She would have to work for 11 hours to pay these bills without her FSA/HSA.
Emma went to the doctor 9 times last month, which means she had to pay a total of 9 x $20 = $180 in copays.
Without her FSA/HSA, she would have to work to earn $180 after taxes. Since she pays 17 percent in taxes, the amount she would have to earn before taxes is $180 / (1 - 0.17) = $216.87.
To earn $216.87, she would have to work for $216.87 / $20 per hour = 10.84 hours.
Rounding up, she would have to work for 11 hours to pay these bills without her FSA/HSA.
To know more about hours refer here
https://brainly.com/question/13533620#
#SPJ11
Help me on #12 A&C, #13 a,b,&c plsss preferably step by step
The solution to the problems using trigonometric ratios are:
12a) x = 16.09
12c) x = 7 and y = 7
13a) Time it takes to reach the ground is: 8 seconds
13b) Highest point reached is: 80 ft
How to use trigonometric ratios?12a) Using the law of sines, we can say that:
x/sin 90 = 9/sin 34
x = (9 * sin 90)/sin 34
x = 16.09
12c) Using the law of sines, we can say that:
x/sin 45 = 7√2/sin 90
x = (7√2 * 1/√2)/1
x = 7
Similarly, because it is an isosceles triangle, y = 7
13a) The equation of the height above the ground is :
h = 40t - 5t²
where:
h is height
t is time in seconds
Thus:
Time it takes to reach the ground is at h = 0.
40t - 5t² = 0
5t² = 40t
5t = 40
t = 8 seconds
b) Highest point reached:
h'(t) = 40 - 10t
h'(t) = 0
40 - 10t = 0
t = 4 seconds
Thus:
h_max = 40(4) - 5(4)²
h_max = 80 ft
c) Time at which ball was 35ft off ground is:
35 = 40t - 5t²
5t² - 40t + 35 = 0
Using quadratic equation calculator gives us:
t = 1 and 7 seconds
Read more about trigonometric ratios at: https://brainly.com/question/13276558
#SPJ1
multiply the polynomials
To multiply the polynomials (1-2t)(5t+t^2), we can use the distributive property and multiply each term in the first polynomial by each term in the second polynomial:
(1-2t)(5t+t^2) = 1(5t+t^2) - 2t(5t+t^2)
Multiplying the first term by each term in the second polynomial, we get:
5t + t^2
Multiplying the second term by each term in the second polynomial, we get:
-10t^2 - 2t^3
Combining like terms, we get:
-2t^3 - 10t^2 + 5t
Therefore, the answer is D. -2t^3 - 9t^2 + 5t.
7 NEXT QUESTION e = READ NEXT SECTION G # O ASK FOR HELP 2 e By what percentage did the median earnings of college degreed exceed that of high school degreed for 1973 for men (to the nearest tenth)? 2 3 TURN IT IN
The percentage by which the median earnings of college degree exceed that of high school degreed for 1973 for men is 17.9%
Why is this so?College: Women= 4400
H.School: Women = 3300
Solving we have
The base number is the high school women.
The difference is 4400 - 3300 = 1100
So the % = (1100/3300) * 100% = 33.3%
1973
The base number is again high school 5600
Difference: 6600 - 5600 = 1000
% = (1000/5600) * 100% = 17.9
Learn more about median at:
https://brainly.com/question/28060453
#SPJ4
Full Question:
Although part of your question is missing, you might be referring to this full question:
See the aattached image.
A mailer for posters is a triangular prism as shown below. Find the surface area of the mailer.
HINT: You should draw each face on a piece a paper and find all the areas, and then add them together. Remember there are 3 rectangles and 2 triangles in this figure.
Total Surface Area =
Therefore, the surface area of the mailer is approximately 229.3 square inches.
What is total surface area?Total surface area refers to the sum of the areas of all the faces or surfaces of a three-dimensional object. It includes the area of all the faces including the bases, top and sides.
Here,
To find the total surface area of the mailer, we need to find the area of all the faces and then add them up.
