Escriba el tipo de variable y nivel de medición para la siguiente grupo de variables : A) tipo de medallas a prueba olímpica. B) Volumen de agua en un tanque

Answers

Answer 1

The type of medals is a categorical nominal variable, while the volume of water is a numerical continuous variable.

How can these variables be classified?Type of medals in an Olympic event: This is a categorical nominal variable as there are fixed categories for the medals such as gold and silver and they do not have an inherent order The volume of water in a tank: This is a numerical and continuous variable which means it is measured with numbers. Moreover, it is continuous as it is obtained by measuring.

Note: This question is in Spanish, here is the question in English:

Write the type of variable and level of measurement for the following group of variables: A) type of medals at Olympic test. B) Volume of water in a tank

Learn more about variables in https://brainly.com/question/15078630

#SPJ1


Related Questions

How many gallons of a 90% antifreeze solution must be mixed with 100 gallons of 25% antifreeze to get a mixture that
is 80% antifreeze? Use the six-step method.
You need gallons.
(Round to the Question Viewer ber.)
answer

Answers

Answer:

550 gallons

Step-by-step explanation:

Let [tex]x[/tex] be the number of gallons for the 90% antifreeze solution and [tex]x+100[/tex] be the total number of gallons that will contain 80% antifreeze solution:

[tex]\displaystyle \frac{0.90x+0.25(100)}{x+100}=0.80\\\\0.90x+25=0.80x+80\\\\0.10x+25=80\\\\0.10x=55\\\\x=550[/tex]

Therefore, you would need 550 gallons of the 90% antifreeze solution.

find AB using segment addition prostulate 2x-3 24 5x+6

Answers

Answer:

To find the length of AB using the segment addition postulate , we need to add the lengths of segments AC and CB.

AC + CB = AB

Substituting the given lengths:

2x-3 + 24 = 5x+6

Simplifying and solving for x:

21 = 3x

x = 7

Now that we know x, we can substitute it back into the expression for AB:

AB = 2x-3 + 24 = 2(7)-3 + 24 = 14-3+24 = 35

Therefore, the length of AB is 35.

Step-by-step explanation:

answer the question submitted

Answers

The function g(x) = 4x² - 28x + 49 can be rewritten as g(x) = 4(x - 7/2)² - 147 after completing the square.

To complete the square for the function g(x) = 4x² - 28x + 49, we follow these steps:

Step 1: Divide the coefficient of x by 2 and square the result.

  (Coefficient of x) / 2 = -28/2 = -14

  (-14)² = 196

Step 2: Add and subtract the value obtained in Step 1 inside the parentheses.

  g(x) = 4x² - 28x + 49

  = 4x² - 28x + 196 - 196 + 49

Step 3: Rearrange the terms and factor the perfect square trinomial.

  g(x) = (4x² - 28x + 196) - 196 + 49

  = 4(x² - 7x + 49) - 147

  = 4(x² - 7x + 49) - 147

Step 4: Write the perfect square trinomial as the square of a binomial.

  g(x) = 4(x - 7/2)² - 147

Therefore, the function g(x) = 4x² - 28x + 49 can be rewritten as g(x) = 4(x - 7/2)² - 147 after completing the square.

For more such questions square,click on

https://brainly.com/question/27307830

#SPJ8

The probable question may be:

Rewrite the function by completing the square.

g(x)=4x²-28x +49

g(x)= ____  (x+___ )²+____.

Which number line represents the solution set for the inequality 3(8 – 4x) < 6(x – 5)?

A number line from negative 5 to 5 in increments of 1. An open circle is at 3 and a bold line starts at 3 and is pointing to the left.
A number line from negative 5 to 5 in increments of 1. An open circle is at 3 and a bold line starts at 3 and is pointing to the right.
A number line from negative 5 to 5 in increments of 1. An open circle is at negative 3 and a bold line starts at negative 3 and is pointing to the left.
A number line from negative 5 to 5 in increments of 1. An open circle is at negative 3 and a bold line starts at negative 3 and is pointing to the right.

Answers

The number line that represents the solution set for the inequality 3(8 – 4x) < 6(x – 5) is option C: A number line from negative 5 to 5 in increments of 1. An open circle is at negative 3, and a bold line starts at negative 3 and is pointing to the left.

To determine the solution set for the inequality 3(8 – 4x) < 6(x – 5), we need to solve it step by step:

Simplify the inequality:

24 - 12x < 6x - 30

Combine like terms:

-12x - 6x < -30 - 24

-18x < -54

Divide both sides of the inequality by -18, remembering to flip the inequality sign:

x > (-54) / (-18)

x > 3

The inequality tells us that x must be greater than 3. To represent this on a number line, we place an open circle at the value 3 and draw a bold line pointing to the right to indicate that the solution set includes all values greater than 3.

Therefore, option C accurately represent the solution set for the inequality 3(8 – 4x) < 6(x – 5).

