green ball is drawn:
P(A green ball is drawn) = (Number of green balls) / (Total number of balls)

There are no green balls in the jar, so the probability of drawing a green ball is:
P(A green ball is drawn) = 0/18 = 0

To know more about probability click here:

https://brainly.com/question/11234923

#SPJ11

Find all solutions of the equation in the interval [0, 2π). Show formula and steps used, not a calculator problem. (8 csc x - 16)(4 cos x - 4) = 0

Answers

The solutions for the equation in the interval [0, 2π) are x = 0, x = π/6, and x = 5π/6.

To find all solutions of the equation (8 csc x - 16)(4 cos x - 4) = 0 in the interval [0, 2π), we can set each factor equal to zero and solve for x separately.

1) 8 csc x - 16 = 0
8 csc x = 16
csc x = 2

Recall that csc x = 1/sin x, so:

1/sin x = 2
sin x = 1/2

In the interval [0, 2π), sin x = 1/2 at x = π/6 and x = 5π/6. So, the solutions for this part are x = π/6 and x = 5π/6.

2) 4 cos x - 4 = 0
4 cos x = 4
cos x = 1

In the interval [0, 2π), cos x = 1 at x = 0 and x = 2π. However, since 2π is not included in the interval, we only have x = 0 as a solution for this part.

Combining both parts, the solutions for the equation in the interval [0, 2π) are x = 0, x = π/6, and x = 5π/6.

To learn more about interval, refer below:

https://brainly.com/question/13708942

#SPJ11

O is the centre of the given circle. if OX⊥PQ, OY⊥RS and PQ=RS, write down the relation between OX and OY.

Answers

Since OX is perpendicular to PQ, and OY is perpendicular to RS, we know that OX and OY are both radii of the circle. Therefore, we can write:

OX = OY

This is because all radii of a circle are equal in length. Alternatively, we could also say that OX and OY are both the distance from the center O to the respective lines PQ and RS. Since PQ=RS, OX and OY are equal in length.

What is the circle about?

In a circle, the center is the point from which all points on the circumference are equidistant. This means that any line segment from the center to a point on the circle is a radius of the circle.

In this problem, we have two lines PQ and RS, both of which are tangent to the circle at points P and R respectively. We also have two lines OX and OY, each of which is perpendicular to one of the tangent lines.

Because the tangent lines are perpendicular to their respective radii (PQ is perpendicular to OX, and RS is perpendicular to OY), we can conclude that OX and OY are both radii of the circle, and therefore, they have the same length.

Note that both are still angles at 90 degrees.

Learn more about circle from

https://brainly.com/question/14283575

#SPJ1

Let
D = Ф(R), where Ф(u, v) = (u , u + v) and
R = [5, 6] × [0, 4].
Calculate∫∫dydA.

Answers

Finally, integrate with respect to u:

[4u](5 to 6) = 4(6) - 4(5) = 4

So, the double integral ∫∫R dydA is equal to 4.

To compute the double integral ∫∫R dydA, where D = Ф(R) and Ф(u, v) = (u, u + v), we first need to transform the integral using the given mapping.

The region R is defined as the set of all points (u, v) such that u ∈ [5, 6] and v ∈ [0, 4]. According to the transformation Ф, we have x = u and y = u + v.

Now we need to find the Jacobian determinant of the transformation:

J(Ф) = det([∂x/∂u, ∂x/∂v; ∂y/∂u, ∂y/∂v]) = det([1, 0; 1, 1]) = (1)(1) - (0)(1) = 1

Since the Jacobian determinant is nonzero, we can change the variables in the double integral using the transformation Ф:

∫∫R dydA = ∫∫D (1) dydx = ∫(5 to 6) ∫(u to u + 4) dydu

Now, compute the integral:

∫(5 to 6) ∫(u to u + 4) dydu = ∫(5 to 6) [y](u to u + 4) du
= ∫(5 to 6) [(u + 4) - u] du = ∫(5 to 6) 4 du

Finally, integrate with respect to u:

[4u](5 to 6) = 4(6) - 4(5) = 4

So, the double integral ∫∫R dydA is equal to 4.

Learn more about determinant here:

https://brainly.com/question/13369636

#SPJ11

An architect needs to design a new light house. an average-man (6 ft tall) can see 1 mile


into the horizon with binoculars. if the company building the light house would like for


their guests to be able to see 20 miles out from the top of the light house with binoculars,


then how tall does the building need to be?