First, let's find the area of the rectangular faces. The length of the mailer is 18 inches and the height is 4 inches, so the area of each rectangular face is:
Area of rectangle = length x height
= 18 x 4
= 72 square inches
Since there are 3 rectangular faces, the total area of the rectangular faces is:
Total area of rectangular faces = 3 x 72
= 216 square inches
Next, let's find the area of the triangular faces. The triangular side is 4.7 inches and the base is 5 inches. To find the area of a triangle, we use the formula:
Area of triangle = (1/2) x base x height
where base is the length of the triangle's base and height is the perpendicular distance from the base to the opposite vertex.
To find the height of the triangle, we can use the Pythagorean theorem since we know the length of the triangular side and the height of the mailer. The Pythagorean theorem states that:
c² = a² + b²
where c is the hypotenuse (the triangular side), and a and b are the other two sides (the height of the mailer and the height of the triangle).
Solving for b, we get:
b = √(c² - a²)
= √(4.7² - 4²)
= 2.66 inches
Now we can find the area of each triangular face:
Area of triangle = (1/2) x base x height
= (1/2) x 5 x 2.66
= 6.65 square inches
Since there are 2 triangular faces, the total area of the triangular faces is:
Total area of triangular faces = 2 x 6.65
= 13.3 square inches
Finally, we add up the areas of all the faces to get the total surface area:
Total surface area = area of rectangular faces + area of triangular faces
= 216 + 13.3
= 229.3 square inches (rounded to one decimal place)
To know more about total surface area,
https://brainly.com/question/8419462
#SPJ1
Gina put all the boxes weighing less than 1/2 pound into a small box she puts all the boxes by more than 1/2 pound into a large box how many pounds heavier are the blocks in a large box than pounds in a small box
Weight difference between the large box and the small box is [tex](1/2)*(w2 - w1)[/tex] pounds.
How to find weight difference?Let's assume that Gina has n boxes in total, and let x be the weight of each box in pounds. We can then express the weight of the boxes that weigh less than [tex]1/2[/tex] pound as [tex](1/2)*w1[/tex], where [tex]w1[/tex] is the number of boxes that weigh less than [tex]1/2[/tex] pound. Similarly, we can express the weight of the boxes that weigh more than 1/2 pound as [tex](1/2)*w2[/tex], where [tex]w2[/tex] is the number of boxes that weigh more than [tex]1/2[/tex] pound.
Since Gina puts all the boxes weighing less than [tex]1/2[/tex] pound into a small box, the weight of the small box will be the sum of the weights of all the boxes that weigh less than [tex]1/2[/tex] pound, which is [tex](1/2)*w1[/tex].
Similarly, since Gina puts all the boxes weighing more than [tex]1/2[/tex] pound into a large box, the weight of the large box will be the sum of the weights of all the boxes that weigh more than [tex]1/2[/tex] pound, which is [tex](1/2)*w2[/tex].
The weight difference between the large box and the small box will be:
[tex](1/2)*w2 - (1/2)*w1[/tex]
Simplifying this expression, we get:
[tex](1/2)*(w2 - w1)[/tex]
Therefore, the weight difference between the large box and the small box is [tex](1/2)*(w2 - w1)[/tex] pounds.
To learn more about weight difference, visit
brainly.com/question/31078208
#SPJ11
show that tan(15 ) = 2 - rt3
By using trigonometry,
we have shown that tan(15°) = 2 - √3.
what is the trignometry?One of the most significant areas of mathematics, trigonometry has a wide range of applications. T
he study of the relationship between the sides and angles of the right-angle triangle is essentially the focus of the field of mathematics known as "trigonometry."
Hence, employing trigonometric formulas, functions, or trigonometric identities can be helpful in determining the missing or unknown angles or sides of a right triangle.
Angles in trigonometry can be expressed as either degrees or radians. 0°, 30°, 45°, 60°, and 90° are some of the trigonometric angles that are most frequently employed in computations.