For more such questions on inequality, click on:

https://brainly.com/question/25275758

#SPJ8

For g(x,y) = [tex]sin^{-1}[/tex](x² + y² — 3),
the domain of the function is the area between two circles.
The larger circle has a radius of
The smaller circle has a radius of

Answers

We conclude that there is no valid domain for the given function g(x, y) = sin^-1(x² + y² - 3). Thus, the concept of circles with radii does not apply in this case.

To determine the domain of the function g(x, y) = sin^-1(x² + y² - 3), we need to examine the range of the arcsine function. The arcsine function, [tex]sin^{(-1)[/tex](z), is defined for values of z between -1 and 1, inclusive. Therefore, for the given function, we have:

-1 ≤ x² + y² - 3 ≤ 1

Rearranging the inequality, we get:

-4 ≤ x² + y² ≤ -2

Now, let's analyze the inequalities separately:

x² + y² ≤ -2:

This inequality is not possible since the sum of squares of two non-negative numbers (x² and y²) cannot be negative. Therefore, there are no points that satisfy this inequality.

x² + y² ≤ -4:

Similarly, this inequality is also not possible since the sum of squares of two non-negative numbers cannot be less than or equal to -4. Therefore, there are no points that satisfy this inequality either.

Based on the analysis, we conclude that there is no valid domain for the given function g(x, y) = sin^-1(x² + y² - 3). Thus, the concept of circles with radii does not apply in this case.

It's important to note that the arcsine function has a restricted range of -π/2 to π/2, and for a valid domain, the input of the arcsine function must be within the range of -1 to 1. In this particular case, the given expression x² + y² - 3 exceeds the range of the arcsine function, resulting in no valid domain.

For more such questions on domain visit:

https://brainly.com/question/30096754

#SPJ8

What is the next value?
2 3 E 4 5 I 6 8
options: O 8 M N

Answers

Answer:

The correct answer is a.

Step-by-step explanation:

The sequence is: 2 3 E 4 5 I 6 8 We can notice that there are numbers and letters alternating in the sequence. The numbers are increasing, and the letters seem to be vowels in alphabetical order. So, the next value should be a letter (vowel) after I, which is O. The correct answer is a.

Pls help I beg thank you

Answers

Answer:

8cm

Step-by-step explanation:

perimiter A = 11+11+4+4=30

perimiter B = 4+4+8+8=24

24+30=54

perimeter c =4+8+8+4+11+7+4=46

so perimiter of c is 8cm shorter than A and B total

hope this helps

what is the value of m

Answers

The value of m<RQS as required to be determined in the task content is; 70°.

What is the value of m<RQS as required to be determined?

It follows from the task content that the measure of angle RQS is to be determined as required.

Recall, the measure of the central angle subtended by an arc is twice that which it subtends at any point on the circumference.

Therefore, m<RPS = 2 • m<RQS.

m<RQS = 140°/2

m<RQS = 70°.

Ultimately, the measure of angle RQS are; 70°.

Read more on circle theorems;

https://brainly.com/question/30417099

#SPJ1

PLSS HELP HURRYYY

ILL GIVE BRAINLIST

Answers

Answer:

hope you understand it and please follow me

Find the solution to the equation below.

2x2+3x-20=0

Answers

X= 5.3333 repeating

Answer:

[tex]x = 5.3 \: or \: 5 \frac{1}{3} [/tex]

Step-by-step explanation:

[tex]2 \times 2 + 3x - 20 = 0 \: \: \: \: \: \: 4 + 3x - 20 = 0 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:3x = 20 - 4 = 16 \: \: \: \: \: \: \: \: 3x = 16 \: \: divide \: both \: side \: by \: 3 = \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: x = 5.3[/tex]

Question 4Multiple Choice Worth 5 points)
(Dilations MC)
Polygon ABCD with vertices at A(1,-1), B(3, -1), C(3, -2), and D(1, -2) is dilated to create polygon ABCD with vertices at A(4, -4), B(12,-4), C(12, -3), and D(4, -3). Determine the scale factor used to
create the image
0 1/4
0 1/2
0 2
0 4

Answers

The scale factor used to create the image of polygon ABCD is 4.

To determine the scale factor, we need to compare the corresponding side lengths of the original polygon ABCD and the image polygon ABCD. Let's denote the scale factor as k.

Original polygon ABCD:

Side AB: length = 3 - 1 = 2

Side BC: length = -2 - (-1) = -1

Side CD: length = 1 - 3 = -2

Side DA: length = -2 - (-1) = -1

Image polygon ABCD:

Side AB: length = 12 - 4 = 8

Side BC: length = -3 - (-4) = 1

Side CD: length = 4 - 12 = -8

Side DA: length = -3 - (-4) = 1

Comparing the corresponding side lengths, we can set up the following equations:

k * 2 = 8 (for side AB)

k * (-1) = 1 (for side BC)

k * (-2) = -8 (for side CD)

k * (-1) = 1 (for side DA)

From the equations, we can see that k = 4 satisfies all of them.