Answers

The lighthouse needs to be at least 270.7 feet tall to allow guests to see 20 miles out with binoculars.

Assuming the Earth is a perfect sphere, the distance a person can see to the horizon is given by: d = 1.22 * sqrt(h)

Where d is the distance in miles, h is the height of the observer in feet, and 1.22 is a constant based on the radius of the Earth.

Using this formula, we can solve for the required height of the lighthouse: 20 = 1.22 * sqrt(h), 20/1.22 = sqrt(h), h = (20/1.22)^2, h ≈ 270.7 feet

Therefore, the lighthouse needs to be at least 270.7 feet tall to allow guests to see 20 miles out with binoculars.

To know more about radius, refer here:

https://brainly.com/question/4865936#

#SPJ11

Pls help I really need help on this

Answers

The operations that results in a rational numbers are C + D, A · B and C · D.

How to obtain a rational number from combining irrational numbers

In this problem we must determine what operations between irrational numbers are equivalent to a rational number. Real numbers are result of the union between rational and irrational numbers. We need to check if each operation is equivalent to a rational number:

Case 1: A + B

A + B = √3 + 2√3 = 3√3 (Irrational)

Case 2: C + D

C + D = √25 + √16 = 5 + 4 = 9 (Rational)

Case 3: A + D

A + D = √3 + √16 = √3 + 4 (Irrational)

Case 4: A · B

A · B = √3 · 2√3 = 2 · 3 = 6 (Rational)

Case 5: B · D

B · D = 2√3 · √16 = 2√3 · 4 = 8√3 (Irrational)

Case 6: C · D

C · D = √25 · √16 = 5 · 4 = 20 (Rational)

Case 7: A · A

A · A = √3 · √3

A · A = 3 (Rational)

To learn more on irrational numbers: https://brainly.com/question/17450097

#SPJ1

Please help I need it ASAP, also needs to be rounded to the nearest 10th

Answers

The length of segment BC is given as follows:

BC = 47.2 km.

What is the law of cosines?

The Law of Cosines is a trigonometric formula that relates the lengths of the sides of a triangle to the cosine of one of its angles. It is also known as the Cosine Rule.

The Law of Cosines states that for any triangle with sides a, b, and c and angle C opposite to side c, the following equation holds true:

c² = a² + b² - 2ab cos(C)

The parameters for this problem are given as follows:

a = 27.8, b = 24.7, C = 129.1

Hence the length of segment BC is given as follows:

(BC)² = 27.8² + 24.7² - 2 x 27.8 x 24.7 x cosine of 129.1 degrees

(BC)² = 2249.0497

[tex]BC = \sqrt{2249.0497}[/tex]

BC = 47.2 km.

More can be learned about the law of cosines at https://brainly.com/question/4372174