We can use the half-angle formula for tangent to show that:
tan(15°) = tan(30°/2) = (1 - cos(30°)) / sin(30°)
We know that cos(30°) = √3/2 and sin(30°) = 1/2, so we can substitute those values in:
tan(15°) = (1 - √3/2) / 1/2
Simplifying the denominator and multiplying by the reciprocal:
tan(15°) = 2(1 - √3/2)
Simplifying the expression:
tan(15°) = 2 - √3
Therefore, we have shown that tan(15°) = 2 - √3.
To know more about trigonometry visit,
https://brainly.com/question/29002217
#SPJ1
Determine the intervals on which the given function is concave up or concave down and find the points of inflection. S(x) = (x - 10)(1 - x) (Use symbolic notation and fractions where needed. Give your answer in three decimal numbers
There are no points of inflection.
To determine the intervals on which the function S(x) = (x - 10)(1 - x) is concave up or down and find the points of inflection, we need to find the second derivative and analyze its sign.
First, find the first derivative, S'(x):
S'(x) = (x - 10)(-1) + (1 - x)(1) = -x + 10 - 1 + x = 9
Next, find the second derivative, S''(x):
S''(x) = d(S'(x))/dx = d(9)/dx = 0
Since the second derivative S''(x) is constant and equal to 0, there is no concavity, and the function is neither concave up nor concave down. There are no points of inflection.
To learn more about inflection, refer below:
https://brainly.com/question/11986000
#SPJ11
Find the quotient of 1x10^-2 and 8x10^-2
Answer:
The first one is - 5 and the other is - 40
(1 point) Evaluate the double integral I = s do xy dA where D is the triangular region with vertices (0,0),(1,0), (0,6).
To evaluate the double integral I = ∬D xy dA, where D is the triangular region with vertices (0,0),(1,0), (0,6), we need to set up the limits of integration for x and y.
Since D is a triangular region, we can integrate over the two sides that meet at the origin and then integrate over the third side. Let's integrate over the sides that form the right angle at (0,0).
For the side along the x-axis, y = 0 to y = 6x.
For the side along the y-axis, x = 0 to x = 1.
Thus, the double integral becomes:
I = ∫0^1 ∫0⁶x xy dy dx
Evaluating the inner integral with respect to y, we get:
I = ∫0^1 [x(y²/2)]0⁶x dx
Simplifying and evaluating the outer integral with respect to x, we get:
I = ∫0^1 18x⁴ dx
I = 18/5
Therefore, the value of the double integral I = ∬D xy dA over the triangular region with vertices (0,0),(1,0), (0,6) is 18/5.
To evaluate the double integral I = ∬_D xy dA for the triangular region D with vertices (0,0), (1,0), and (0,6), we first need to set up the limits of integration.
The base of the triangle lies on the x-axis, from x = 0 to x = 1. The height of the triangle lies on the y-axis, from y = 0 to the line y = 6(1-x), since the slope of the hypotenuse is -6 and passes through (1,0).
Now we can set up the integral:
I = ∬_D xy dA = ∫_(0 to 1) ∫_(0 to 6(1-x)) xy dy dx
Let's first integrate with respect to y:
∫_(0 to 6(1-x)) xy dy = [x(y²)/2]_(0 to 6(1-x)) = 18x(1-x)²
Next, integrate with respect to x:
I = ∫_(0 to 1) 18x(1-x)² dx
Using integration by substitution or expanding and integrating term by term, we get:
I = 2
So, the value of the double integral is 2.
Visit here to learn more about double integral brainly.com/question/27360126
#SPJ11
If x=2, y=4,m=-1 and n=3, find the value of x^m+n * y^n-m/x^m-n * y^n+m
Answer:
1024
Step-by-step explanation:
I hope everything I wrote is clear, I really need to sharpen my pencil oof
2. 7.G.1.2 Look at each set of conditions. Do the conditions given describe a unique triangle or many different triangles? Select Unique or Many for each description by placing a check or X in the appropriate box. Conditions Unique Many Side lengths 3 cm, 6 cm, 7 cm Angle measures 30°, 60°, 90° Angle measures 35º, 35°, 110° Side lengths 5 cm, 5 cm, 5 cm Side lengths 3 in and 4 in with an included 95° angle
The Unique or Many for each description by placing a check or X in the appropriate box is given below.