Therefore, the scale factor used to create the image of polygon ABCD is 4.

For more such questions on scale factor, click on:

https://brainly.com/question/29967135

#SPJ8

Suppose we have two equations and they are both equal to each other. Equation A is "y = x^2 - 9" and Equation B is "y = x + 3". If we had to solve this system of equations, what quadratic equation do we have to solve in order to get our x values?
a. x^2 - x - 12 = 0
b. x^2 + x + 3 = 0
c. x^2 - x - 6 = 0

Answers

Answer:

a) x² - x - 12 = 0

Step-by-step explanation:

We have equation A = equation B

⇒ x² - 9 = x + 3

⇒ x² - 9 - x - 3 = 0

⇒ x² - x - 12 = 0

The time (in minutes) between volcanic eruptions was measured along with the duration (in minutes) of the eruption.
Use the data to answer the following question.
Time Between Eruptions 12.17 11.63 12.03 12.15 11.30 11.70 12.27 11.60 11.72
Duration of Eruption 2.01 1.93 1.97 1.99 1.87 1.99 2.11 1.96 2.03
Your answers should be numerical values. If necessary, round to four decimal places. Use rounded
answers for subsequent questions parts.
The value of the linear correlation coefficient is
The value of the coefficient of determination is
The regression line is y =
The predicted duration of an eruption is
The residual for x = 12.03 is
x+
minutes if the time between eruptions is 12.03 minutes.

Answers

The actual duration of eruption for x = 12.03 is 1.97 minutes, so the residual is 1.97 - 3.8431 = -1.8731 minutes.

The value of the linear correlation coefficient, also known as the Pearson correlation coefficient, measures the strength and direction of the linear relationship between two variables.

In this case, it represents the correlation between the time between eruptions and the duration of the eruption. To calculate the linear correlation coefficient, we can use the given data. The linear correlation coefficient is 0.8404.

The coefficient of determination, denoted as R-squared, represents the proportion of the variance in the dependent variable (duration of eruption) that can be explained by the independent variable (time between eruptions).

It is calculated by squaring the linear correlation coefficient. In this case, the coefficient of determination is 0.7055.

The regression line represents the best-fit line that approximates the relationship between the independent and dependent variables.

It can be expressed in the form of y = mx + b, where y represents the predicted duration of the eruption, x represents the time between eruptions, m represents the slope of the line, and b represents the y-intercept.

To determine the regression line, we can perform linear regression analysis using the given data. The regression line is y = 0.1608x + 1.8305.

The predicted duration of an eruption can be calculated by substituting the given time between eruptions value into the regression line equation. For x = 12.03 minutes, the predicted duration of an eruption is y = 0.1608 x 12.03 + 1.8305 = 3.8431 minutes.

The residual for x = 12.03 is the difference between the actual duration of eruption and the predicted duration. It can be calculated by subtracting the predicted value from the actual value. The actual duration of eruption for x = 12.03 is 1.97 minutes, so the residual is 1.97 - 3.8431 = -1.8731 minutes.

For more such answers on linear regression

https://brainly.com/question/25987747

#SPJ8

9497 ÷ 16 _R_ please

Answers

When you divide 9497 by 16, the quotient is 593 with a remainder of 9.

So, 9497 ÷ 16 = 593 remainder 9. Month

The diagram shows the curve y = √8x + 1 and the tangent at the point P(3, 5) on the curve. The tangent meets the y-axis at A. Find:
(i) The equation of the tangent at P.
(ii) The coordinates of A.
(iii) The equation of the normal at P.​

Answers

The tangent and normal lines of the curve:

Case (i): y = (4 / 5) · x + 13 / 5

Case (ii): (x, y) = (0, 13 / 5)

Case (iii): y = - (5 / 4) · x + 35 / 4

How to determine the equations of the tangent and normal lines

In this problem we have the representation of a curve whose equations for tangent and normal lines must be found. Lines are expressions of the form:

y = m · x + b

Where:

m - Slopeb - Interceptx - Independent variable.y - Dependent variable.

Both tangent and normal lines are perpendicular, the relationship between the slopes of the two perpendicular lines is:

m · m' = - 1

Where:

m - Slope of the tangent line.m' - Slope of the normal line.

The slope of the tangent line is found by evaluating the first derivative of the curve at intersection point.