#SPJ1

Other Questions
purab bought twice the number of rose plants that he had in his lawn. however, he threw 3 plants as they turned bad. after he planted new plants, there were total 48 plants in the garden. how many plants he had in his lawn earlier? What are two major differences betweenpure competition and each of the following: monopolisticcompetition, an oligopoly, a monopoly? 4. An open cylinder is filled with water to a height of 0.5m. What is the absolute pressure on the base area? s 5. 1. 2 Exam: Wrap UpQuestion 3 of 22Read the following excerpt from "A Modest Proposal by Jonathan Swift:I have reckoned upon a medium that a child just born willweigh 12 pounds, and in a solar year, if tolerably nursed,will increase to 28 pounds. grant this food will be somewhat dear, and therefore veryproper for landlords, who, as they have already devouredmost of the parents, seem to have the best title to thechildrenBased on this excerpt, what is most likely the opinion of the author (but notthe narrator)?A. Swift believes the landlords have to take care of themselves first. B. Swift believes the landlords have taken advantage of the poor. C. Swift thinks that the younger babies would make 'dear' food. D. Swift thinks that one-year-old babies will become fine-dining fare. Journalize Smart Touch Learning's closing entries for December 31 in RED order. Record debits first, then credits. Check your spelling carefully and do not abbreviate. Enter account names exactly as provided in the adjusted trial balance. Select the dates from the dropdown provided. SMART TOUCH LEARNINGAdjusted Trial BalanceDecember 31, 2016BalanceAccount Title Debit CreditCash 35,270 Accounts Receivable 1,700 Office Supplies 290 Prepaid Insurance 1,350 Furniture 13,400 Accumulated Depreciation - Furniture 200Salaries Payable 4,600Unearned Revenue 3,400Common Stock 36,800Retained Earnings 0Dividends 4,200 Service Revenue 20,800Salaries Expense 6,600 Depreciation Expense - Furniture 200 Insurance Expense 450 Utilities Expense 230 Rent Expense 2,000 Supplies Expense 110 Total 65,800 65,800 A can of soda is placed inside a cooler. As the soda cools its temperature C (t) in degrees Celsius after t minutes is given by the following exponential function. C(t)=18(0.91)t the profit maximizing monopolist would achieve loss minimization when... group of answer choices price is below average variable cost. price is above average total cost. price is between average total cost and average variable cost. total cost equals total revenue. A diode has a high resistance in the __________ direction. Which word completes this sentence? using a graphical approach, once you have found the optimal level of output for the monopolist, how would you find the corresponding price? group of answer choices from the point of optimal level of output, trace up to the demand curve, and then trace horizontally over to the price axis. from the point of optimal level of output, trace up to the marginal cost curve, and then trace horizontally over to the price axis. from the point of optimal level of output, trace up to the average total cost curve, and then trace horizontally over to the price axis. from the point of optimal level of output, trace up to the marginal revenue curve, and then trace horizontally over to the price axis A granary has two options for a conveyor used in the manufacture of grain for transporting, filling, or emptying. One conveyor can be purchased and installed for $75,000 with $2,500 salvage value after 16 years. The other can be purchased and installed for $120,000 with $2,000 salvage value after 16 years. Operation and maintenance for each is expected to be $21,500 and $12,000 per year, respectively. The granary uses MACRS-GDS depreciation, has a marginal tax rate of 40%, and has a MARR of 9% after taxes. Determine which alternative is less costly, based upon comparison of after-tax annual worth. Show the AW values used to make your decision: Conveyor 1: $ Conveyor 2: $ Explain the impact that two different backgrounds could have on the interpretation of text Why is clonal selection necessary for the adaptive immune response but not the innate immune response?. Uber uses "forward-dispatch" as one of the ways to improve its profit. Forward-dispatch = assigning a ride to the driver, a few moments before the current ride ends. Explain in two-three sentences the operational reason(s) for this strategy. Lactose intolerance is inherited through a recessive allele. A husband and wife both digest lactose properly. However, the wife's Mom is lactose intolerant. The husband's Dad is also lactose intolerant. What is the probability this couple will have children with a lactose intolerance problem? When discussing farm insurance, which of the following most accurately describes "scheduled property"? A. Excluded property B. Itemized property C. D. Blanket coverage Excluded coverage Find the area of the quadrilateral with the given coordinates A(-2, 4),B(2, 1), C(-1, -3), D(-5, 0) Determine the equation of the circle graphed below. Entrepreneurs are essential to the free enterprise system because they:O A. Help money flow through the economy by starting newbusinesses. O B. Protect consumers by regulating the economic behavior ofbusinesses. O C. Promote innovation by punishing companies that steal intellectualproperty. O D. Maintain economic equality by controlling the prices of consumergoods. What is the definition of physical activity? A. a movement that stimulates your respiratory system B. a movement that causes perspiration C. a movement that results in the bodys use of energy D. a movement that requires little effort In the Paleolithic period (roughly 2. 5 million years ago to 10,000 B. C. ), early humans lived in caves or simple huts or tepees and were hunters and gatherers. They used basic stone and bone tools, as well as crude stone axes, for hunting birds and wild animals. They cooked their prey, including woolly mammoths, deer and bison, using controlled fire. They also fished and gathered berries, fruit and nuts. Ancient humans in the Paleolithic period were the first to leave behind art. They used combinations of minerals, ochres, burnt bone meal and charcoal mixed into water, blood, animal fats and tree saps to etch humans, animals and signs. They also carved small figurines from stones, clay, bones and antlers. The end of this period marked the end of the last Ice Age, which resulted in the extinction of many large mammals and rising sea levels and climate change that eventually caused man to migrate. find 6 strategys