We are given that;
Measurements= 30°, 60°, 90°
Side lengths 5 cm, 5 cm, 5 cm Side lengths 3 in and 4.
Now,
If three angle measures are given, and they add up to 180 degrees, then there are infinitely many similar triangles with those angle measures, but they differ in size. This is called the AAA (angle-angle-angle) similarity criterion.
If two angles and a non-included side are given, then there may be zero, one, or two possible triangles with those measurements, depending on the length of the side and the position of the angles. This is called the AAS (angle-angle-side) or SSA (side-side-angle) criterion.
Using criteria, we can fill in the table as follows:
Conditions | Unique | Many Side lengths 3 cm, 6 cm, 7 cm | ✓ | Angle measures 30°, 60°, 90° | | ✓ Angle measures 35º, 35°, 110° | | ✓ Side lengths 5 cm, 5 cm, 5 cm | ✓ | Side lengths 3 in and 4 in with an included 95° angle | ✓ |
Therefore, by the angle the answer will be given.
Learn more about angle here:
https://brainly.com/question/15451496
#SPJ1
Jewelers consider weight, cut grade, color, and clarity when pricing diamonds. In researching jewelry prices, Sandra makes the following statements based on her observations. Which of the statements are statements of causation? Select all that apply.
A. A particular diamond costs $264.
B. A darker color decreases a diamond's clarity.
C. Higher clarity drives up the price of a diamond.
D. Heavier diamonds tend to be sold at higher prices.
E. There appears to be a relationship between color and price.
F. Diamonds with lower cut grades seem to sell at lower prices
Statements C and D are statements of causation, while statements A, B, E, and F are not.
Causation refers to the relationship between cause and effect, where a change in one variable causes a change in another variable. Statements of causation imply a cause-and-effect relationship between two variables.
Based on the given statements, the statements of causation are C and D. Statement C implies that higher clarity causes an increase in the price of a diamond, and statement D implies that a higher weight causes an increase in the price of a diamond.
Statements A, B, E, and F are not statements of causation. Statement A only provides information about the cost of a particular diamond and does not explain the reason behind the cost. Statement B suggests a relationship between color and clarity, but it does not imply a cause-and-effect relationship.
Statement E also suggests a relationship between color and price, but it does not imply causation. Statement F only suggests an observation about the relationship between cut grade and price, but it does not imply causation.
In summary, statements C and D are statements of causation, while statements A, B, E, and F are not.
To know more about causation, visit:
https://brainly.com/question/10971583#
#SPJ11
Solve x∕3 < 5 Question 12 options: A) x < 15 B) x ≥ 15 C) x ≤ 15 D) x > 15
Answer:
A) x < 15
Step-by-step explanation:
You want the solution to x/3 < 5.
InequalityThe steps to solving an inequality are basically identical to the steps for solving an equation. There are a couple of differences:
the direction of the inequality symbol must be respectedmultiplication/division by negative numbers reverses the inequality symbol1-stepIf this were and equation, it would be a "one-step" equation. That step is to multiply both sides by the inverse of the coefficient of x.
The coefficient of x is 1/3. Its inverse is 3. Multiplying both sides by 3, we have ...
3(x/3) < 3(5)
x < 15 . . . . . . . . . simplify
Note that 3 is a positive number, so we leave the inequality symbol pointing the same direction.
__
Additional comment
We can swap the sides of an equation based on the symmetric property of equality:
a = b ⇔ b = a
When we swap the sides of an inequality, we need to preserve the relationship between them. (This is the meaning of "respect the direction of the inequality symbol".)
a < b ⇔ b > a
Besides multiplying and dividing by a negative number, there are other operations that affect the order of values.