Case (i) - First, determine the slope of the tangent line:

y = √(8 · x + 1)

y' = 4 / √(8 · x + 1)

y' = 4 / √25

y' = 4 / 5

Second, determine the intercept of the tangent line:

b = y - m · x

b = 5 - (4 / 5) · 3

b = 5 - 12 / 5

b = 13 / 5

Third, write the equation of the tangent line:

y = (4 / 5) · x + 13 / 5

Case (ii) - Find the coordinates of the intercept of the tangent line:

(x, y) = (0, 13 / 5)

Case (iii) - First, find the slope of the normal line:

m' = - 1 / (4 / 5)

m' = - 5 / 4

Second, determine the intercept of the normal line:

b = y - m' · x

b = 5 - (- 5 / 4) · 3

b = 5 + 15 / 4

b = 35 / 4

Third, write the equation of the normal line:

y = - (5 / 4) · x + 35 / 4

To learn more on tangent lines: https://brainly.com/question/17193273

#SPJ1

Quiz: Equations of Lines - Part II
Question 9 of 10
The slope of the line below is 2. Which of the following is the point-slope form
of the line?
OA. y-1 -2(x+1)
B. y-1=2(x+1)
OC. y+1 -2(x-1)
D. y+1=2(x-1)
-10
10-
(1,-1)
10

Answers

Answer:

We have the slope of the line, which is 2 and a point that is (1, -1).

To find the point-slope form of the line, we use the equation:

y - y1 = m(x - x1)

where m is the slope and (x1, y1) is the given point.

Substituting in the values we have, we get:

y - (-1) = 2(x - 1)

Simplifying this equation, we get:

y + 1 = 2(x - 1)

Therefore, the answer is option C: y + 1 - 2(x - 1).

find surface area and volume

Answers

The surface area and volume of the composite solid is are 1720ft² and 3563.33 ft³ respectively.

What is volume and surface area of composite solid?

The area occupied by a three-dimensional object by its outer surface is called the surface area.

The surface area of the solid = lateral area of pyramid + surface area of cuboid

lateral area of pyramid = 4 × 1/2 bh

= 4 × 1/2 × 10× 12

= 120×2 = 240 ft²

Surface area of the cuboid = 2( 100+ 320+ 320)

= 2( 740)

= 1480 ft²

Surface area of the composite solid = 240 + 1480

= 1720 ft²

Volume of the composite solid = volume of cuboid + volume of pyramid

volume of cuboid = 10×10×32 = 3200ft²

volume of pyramid = 1/3base area × height

height of the pyramid is calculated as;

diagonal of base = √ 10²+10²

= √200

= 14.14

h² = 13²-7.07²

h² = 169 - 49.98

h² = 119.02

h = 10.9 ft

Volume of pyramid = 1/3 × 100 × 10.9

= 363.33 ft³

Volume of the composite solid = 3200+363.33

= 3563.33 ft³

learn more about surface area and volume of composite solid from

https://brainly.com/question/27744732

#SPJ1

A total of 90 groom's guests and 85 bride's guests attended a wedding. The bride's guests used 100 tissues. The groom's guests used 180 tissues. Calculate approximately how many tissues each groom's guest used.

Answers

Approximately 2 tissues were used by each groom's guest at the wedding.

The calculation is as follows:

180 tissues ÷ 90 guests = 2 tissues per guest.

To determine how many tissues each groom's guest used, we need to find the average number of tissues per guest. We start by adding up the number of tissues used by the groom's guests, which is 180.

Then, we divide this total by the number of groom's guests, which is 90. This division gives us an average of 2 tissues per guest.

By dividing the total number of tissues used by the total number of guests, we can find the average number of tissues per guest. In this case, each groom's guest used approximately 2 tissues.

It's important to note that this calculation assumes an equal distribution of tissues among all the groom's guests.

for such more questions on  calculation

https://brainly.com/question/17145398

#SPJ8

What is the slope of the line shown below?
-6
10
(-3,-7) 5
-10
AY
(9, 1)
10
15
X
O A.-²2/
3
OB.
NIM
O c. 3
2
O D.
3
MIN

Answers

Answer:

[tex]m = \frac{1 - ( - 7)}{9 - ( - 3)} = \frac{8}{12} = \frac{2}{3} [/tex]

B is the correct answer.

Evaluate |x - y| + 4 if x = -1, y = 3, and z = -4.

Answers

Answer:

8

Step-by-step explanation:

Substitute the values in the expression, we have:

[tex]\displaystyle{|-1-3|+4}[/tex]

Evaluate:

[tex]\displaystyle{|-4|+4}[/tex]

Any real numbers in the absolute sign will always be evaluated as positive values. Thus:

[tex]\displaystyle{|-4|+4 = 4+4}\\\\\displaystyle{=8}[/tex]

Hence, the answer is 8. A quick note that z-value is not used due to lack of z-term in the expression.

Please answer ASAP I will brainlist

Answers

Answer:

There is one solution. The solution is 2, 18, 19.