-2 < 1 ⇔ 2 > -1 . . . . . multiply by -12 < 3 ⇔ 1/2 > 1/3 . . . . . take the reciprocal (same signs)a < b ⇔ cot⁻¹(a) > cot⁻¹(b) . . . . use function having negative slopeNote that the 1/x function is another one that has negative slope, which is why it reverses the ordering for values with the same sign. (It has no effect on ordering of values with opposite signs.)
please help im stressing
To multiply these fractions, we can simplify each fraction first:
64e^2/5e * 3e/8e = (8*8*e*e)/(5*e) * (3*e)/(2*2*2*e)
Next, we can cancel out common factors between the numerators and denominators:
= (8*8*1*1)/(5*1) * (1*1)/(2*2*2*1)
= 64/5 * 1/8
= 8.
Answer:
24e^2/5e my answer needs to be 20+characters sooooooooooo
Help me now pretty please
The solution to the exact differential equation (5t^2 + 8y) dy + (10yt + 9t^2) = 0 is
To solve the exact differential equation (5t^2 + 8y) dy + (10yt + 9t^2) = 0, we need to check if it is exact or not. We do so by taking partial derivatives with respect to y and t:
∂/∂y (5t^2 + 8y) = 8
∂/∂t (10yt + 9t^2) = 10y + 18t
Since these partial derivatives are not equal, the equation is not exact. To make it exact, we can multiply the entire equation by a integrating factor, which is given by:
μ = e^(∫(∂/∂t)(10yt + 9t^2) dt) = e^(∫(10y + 18t) dt) = e^(10yt + 9t^2)
Multiplying both sides of the equation by μ, we get:
(5t^2 + 8y)e^(10yt + 9t^2) dy + (10yt + 9t^2)e^(10yt + 9t^2) dt = 0
Now, we can check if this equation is exact:
∂/∂y (5t^2e^(10yt + 9t^2) + 8ye^(10yt + 9t^2)) = 10te^(10yt + 9t^2)
∂/∂t ((10ye^(10yt + 9t^2)) + (9t^2e^(10yt + 9t^2))) = 10ye^(10yt + 9t^2) + 18t^2e^(10yt + 9t^2)
These partial derivatives are equal, so the equation is exact. Therefore, we can find a potential function Φ such that:
∂Φ/∂y = 5t^2e^(10yt + 9t^2) + 8ye^(10yt + 9t^2)
∂Φ/∂t = (10ye^(10yt + 9t^2)) + (9t^2e^(10yt + 9t^2))
Integrating the first equation with respect to y, we get:
Φ = ∫(5t^2e^(10yt + 9t^2) + 8ye^(10yt + 9t^2)) dy = (5t^2/10)e^(10yt + 9t^2) + (4y/10)e^(10yt + 9t^2) + C(t)
where C(t) is an arbitrary constant of integration that depends only on t.
Now, we can differentiate this expression with respect to t and compare it to the second equation:
∂Φ/∂t = (10t/10)e^(10yt + 9t^2) + C'(t)
(10ye^(10yt + 9t^2)) + (9t^2e^(10yt + 9t^2)) = (10t/10)e^(10yt + 9t^2) + C'(t)
Comparing the two expressions, we get:
C'(t) = 10ye^(10yt + 9t^2)
Integrating both sides with respect to t, we get:
C(t) = ∫10ye^(10yt + 9t^2) dt = e^(10yt + 9t^2) + K
where K is another arbitrary constant of integration.
Therefore, the solution to the exact differential equation (5t^2 + 8y) dy + (10yt + 9t^2) = 0 is given by:
(5t^2/10)e^(10yt + 9t^2) + (4y/10)e^(10yt + 9t^2) + e^(10yt + 9t^2) + K = 0
or simplifying:
y = (-5t^2/4) - (1/2)e^(-10yt - 9t^2) - (K/4)e^(-10yt - 9t^2)
where K is an arbitrary constant of integration.
To learn more about integration visit;
brainly.com/question/30900582
#SPJ11
Ribbon is sold at $7 for 3 metres at the factory and $2.50 per metre at the store. How much money is saved when 15 metres of ribbon is bought at the factory rather than at the store?
The cost of 15 meters of ribbon at the factory is:
15 meters / 3 meters per $7 = 5 times $7 = $35
The cost of 15 meters of ribbon at the store is:
15 meters x $2.50 per meter = $37.50
Therefore, the amount saved by buying 15 meters of ribbon at the factory rather than at the store is:
$37.50 - $35 = $2.50
Each year, tornadoes that touch down are recorded. The following table gives the number of tornadoes that touched down during each month of one yout, Determine the range and sample standard deviation
To determine the range and sample standard deviation of tornadoes that touched down during each month of one year, we need to use the data in the table.
However, the table is not provided in the question.
Please provide the table with the number of tornadoes that touched down during each month of one year so I can help you with your question.
To determine the range and sample standard deviation of the number of tornadoes that touched down each month, you'll first need to provide the data in a table format.
Once you provide the data, I can help you calculate the range and sample standard deviation.
To learn more about range visit;
https://brainly.com/question/28135761
#SPJ11
Correct question:
Each year, tornadoes that touch down are recorded. The following table gives the number of tornadoes that touched down during each month of one year. Determine the range and sample standard deviation.
3 2 41 115 197 95
70 85 68 64 110 91
Range?
Sample Standard Deviation?
(2x−3)(2x−3)=left parenthesis, 2, x, minus, 3, right parenthesis, left parenthesis, 2, x, minus, 3, right parenthesis, equals
The expression (2x-3)(2x-3) is equal to (2x-3)^2.
To expand the expression (2x-3)(2x-3), we can use the FOIL method (which stands for First, Outer, Inner, Last).
Multiplying the first terms of each binomial, we get 2x times 2x, which is 4x^2.
Multiplying the outer terms, we get -3 times 2x, which is -6x.
Multiplying the inner terms, we get -3 times 2x again, which is also -6x.
Multiplying the last terms of each binomial, we get -3 times -3, which is 9.
Combining like terms, we get 4x^2 - 12x + 9.
Therefore, (2x-3)(2x-3) is equal to (2x-3)^2, which is equivalent to 4x^2 - 12x + 9.
For more questions like Expression click the link below:
https://brainly.com/question/29583350
#SPJ11
Does 4(9x+6)=36x-7 have many solutions,no solutions,or one solutions
Answer:
no solution
Step-by-step explanation:
There are no values of x that make the equation true.
Pls help, answer both of the questions with explanation.
5 points
You need to change a blown outdoor lightbulb on your house. The bulb is 5m up, but you have a 1m reach when you are on the top rung of the ladder. If you need 3m of
space off the house for the ladder's base for stability, what is the minimum height of the ladder in meters?
The minimum height of the ladder needed to change the blown outdoor lightbulb is 5 meters.
To determine the minimum height of the ladder needed to change a blown outdoor lightbulb that is 5m up, we need to consider the following terms:
1. The bulb's height (5m)
2. Your reach when on the top rung of the ladder (1m)
3. The required space off the house for the ladder's base for stability (3m)
First, subtract your reach from the bulb's height: 5m - 1m = 4m. This means the ladder needs to reach at least 4 meters up the wall.
Next, we need to use the Pythagorean theorem to find the ladder's minimum height. The theorem states that in a right-angled triangle, the square of the length of the hypotenuse (the ladder) is equal to the sum of the squares of the lengths of the other two sides (the distance from the house and the height up the wall).
Let's denote the ladder's height as L, the distance from the house as A (3m), and the height up the wall as B (4m).
According to the Pythagorean theorem, we have:
L² = A² + B²
Substitute the values for A and B:
L² = (3m)² + (4m)²
L² = 9m² + 16m²
L² = 25m²
Now, find the square root to get the minimum height of the ladder:
L = √25m²
L = 5m
So, the minimum height of the ladder needed to change the blown outdoor lightbulb is 5 meters.
To know more about minimum height refer here:
https://brainly.com/question/15240079
#SPJ11
Frank is packing cube-shaped containers into large boxes. he can fit
15 containers in each layer. if he stacks 8 layers into one box, what is the
volume of the box?