Step-by-step explanation:

If you want me to show working tell me in the comments and I'll edit the answer

Answer:

A. (2, 18, -19)

Step-by-step explanation:

To solve:

Z is the most suitable variable to remove first

Add the first equation to the second equation: (this conveniently removes both y and z)

(x+y-z) + (4x-y+z) = 1+9

Simplify

5x = 10

Solve

x = 2

Multiply the second equation by 2 and minus it to the third equation: (Solve for y)

2(4x-y+z) - (x-3y+2z) = 2(9) - (-14)

Simplify

8x-2y+2z-x+3y-2z=18+14

7x+y=32

Substitute using x=2

7(2) + y = 32

y = 32 - 14

y = 18

Now substitute x and y for their respective values into Equation 1

2 + (-18) - z = 1

Simplify

-z = 19

z = -19

So :

x = 2, y = 18 , z = -19

Question #4
Find the measure of the indicated angle.
20°
161°
61°
73°
H
G
F
73° E
195°

Answers

The measure of the outside angle F indicated in the figure is 61 degrees,

What is the measure of angle GFE?

The external angle theorem states that "the measure of an angle formed by two secant lines, two tangent lines, or a secant line and a tangent line from a point outside the circle is half the difference of the measures of the intercepted arcs.

Expressed as:

Outside angle = 1/2 × ( major arc - minor arc )

From the figure:

Major arc = 195 degrees

Minor arc = 73 degrees

Outside angle F = ?

Plug the value of the minor and major arc into the above formula and solve for the outside angle F:

Outside angle = 1/2 × ( major arc - minor arc )

Outside angle = 1/2 × ( 195 - 73 )

Outside angle = 1/2 × ( 122 )

Outside angle = 122/2

Outside angle = 61°

Therefore, the outside angle measures 61 degrees.

Option C) 61° is the correct answer.

Learn about inscribed angles here: brainly.com/question/29017677

#SPJ1

NO LINKS!! URGENT HELP PLEASE!! ​

Answers

Answer:

[tex]\text{a.} \quad m\angle NLM=93^{\circ}[/tex]

[tex]\text{c.} \quad m\angle FHG=31^{\circ}[/tex]

Step-by-step explanation:

The inscribed angle in the given circle is ∠NLM.

The intercepted arc in the given circle is arc NM = 186°.

According to the Inscribed Angle Theorem, the measure of an inscribed angle is half the measure of the intercepted arc.

Therefore:

[tex]m\angle NLM=\dfrac{1}{2}\overset{\frown}{NM}[/tex]

[tex]m\angle NLM=\dfrac{1}{2} \cdot 186^{\circ}[/tex]

[tex]\boxed{m\angle NLM=93^{\circ}}[/tex]

[tex]\hrulefill[/tex]

According to the Inscribed Angle Theorem, the measure of an inscribed angle is half the measure of the intercepted arc. Therefore:

[tex]m\angle HFG=\dfrac{1}{2}\overset{\frown}{HG}[/tex]

[tex]m\angle HFG=\dfrac{1}{2}\cdot 118^{\circ}[/tex]

[tex]m\angle HFG=59^{\circ}[/tex]

As line segment FH passes through the center of the circle, FH is the diameter of the circle. Since the angle at the circumference in a semicircle is a right angle, then:

[tex]m\angle FGH = 90^{\circ}[/tex]

The interior angles of a triangle sum to 180°. Therefore:

[tex]m\angle FHG + m\angle HFG + m\angle FGH =180^{\circ}[/tex]

[tex]m\angle FHG + 59^{\circ} + 90^{\circ} =180^{\circ}[/tex]

[tex]m\angle FHG +149^{\circ} =180^{\circ}[/tex]

[tex]\boxed{m\angle FHG =31^{\circ}}[/tex]

NO LINKS!!! URGENT HELP PLEASE!!!

Please help with 27 & 28

Answers

Answer:

27)  34.29 in²

28)  If I get an A, then I studied for my final.

Step-by-step explanation:

Question 27

To calculate the area of the trapezoid, we need to find its perpendicular height.

As the given diagram shows an isosceles trapezoid (since the non-parallel sides (the legs) are of equal length), we can use Pythagoras Theorem to calculate the perpendicular height.

Identify the right triangle formed by drawing the perpendicular height from the vertex of the bottom base to the top base (this has been done for you in the given diagram).

As the two base angles of an isosceles trapezoid are always congruent, the base of the right triangle is half the difference between the lengths of the parallel bases, which is (8 - 6)/2 = 1 inch.

The hypotenuse of the right triangle is the leg of the trapezoid, which is 5 inches.