The volume of the large box is 120[tex]s^3[/tex].
How to find the volume?If Frank can fit 15 cube-shaped containers in each layer and stack 8 layers into one box, then the total number of containers he can fit in one box is:
15 containers/layer x 8 layers = 120 containers
Since each container is cube-shaped, we can assume that it has the same length, width, and height. Let's represent the length of one side of the container as "s". Then, the volume of one container is:
Volume of one container = [tex]s^3[/tex]
The volume of 120 containers that can fit in one box is:
Volume of 120 containers = 120 x Volume of one container
Substituting the expression for the volume of one container, we get:
Volume of 120 containers = 120[tex]s^3[/tex]
Therefore, the volume of the large box that can hold 120 cube-shaped containers with side length "s" is 120[tex]s^3[/tex].
Learn more about Volume
brainly.com/question/13338592
#SPJ11
Find the area of the squares
The area of the squares are;
1. 9x²ft². Option D
2. 6x² - 7x - 3 in². Option C
How to determine the areaThe formula for calculating the area of a square is expressed as;
A = a²
Such that the parameters of the formula are;
A is the area of the given squarea is the length of the side of the squareFrom the information given, we have that;
Area = (3x)²
Find the square of the expression, we have that;
Area = 9x²ft²
2. Substitute the values, we have that;
Area = (2x -3)(3x + 1)
expand the bracket, we have;
Area = 6x² + 2x - 9x - 3
collect the like terms
Area = 6x² - 7x - 3
Learn more about area at: https://brainly.com/question/25292087
#SPJ1
Mr. Jones has $410,000 in a retirement account that earns 3. 85% simple interest each year. Find the amount of interest earned by this investment if it is in there for 5 years
The amount of interest earned by Mr. Jones's retirement account over 5 years is $79,025.
Mr. Jones has invested $410,000 in a retirement account that earns 3.85% simple interest per year. Simple interest is calculated by multiplying the principal amount by the annual interest rate and the time period in years.
In this case, the time period is 5 years. Using the formula for simple interest, we can calculate the amount of interest earned on this investment as:
I = P * r * t = $410,000 * 0.0385 * 5 = $79,025
Therefore, the amount of interest earned by Mr. Jones's retirement account over 5 years is $79,025. This means that the total value of his retirement account after 5 years would be $489,025 ($410,000 + $79,025).
Learn more about interest:
brainly.com/question/30393144
#SPJ4
Please answer the question with the image provided.
Based on the information on the number line, the numbers that represent the percentages are: 42 (100%), 21 (50%), 63 (150%).
How to calculate the number that equals each percentage?To calculate the number that is equivalent to each percentage we must carry out the following procedure: Rule of three. In this case we must take into account that 42 represents 100% of the people.
100% = 42 people100% = ? people100 * 42 / 100 = 42 people100% = 42 people50% = ? people50 * 42 / 100 = 21 people100% = 42 people150% = ? people150 * 42 / 100 = 63 peopleLearn more about rule of three at: https://brainly.com/question/9264846
#SPJ1
Shawn wrote down the activities for his day on Saturday. In which situation will his activity result in a final value of zero?
1 point
A. Shawn places four quarters in a jar of quarters which contains four quarters.
B. In the morning, Shawn added six hard candies to a jar which contained four hard candies. By the end of the day he ate ten candies from this jar.
C. Shawn starts out on the ground and then climbs ten feet on a ladder.
D. Shawn travels east ten feet and then travels south ten feet
The situation in which Shawn's activity will result in a final value of zero is Shawn travels east ten feet and then travels south ten feet. The correct option is D.
This is because when Shawn travels east ten feet, he moves horizontally to the right of his starting point. When he travels south ten feet after that, he moves vertically downwards from his previous position, cancelling out the horizontal movement he made earlier.
The displacement caused by Shawn's movement in the east direction is equal in magnitude but opposite in direction to the displacement caused by his movement in the south direction.