Use Pythagoras Theorem to find the perpendicular height (the length of the other leg):

[tex]h^2+1^2=5^2[/tex]

[tex]h^2+1=25[/tex]

      [tex]h^2=24[/tex]

        [tex]h=\sqrt{24}[/tex]

        [tex]h=2\sqrt{6}[/tex]

Now we have found the height of the trapezoid, we can use the following formula to calculate its area:

[tex]\boxed{\begin{minipage}{7 cm}\underline{Area of a trapezoid}\\\\$A=\dfrac{1}{2}(a+b)h$\\\\where:\\ \phantom{ww}$\bullet$ $A$ is the area.\\ \phantom{ww}$\bullet$ $a$ and $b$ are the parallel sides (bases).\\\phantom{ww}$\bullet$ $h$ is the height.\\\end{minipage}}[/tex]

The values to substitute into the area formula are:

a = 8 inb = 6 inh = 2√6 in

Substituting these values into the formula we get:

[tex]A=\dfrac{1}{2}(8+6) \cdot 2\sqrt{6}[/tex]

[tex]A=\dfrac{1}{2}(14) \cdot 2\sqrt{6}[/tex]

[tex]A=7\cdot 2\sqrt{6}[/tex]

[tex]A=14\sqrt{6}[/tex]

[tex]A=34.29\; \sf in^2\;(nearest\;hundredth)[/tex]

Therefore, the area of the isosceles trapezoid is 34.29 in², rounded to the nearest hundredth.

[tex]\hrulefill[/tex]

Question 28

Given conditional statement:

"If I studied for my final, then I will get an A"

The hypothesis is "I studied for my final", and the conclusion is "I will get an A".

The converse of a conditional statement involves switching the hypothesis ("if" part) and the conclusion ("then" part) of the original statement.

Therefore, the converse of the statement would be:

"If I get an A, then I studied for my final."

Outside temperature over a day can be modelled as a sinusoidal function. Suppose you know the high temperature for the day is 95 degrees and the low temperature of 75 degrees occurs at 6 AM. Assuming t is the number of hours since midnight, find an equation for the temperature, D, in terms of t.

Answers

Answer:

Yes, a sinusoidal function is a great way to model temperatures over a 24-hour period because the pattern of temperature changes tends to be cyclic.

A sinusoidal function can be written in the general form:

D(t) = A sin(B(t - C)) + D

where:

- A is the amplitude (half the range of the temperature changes)

- B is the frequency of the cycle (which would be `2π/24` in this case because the temperature completes a full cycle every 24 hours)

- C is the horizontal shift (which is determined by the fact that the minimum temperature occurs at 6 AM)

- D is the vertical shift (which is the average of the maximum and minimum temperature)

Given the information you've provided, let's fill in the specifics:

- The high temperature for the day is 95 degrees.

- The low temperature is 75 degrees at 6 AM.

The amplitude, A, is half the range of temperature changes. It's the difference between the high and the low temperature divided by 2:

A = (95 - 75) / 2 = 10

The frequency, B, is `2π/24` because the temperature completes a full cycle every 24 hours.

The horizontal shift, C, is determined by the fact that the minimum temperature occurs at 6 AM. The sine function hits its minimum halfway through its period, so we want to shift the function to the right by 6 hours to make this happen. In our case, this means C = 6.

The vertical shift, D, is the average of the maximum and minimum temperature:

D = (95 + 75) / 2 = 85

So the equation for the temperature, D, in terms of t (the number of hours since midnight) is:

D(t) = 10 sin((2π/24) * (t - 6)) + 85

This equation represents a sinusoidal function that models the temperature over a day given the information provided.

Identify the algebraic rule that would translate a figure 3 units left and 2 units up.

Answers

The algebraic rule for translating the figure 3 units left and 2 units up is (x-3, y+2).  Option B.

To translate a figure 3 units to the left and 2 units up, we need to adjust the coordinates of the figure accordingly. The algebraic rule that represents this translation can be determined by examining the changes in the x and y coordinates.

When we move a figure to the left, we subtract a certain value from the x coordinates. In this case, we want to move the figure 3 units to the left, so we subtract 3 from the x coordinates.

Similarly, when we move a figure up, we add a certain value to the y coordinates. In this case, we want to move the figure 2 units up, so we add 2 to the y coordinates.

Taking these changes into account, we can conclude that the algebraic rule for translating the figure 3 units left and 2 units up is (x-3, y+2). The x coordinates are shifted by subtracting 3, and the y coordinates are shifted by adding 2. SO Option B is correct.

For more question on algebraic visit:

https://brainly.com/question/30652385

#SPJ8

For which values is this expression undefined?

Answers

The values x = -5 and x = 3 make the second expression undefined. The correct answers are:

x = -5

x = 3

x= -3

To determine the values for which the given expressions are undefined, we need to find the values that make the denominators equal to zero.

First expression: [tex]\frac{3x}{(x^2 - 9)}[/tex]

For this expression, the denominator is (x^2 - 9). It will be undefined when the denominator equals zero:

x^2 - 9 = 0

Factoring the equation, we have:

(x - 3)(x + 3) = 0

Setting each factor equal to zero, we get:

x - 3 = 0 --> x = 3

x + 3 = 0 --> x = -3

So, the values x = 3 and x = -3 make the first expression undefined.

Second expression: [tex]\frac{(x + 4)}{(x^2 + 2x - 15)}[/tex]

For this expression, the denominator is (x^2 + 2x - 15). It will be undefined when the denominator equals zero:

x^2 + 2x - 15 = 0

Factoring the equation, we have:

(x + 5)(x - 3) = 0

Setting each factor equal to zero, we get:

x + 5 = 0 --> x = -5

x - 3 = 0 --> x = 3

So, The second expression is ambiguous because x = -5 and x = 3.

Consequently, the right responses are x = -5, x = 3 and x= -3.

for such more question on expressions

https://brainly.com/question/4344214

#SPJ8

(03.01 MC)

Explain how the Quotient of Powers Property was used to simplify this expression. (1 point)

three to the fourth power all over nine equals three squared
By simplifying 9 to 32 to make both powers base three and adding the exponents
By simplifying 9 to 32 to make both powers base three and subtracting the exponents
By finding the quotient of the bases to be one third and simplifying the expression

By finding the quotient of the bases to be one third and cancelling common factors

Answers

The correct answer is By finding the quotient of the bases to be one third and canceling common factors. Option D.

The Quotient of Powers Property states that when dividing two powers with the same base, you can subtract the exponents. In the given expression, we have three to the fourth power divided by nine.

To simplify this expression using the Quotient of Powers Property, we first need to recognize that nine can be written as three squared, since 3 multiplied by itself gives 9.

So, we have (3^4) / (3^2). According to the Quotient of Powers Property, we subtract the exponents: 4 - 2.

This gives us 3^(4-2), which simplifies to 3^2. Therefore, the expression three to the fourth power all over nine equals three squared.

It states that we find the quotient of the bases to be one third and cancel common factors. In this case, the bases are 3 and 3, and their quotient is indeed one third. Additionally, there are no common factors that can be canceled, as the expression does not contain any variables or additional terms.

Therefore, By finding the quotient of the bases to be one third and canceling common factors. accurately describes the steps involved in simplifying the expression using the Quotient of Powers Property.

We find the quotient of the bases (one third) and cancel common factors (which is not applicable in this case). Option D is correct.

For more question on factors visit:

https://brainly.com/question/28998304

#SPJ8

Note the complete question is

Explain how the Quotient of Powers Property was used to simplify this expression. (1 point)

Three to the fourth power all over nine equals three squared

A.) By simplifying 9 to 32 to make both powers base three and adding the exponents

B.) By simplifying 9 to 32 to make both powers base three and subtracting the exponents

C.) By finding the quotient of the bases to be one third and simplifying the expression

D.) By finding the quotient of the bases to be one third and cancelling common factors

1/2 (6m - 12n)



helpp!!

Answers

Is it 1/2 * (6m-12n) or 1/(2*(6m-12n)) ?

Select all the correct answers.
Third
B.
90 feet
A. 16, 200 feet
√180 feet
C. √16, 200 feet
180 feet
D.
The area of a baseball field bounded by home plate, first base, second base, and third base is a square. If a player at first base throws the ball to a
player at third base, what is the distance the player has to throw?
First
90 feet
Home
Reset
Next

Answers

The diagonal distance from home plate to third base is approximately √16,200 feet.

The correct answers are:

B. 90 feet

C. √16,200 feet

D. 180 feet.

In baseball, the bases are arranged in a square shape.

The distance between each base is 90 feet.

Therefore, the correct answer for the distance a player at first base has to throw to a player at third base is 90 feet (option B).

To find the diagonal distance from home plate to third base, we can use the Pythagorean theorem.

Since the area of the baseball field is a square, the diagonal distance represents the hypotenuse of a right triangles.

The two legs of the right triangle are the sides of the square, which are 90 feet each.

Using the Pythagorean theorem [tex](a^2 + b^2 = c^2),[/tex] we can calculate the diagonal distance:

a = b = 90 feet

[tex]c^2 = 90^2 + 90^2[/tex]

[tex]c^2 = 8,100 + 8,100[/tex]

[tex]c^2 = 16,200[/tex]

c = √16,200 feet (option C)

Therefore, the diagonal distance from home plate to third base is approximately √16,200 feet.

The options A, √180 feet, and 180 feet are incorrect because they do not represent the correct distances in the given scenario.

For similar question on diagonal distance.  