The net displacement of Shawn's movement is zero, and he ends up back at his starting point. Options A, B, and C do not involve any movements that result in a net displacement of zero.
Learn more about displacement here:
https://brainly.com/question/17884540
#SPJ4
2. How many checks must a customer write per month before the new plan is cheaper than the old plan? and new plan? 3. What formula/equations can be formed to find the cost for any number of checks for the old cheaper for a customer who writes 10 checks per month? 1. Compute the cost of 10 checks under the old plan and under the new plan. Which plan is check will cost 8 cents. The bank claims the new plan will save the customer money. Plus 15 cents for each check announces that it will change its monthly fee to $3 and that each Problem #3 A bank that has been charging a monthly service fee of $2 for checking accounts
The old plan is cheaper for a customer who writes 10 checks per month.
To determine how many checks a customer must write per month before the new plan is cheaper than the old plan, we need to set up an equation to compare the two plans. Let x be the number of checks written per month. The cost of the old plan is given by:
C_old = 0.08x + 2
The cost of the new plan is given by:
C_new = 3 + 0.15x
To find out when the new plan becomes cheaper, we need to set the two costs equal to each other and solve for x:
0.08x + 2 = 3 + 0.15x
0.07x = 1
x ≈ 14.29
Therefore, a customer would need to write 15 checks per month for the new plan to be cheaper than the old plan.
For a customer who writes 10 checks per month, the cost of the old plan is:
C_old = 0.08(10) + 2 = 2.80
The cost of the new plan is:
C_new = 3 + 0.15(10) = 4.50
Therefore, the old plan is cheaper for a customer who writes 10 checks per month.
The formula for the cost of any number of checks for the old plan is:
C_old = 0.08x + 2
where x is the number of checks written per month
learn more about "Cost":-https://brainly.com/question/19104371
#SPJ11
Imagine some colored blocks are laid out in a row: three red, two blue, three red, two blue and so on. If there are 65 colored blocks, how many would be red?
A. 52
B. 39
C. 26
D. 13
There are 39 red blocks out of 65 total blocks.
To solve this problem, we need to find the total number of blocks in each repeating pattern. The pattern is three red blocks followed by two blue blocks. So in each pattern, there are five blocks total.
To find the number of red blocks in 65 total blocks, we need to figure out how many times the pattern repeats. We can do this by dividing the total number of blocks (65) by the number of blocks in each pattern (5):
65 ÷ 5 = 13
So the pattern repeats 13 times.
In each pattern, there are three red blocks. So to find the total number of red blocks, we need to multiply the number of red blocks in each pattern (3) by the number of times the pattern repeats (13):
3 x 13 = 39
Therefore, there are 39 red blocks out of 65 total blocks.
The correct answer is option B.
To know more about blocks refer here:
https://brainly.com/question/30332935
#SPJ11
Translate each problem into a mathematical equation.
1. The price of 32'' LED television is P15,500 less than twice the price of the
old model. If it cost P29,078. 00 to buy a new 32'' LED television, what is
the price of the old model?
2. The perimeter of the rectangle is 96 when the length of a rectangle is
twice the width. What are the dimensions of therectangle?
a) The price of the old model is P22,289.
b) The dimensions of the rectangle are 16 by 32.
a) Let x be the price of the old model. According to the problem, the price of the new 32'' LED television is P15,500 less than twice the price of the old model.
This can be expressed as 2x - P15,500 = P29,078. Solving for x, we can add P15,500 to both sides to get 2x = P44,578, and then divide both sides by 2 to get x = P22,289.
b) Let w be the width of the rectangle. According to the problem, the length of the rectangle is twice the width, so the length is 2w. The perimeter of a rectangle is the sum of the lengths of all four sides, which in this case is 2w + 2(2w) = 6w.
We are given that the perimeter is 96, so we can set up an equation: 6w = 96. Solving for w, we can divide both sides by 6 to get w = 16. Since the length is twice the width, the length is 2(16) = 32.
To learn more about rectangle click on,
https://brainly.com/question/1409213
#SPJ4