https://brainly.com/question/31654603  

#SPJ8

Other Questions
The function randomVector is supposed to return a pointer to vector The flat dome of the sky is thought of as the Celestial Sphere. To locate stars, planets, asteroids, etc., a Celestial Coordinate System is set in place on the sky. a) Describe this Celestial Coordinate System, identifying the important parts of it. Do the coordinates of the stars ever change in this System? Do the Coordinates of the Planets ever change? Give reasons for these answers. In the following circuit, the two diodes are identical with a transfer characteristic shown in the figure. For an input with triangular waveform and circuit components listed in the table, answer the following questions. Table 1 Circuit Parameters a) find Vin ranges that turns diodes ON or OFF? b) draw circuit transfer characteristic (Vout versus Vin)? Vcc 4 [V] VON 1 [V] R R D 2k [] R 1k [92] ww Vout R 1k [92] D R Vin (N) KH Table 2. Answers Vout +Vcc T-Vcc R3 Vin VON V Both Diodes OFF One Diode ON and the Other Diode OFF Both Diodes ON Vin Vin>-2V -3V A sharp image is located 321 mm behind a 214 mm focal-length converging lens. Find the object distance. Give answer in mm. Unanswered 3 attempts left How far apart are an object and an image formed by a 97 cm lens, if image is 2.6 larger than the object and real? Give answer in cm. Unanswered 3 attempts left How far apart are an object and an image formed by a 97 cm lens, if image is 2.6 larger than the object and virtual? Give answer in cm. Unanswered 3 attempts left The near and far point of some person are 10.9 cm and 22.0 respectively. She got herself the perfect contacts for driving. What is the near point of this person with lens in place? Give answer is cm. Lemma 39. Suppose B is a linearly independent subset of L and P is a point of L not in Span(B). Then B{P} is also linearly independent. Theorem 40. B is a basis for L if and only if it is a maximal linearly independent subset of L, that is, it is linearly independent but is not a proper subset of any other linearly independent set. Please provide a detailed answer.I. Why is serial correlation often present in time seriesdata?II. Why is the presence of serial correlation in the residual aproblem? In 250 300 words, provide a close reading of Mr. and Mrs.Spring Fragrances reunion at the end of Sui Sin Fars "Mrs. SpringFragrance." If we think of a relationship as durable andlongs The U.S. Navys robotics lab at Point Loma Naval Base in San Diego is developing robots that will follow a soldiers command or operate autonomously. If one robot would prevent injury to soldiers or loss of equipment valued at $1.5 million per year, how much could the military afford to spend now on the robot and still recover its investment in 4 years at 8% per year? Photosynthesis: Which one of the following is true?Majority of the solar energy reached on Earth is captured by plants for use in photosynthesis.Carbon dioxide is a critical component of photosynthesis.Oxygen is a critical input for the photosynthesis.Most solar energy are suitable for photosynthe The exact prescription for the contact lenses should be 203 diopters What is the timest distance car pour trat she can see clearly without vision correction? (State answer in centimeters with 1 digit right of decimal. Do not include unit in ans) 17.5 g of an unknown metal 89.9 is placed in 77.0 g of water (s=4.18j/g-c.What is the specific heat of the metal if thermal equilibrium is reached at 11.8 C?Hint q_released =-q absorbeds=]/g-C. 2 3 4 Mark this and return H G 5 Which organelle is labeled I? F 10 Mitili A Save and Exit DELL B E C Next 57:10 Submit Sign out HELP INCLUDE WORK!a) Wrife the rate law equation for the reaction. b) What is the overall order of the reaction? Consider a diode with the following characteristics: Minority carrier lifetime T = 0.5s Acceptor doping of N = 5 x 106 cm-3 Donor doping of Np = 5 x 106 cm-3 D = 10cms-1 D = 25cms-1 The cross-sectional area of the device is 0.1mm The relative permittivity is 11.7 (Note: the permittivity of a vacuum is 8.8510-4 Fcm-) The intrinsic carrier density is 1.45 x 10 cm-. (i) [2 marks]Find the built-in voltage (ii) [2 marks]Find the minority carrier diffusion length in the P-side (iii) [2 marks]Find the minority carrier diffusion length in the N-side (iv) [4 Marks] Find the reverse bias saturation current density (v) [2 marks] Find the reverse bias saturation current (vi) [2 marks] The designer discovers that this leakage current density is twice the value specified in the customer's requirements. Describe what parameter within the device design you would change to meet the specification. Give the value of the new parameter. Tutored Practice Problem 24.1.2 Write balanced nuclear equations involving beta decay. Write a balanced nuclear equation for the beta decay of chromium-56. // Trace this C++ program and answer the following question: #include using namespace std; int main() { int k = 0; for (int j = 1; j < 4; j++){ if (j == 2 or j == 8) { k=j* 3;} else { k=j+ 1; .} cout Make a illustration sample question and answer for the following algorithms.1. Floyd-Warshall Algorithm2. Johnsons Algorithm3. Ford-Fulkerson4. Edmond Karp5. Maximum Bipartite Matching A 2000 kg car travels 1600 meters while possessing a kinetic energy of 676,000 Joules. How long does the car take to travel this distance? a. 2.4 seconds. b. 61.5 seconds c. 87 seconds d. 132 seconds The federal law enforcement agencies are massive and have bigbudgets and this gives them untold advantages over local lawenforcement and even state agencies at times. But they also havewide ranging In this exercise, we will prove some important results regarding Gaussian random variables. Below uR^n will be treated as an n-dimensional column vector, and QR^nn will be treated as a square matrix.